
Multi-agent System Architectural Aspects for Continuous
Replanning

Carlos Joel Tavares1, Célia Ghedini Ralha1

1Computer Science Department – Exact Sciences Institute – University of Brası́lia
Campus Darcy Ribeiro, 70.904-970 Brası́lia, Brazil

carlosjoel.tavares@gmail.com, ghedini@unb.br

Abstract. Robots’ coordination to achieve the system’s goal is one of the chal-
lenges that complex Multi-Robot Systems (MRS) encounter. One could use au-
tomated planning (AP) to better face this challenge by diminishing problems
and continually correcting the execution when failures occur. Some works in
the literature try to fix this problem, but there are still few, and there’s not much
analysis between them. This work implements a Multi-Agent System (MAS) to
simulate an MRS mission using a MAS architecture integrated with AP illus-
trated with space resource gathering robots. The results show the importance of
the ability to plan recovery and research in complex space missions field.

1. Introduction
Multi-robot Systems (MRS) are complex and need real-world environment execution
[Klavins 2004], [Aziz et al. 2021]. Nevertheless, it is not always feasible to prepare
for all environmental changes before the deployment of the system. Moreover, coor-
dinating heterogeneous robots is a demanding task. One viable solution that creates
the optimal plan recovers it when a failure occurs, and diminishes that demand is Au-
tomated Planning (AP). Therefore, the process of plan recovery becomes needed when
systems run in dynamic environments [Schmitt et al. 2019], [Moreira and Ralha 2021b],
[Moreira and Ralha 2022b], [da Silva and Ralha 2023].

The indispensable coordination of robots needed to achieve the system’s goal is
one of the many difficulties of MRS [Verma and Ranga 2021]. MRS’ coordination, com-
munication, and interaction between agents pose a problem similar to Multi-Agent Sys-
tems (MAS) [Wooldridge 2009], [Weiss 2016], [Salzman and Stern 2020]. While the for-
mal definition of a planning problem, which includes a tuple composed of actions, prepo-
sitions, initial state, and goal, helps to mitigate this problem, in classical planning, dy-
namic environments are not the focus, and such are the MRS’s real-world environments.
While planning solutions focus on changes that derive from internal actions, dynamic-
focused solutions also focus on exogenous actions and action failures. That inserts the
need for plan recovery since that plan can become unfeasible many times. This complex
scenario relates to Multi-Agent Planning (MAP), which involves the coordination of re-
sources and activities of many agents [Komenda et al. 2016], [Moreira and Ralha 2021a],
[Moreira and Ralha 2022a].

There are studies focused on problems of coordination aligned with planning
[Cashmore et al. 2015], [González et al. 2020], [Bischoff et al. 2021], [Martı́n et al. 2021],
[Lesire et al. 2022]. The proposed solutions in the studies create a centralized analysis of
the environment to coordinate the plan. The studies of MRS analyze many aspects like

Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

1
39

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



goal decomposition, task allocation strategies, quality of attributes/plan adaptation using
probabilistic and temporal planning, interactive coordination of heterogeneous robotic
teams, relating architectures, frameworks, and robot operating systems. However, the re-
covery of plans in dynamic environments is seldom the focus. Even so, the literature dis-
cusses solutions to the adaptation of robotic missions [et al. 2021], [Carreno et al. 2022],
design patterns of architectures to heterogeneous robots [Rodrigues et al. 2022] and plan-
ning agent architectures [Silva et al. 2020], [Magnaguagno et al. 2022].

Multi-robot planning in space robotics is crucial for enhancing efficiency, relia-
bility, and productivity in space missions [Sun et al. 2023]. By enabling multiple robots
to work collaboratively, tasks can be completed faster and more effectively, with spe-
cialized robots handling specific functions [Basmadji et al. 2020]. This approach pro-
vides redundancy, ensuring mission continuity even if one robot fails, and facilitates
the execution of complex tasks that require precise coordination. This work’s main
contribution is the implementation of a MAS simulating a robotic space mission using
the architecture defined in [da Silva 2024] with code available to promote open science
(https://github.com/CJTS/city-planning).

The rest of the article includes: in Section 2, we show architectural aspects of
MAS with AP; in Section 3, we display the experiments together with the used illustrative
example; and lastly, in Section 4 the conclusions and future work.

2. Architectural Aspects
One aspect of MRS is the complex task-completing process which is viewed as decou-
pling complex tasks into simpler sub-tasks, forming a coalition of robots that will perform
them, allocating to the coalitions, and using MAP to transform those tasks into sequential
actions so the robots can perform [Rizk et al. 2019]. Figure 1 presents an adapted MRS
workflow [Kiener and von Stryk 2010]. Note the workflow includes a human expert to
decompose complex tasks into simpler sub-tasks based on the robots’ capabilities avail-
able and the coalition formation of a set of agents. Then, the task (re-)allocation and robot
planning and control steps are autonomously performed by the robot teams.

Figure 1. Adapted MRS workflow. Source: [Rizk et al. 2019].

The architecture used in this work is presented in [da Silva 2024], which integrates
AP in MAS. The architecture’s requirements involve the mission’s decomposition into
local plans to be executed by the agents. The Coordinator is responsible for receiving
the mission request that contains the plans assigned to robot roles. Then, it coordinates
the execution by assigning agents that fit the roles. It focuses on recovering the mission’s
plan when problems happen.

40

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



2.1. Design

As illustrated in Figure 2, the design phase necessitates a domain expert to outline the
mission requirements. The System Integrator task is to develop the Problem Domain
application component in planner syntax. This element is crucial to the architecture,
as the effectiveness of the planning capabilities hinges on the formal definition of the
problem and the domain. Goal reasoning functions may be incorporated later to address
issues stemming from inadequate descriptions in this component.

The Coordinator and Robot runtime components exchange data on local plans and
mission properties via messages. Establishing a communication protocol between these
components is crucial.

Figure 2. The high-level architecture. Source: [da Silva 2024].

The Coordinator oversees mission control, encompassing planning and plan re-
covery. This component stores the Mission Data required for mission execution, which
includes the mission details, available robots, and the environment state. The Coordi-
nator Planner module generates a mission plan through the Planning process using the
automated planner, environment state, and problem domain. Subsequently, a planning
execution cycle commences, where the Coordinator monitors the environment for un-
expected changes via the Monitor and Sensors modules and receives feedback from the
robots.

Once the Local Mission plan is established, the robots receive the plan from the
Coordinator and initiate execution by carrying out actions sequentially through their Ac-
tion Sequencing process. The Robot Action module executes each action using their Sen-
sors/Actuators devices. Additionally, the Synchronization Manager module ensures co-
ordination among actions performed by multiple robots. It’s important to note that the
plan is dynamically defined at runtime by the Coordinator component. In the event of
a problem, the Coordinator reevaluates the original plan for redistribution to the robots,
aiming to minimize disruptions in the MRS.

2.2. Execution Process

Figure 3 presents the execution workflow of the architecture. The initial step of the execu-
tion process is the initial trigger, determined by the system integrator and varies depending

41

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



on the domain. Upon receiving the initial trigger, the Coordinator adjusts the initial state,
defines the mission, and initiates preparations for creating the plan to accomplish it. Con-
sequently, the Coordinator must comprehend, based on the problem domain, the required
robot types to assemble the team.

Utilizing the information within the Mission Data, the Planner module initiates
the Planning process to generate the optimal plan. In this work, we employed the Hy-
perTensioN planner for this purpose [Magnaguagno et al. 2022]. However, alternative
planners can also be considered, with careful evaluation of their capabilities beforehand.
For a comprehensive comparison between planners, see [Georgievski and Aiello 2015].

In the sequence, the Coordinator divides the plan among the robots in the team
and dispatches their respective local missions. Each robot initiates its task sequencing
process to execute the plan. Concurrently, the Coordinator monitors the environment for
any changes that could jeopardize the plan’s feasibility. If an issue occurs, the Coordina-
tor initiates the plan recovery process, which involves rectifying the current state of the
environment and subsequently generating a new plan (replan) for the mission. The plan
is successfully executed by the team of robots if no unexpected events arise.

Figure 3. The solution’s execution process. Source: [da Silva 2024]

Plan Recovery

One of the reasons the architecture might need to execute a plan recovery process is when
all actions yield the desired outcome, but, an unexpected event occurs in a detectable man-
ner. An example of such an event is the robot’s battery depletion. Since most planners do
not incorporate numeric values in their domain modeling, typically, a boolean flag indi-
cates the battery level (e.g., low). Most actions necessitate this flag to indicate sufficient
battery power. During execution, if the flag indicates a low battery level, the system must
replan to include a task for recharging the robot. This scenario is not necessarily an error
but rather an event that could occur at any given time.

Another scenario requiring plan recovery arises when there’s an issue with the
domain modeling. For instance, if a car is supposed to wait for a crane to finish loading
all boxes before unloading, but the modeling precondition erroneously allows unloading
if no boxes are present, the car may prematurely vacate the docking area. Consequently,
the initial plan, which only considered one car navigation, must be replanned to ensure
the car returns for the remaining boxes. This situation underscores the necessity of plan

42

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



recovery to rectify discrepancies in the domain modeling and ensure plan adherence.

The second scenario necessitating plan recovery arises from external events or
agents interacting with the environment in a manner that unpredictably alters its state.
For instance, consider a scenario where a door needs to remain open for a robot to pass
through, but someone unexpectedly closes it. This unforeseen event disrupts the execution
of the plan, prompting the need for plan recovery to address the changed environmental
condition and revise the plan accordingly.

Regardless of the reason for replanning, the initial trigger is when the robot inter-
acts with the environment. This interaction marks the commencement of the replan cycle,
which can be visualized as a reactive replan process, as depicted in Figure 4 using a UML
sequence diagram [Rumbaugh et al. 2004], [Object Management Group (OMG) 2015].
The reactive replan process transpires when the Coordinator receives the status of the
environment after the robot attempts to act, and a problem emerges.

Figure 4. The architecture reactive replan sequence diagram.

When the environment status confirms the action is successful, the plan’s execu-
tion can proceed uninterrupted. However, if the robot encounters difficulty completing the
action, the Coordinator must ascertain the reason for the failure. The robot communicates
the problem through an execution status message. Subsequently, the Coordinator updates
the environment state model and requests a new plan from the planner to address the en-
countered issue. This iterative process enables the architecture to respond dynamically to
environment changes and ensure plan adherence.

Dealing with false action results can indeed pose significant challenges. These
issues arise when sensors erroneously indicate that an action was successful when it was
not, or conversely, signal a problem when there isn’t one. Resolving false action results
typically involves two approaches, each with its complexities.

The first approach entails the Coordinator validating all actions to ensure their

43

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



accuracy. However, this method can incur additional hardware costs, such as employing
sensors to verify all action effects. Alternatively, the second approach needs a sophisti-
cated heuristic, such as a backtracking algorithm that stores execution traces. This method
enables the Coordinator to backtrack to the point where the problem occurred when the
action’s effects are needed.

At the current stage, the proposed architecture assumes that agents cooperate with
veracity behavior when exchanging messages. Thus, addressing false action results was
left as an avenue for future exploration. Such exploration underscores the need for further
research to develop robust mechanisms for identifying and mitigating false action results
within the architecture.

Figure 5 depicts a proactive replan process, where the Coordinator actively mon-
itors the environment, preemptively identifying potential problems. In this process, the
Coordinator maps the environment states, evaluates them to detect issues, updates the
planner model as necessary, requests a new plan, and distributes the updated local plans
to the agents for execution.

Figure 5. The architecture proactive replan sequence diagram.

This work extends beyond traditional plan recovery by addressing planning in
situations where unexpected events occur with reactive (Figure 4) or proactive (Figure
5) replan, leading to changes in the environmental state. By encompassing both aspects,
this architecture offers a comprehensive approach to handling dynamic and unpredictable
scenarios within MRS.

3. Experiments

The main goal of the experiments is to describe and validate the strategy of the architec-
ture’s plan recovery process [da Silva 2024]. Experiments using MRS and a healthcare
case already were made [da Silva and Ralha 2023]. However, the architecture focuses on
working with multiple domains. Thus, the necessity of testing with other technologies
and domains is vital. This work uses the Space Resource Gathering (SRG) on planet
exploration illustration example.

44

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



3.1. Space Resource Gathering

Motion and path planning is already a common area of study in space robotics, as seen
in works of [Basmadji et al. 2020], [Sun et al. 2023]. However, planet exploration is also
a possible focus, and with the advancement of technology, we demand more research.
On that note, to expand the research of planet exploration, we describe this illustrative
example of SRG where we idealize that the cost of sending robots to the planets is lower
and the possibility of sending a heterogeneous group of robots to perform various tasks is
a possibility.

The SRG includes three robot types. One robot can map the environment looking
for resources (Scout), another can collect the found resources (Gatherer), and the last has
the skill of removing obstacles (Remover) that can appear during the plan execution. The
mission has two types of main plans, one of mapping the environment and the other of
collecting the resources. In the last part, should any obstacles arise, the plan will fail, and
the Coordinator needs to replan accordingly.

Figure 6 shows a simple example of a map to illustrate how the simulation would
work. The map has four parts: Base, Location 1, Location 2, and Location 3. In the
figure, while the Gatherer is collecting resources in Location 1, the Remover is removing
obstacles in Location 2, and the Scout searches for resources in Location 3.

Figure 6. Example of a simulation map.

Listing 1 shows an example of a plan generated by the HyperTensioN where no
replan is needed. The Scout searches for a resource, and then the Gatherer collects it. In
Listing 2, a new part of the plan is needed after the Gatherer tries to collect the resource,
but an external event happens, and an obstacle is in the way, so the Remover need to
remove it before the Gatherer can finish its local plan.

Listing 1. Example of a plan without replan.
move scout(scout base location)
map(scout resource enemy location)
move scout(scout location base)
move(gatherer base location)
pickup(gatherer resource)
move(gatherer location base)
drop(gatherer resource)

Listing 2. Example of a plan with replan.
move scout(scout base location)
map(scout resource enemy location)
move scout(scout location base)
move remover(remover base location)

45

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



remove obstacle(remover obstacle location)
move remover(remover location base)
move(gatherer base location)
pickup(gatherer resource)
move(gatherer location base)
drop(gatherer resource)

3.2. Experimental Setup

The experiments use Ruby (v2.6.10) [Matsumoto 2022] as the principal language. A
process creates a thread for each agent (Coordinator with planner and robots). The com-
munication between the agents uses a web socket with the TCP protocol. The messages
exchange uses a JSON format with two attributes, “action” with a string representing the
message purpose and a “value” with the necessary data for the agent act. Figure 7 shows
the execution process of the experiment.

Figure 7. Experimental process.

The experiment execution took into account the following aspects:

• objective - to evaluate how effectively the architecture mitigates issues when op-
erating in a simulated dynamic environment.

• problem types - Objects preventing resource collection.
• case study - the SRG using five experimental scenarios related to the evaluated

problem.
• validation strategy - we conducted five scenarios, each repeated 30 times for sta-

tistical significance, to assess the Coordinators’ ability to complete the plan. Plan
results were analyzed at the end of each execution, focusing on the percentage of
uncompleted missions related to the evaluated problem. The scenarios featured a
door-closed event with probabilities of 10%, 30%, 50%, 70%, and 100%.

• results evaluation metric - plan completion and time required to complete the plan.
We compared the experimental results with a baseline case where the Coordinator
cannot replan.

3.3. Results

In this section, we analyze the experimental results to assess the effectiveness of the pro-
posed architecture in dynamic environments, specifically focusing on the plan recovery
process illustrated with space resource-gathering robots.

46

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



3.3.1. Baseline Analysis

The baseline scenario serves as a control to compare the effectiveness of the plan recovery
mechanism. In the baseline, the architecture cannot replan in response to unexpected
events. The results are depicted in Figures 8a and 8b.

(a) # of execution results without replan. (b) Execution time without replan (s).

Figure 8. Charts of mission’s results without replan.

Figure 8a shows the number of mission completions without replan capability
across various probabilities of obstacles (10%, 30%, 50%, 70%, and 100%). As expected,
the number of failures increases proportionally with the obstacle occurrence probability.
This result demonstrates the limitation of static planning in dynamic environments, where
an increased likelihood of external disruptions significantly impacts mission success rates.

Figure 8b presents the execution time for missions without replanning. Despite
variations in the probability of obstacles, the execution times remain relatively consis-
tent. This result relates to the simplified plan nature used in the baseline scenario, where
missions either succeed without disruption or fail early due to obstacles.

3.3.2. Replan Capability Analysis

The replan scenarios incorporate the architecture’s ability to recover plans dynamically in
response to obstacles. Figure 9a and Figure 9b present the results.

Figure 9a depicts the number of mission completions with replan capability across
varying probabilities of obstacles considering success when no problem occurs. Unlike
the baseline, the architecture’s ability to replan significantly improves mission success
rates, even as the probability of obstacles increases. This result demonstrates the effective-
ness of the plan recovery mechanism in mitigating the impact of dynamic environmental
changes.

Figure 9b shows the execution time for missions with replanning. Similar to the
baseline, the execution times are consistent across different probabilities of obstacles.
However, note that the architecture’s replan capability adds a slight overhead to the ex-
ecution time due to the replanning process. Despite this, the improvement in mission
success rates outweighs the marginal increase in execution time.

47

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



(a) # of execution results with replan. (b) Execution time with replan (s).

Figure 9. Charts of mission’s results with replan.

3.3.3. Comparative Analysis

The advantages of the replan capability are evident in Figures 8 and 9. The architecture’s
ability to dynamically recover plans allows it to maintain high mission success rates, even
with frequent obstacles. The slight increase in execution time is a reasonable trade-off for
the enhanced robustness and reliability of the replan mechanism.

Overall, the results validate the effectiveness of the proposed architecture in han-
dling dynamic environments through its replan capability. The ability to dynamically ad-
just plans in response to unexpected events significantly enhances mission success rates,
demonstrating the potential of this approach for real-world applications in multi-robot
systems operating in unpredictable conditions.

4. Conclusion
The experiments validate the proposed MAS architecture in [da Silva 2024] integrating
AP for multi-agent coordination in dynamic environments. The SRG example illustrates
the architecture’s capabilities in a simulated space robotics scenario, managing task de-
composition, coalition formation, and task allocation adapted to dynamic changes, en-
suring mission continuity. The central Coordinator oversees planning and execution,
presenting a reliable strategy for managing heterogeneous robotic teams in the studied
scenario. Comparing the scenarios, it is evident that this functionality enhances the sys-
tem’s ability to complete missions successfully, even when the probability of encountering
obstacles increases.

Future work focuses on enhancing the architecture’s capabilities with false action
results using sophisticated heuristic algorithms. Further, performing experiments in other
domains to validate the architecture’s versatility, experiments with increasing numbers of
robots, integrating with more advanced planning algorithms to enhance communication
protocols, and finding a suitable benchmark for multi-agent planning and comparing with
some existing work will be salient to future research.

References
Aziz, H., Chan, H., Cseh, A., Li, B., Ramezani, F., and Wang, C. (2021). Multi-robot task

allocation-complexity and approximation. In Proc. of 20th Int. Conf. on Autonomous
Agents and MultiAgent Systems (AAMAS), page 133–141.

48

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



Basmadji, F., Seweryn, K., and Sasiadek, J. (2020). Space robot motion planning in the
presence of nonconserved linear & angular momenta. Multibody System Dynamics,
50.

Bischoff, E., Teufel, J., Inga, J., and Hohmann, S. (2021). Towards interactive coordina-
tion of heterogeneous robotic teams – introduction of a reoptimization framework. In
Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), pages 1380–1386.

Carreno, Y., Ng, J. H. A., Petillot, Y., and Petrick, R. (2022). Planning, execution,
and adaptation for multi-robot systems using probabilistic and temporal planning. In
Proc. of 21st Int. Conf. on Autonomous Agents and MultiAgent Systems (AAMAS), page
217–225.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carreraa, A., Palomeras,
N., Hurtós, N., and Carrerasa, M. (2015). ROSPlan: Planning in the robot operating
system. In Proc. of 35th Int. Conf. on Automated Planning and Scheduling (ICAPS),
page 333–341.

da Silva, C. J. T. (2024). A multi-robot system architecture with multi-agent planning.
Computer Science Department, University of Brasilia, Campus Darcy Ribeiro - Asa
Norte, Brası́lia - DF, 70910-900, Brazil.

da Silva, C. J. T. and Ralha, C. G. (2023). Multi-robot system architecture focusing on
plan recovery for dynamic environments. In 2023 IEEE Symposium Series on Compu-
tational Intelligence (SSCI), pages 1668–1673.

et al., M. (2021). RoboMAX: Robotic mission adaptation exemplars. In Proc. of Int. Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 245–251.

Georgievski, I. and Aiello, M. (2015). Htn planning: Overview, comparison, and beyond.
Artificial Intelligence, 222:124–156.

González, J. C., Garcı́a-Olaya, A., and Fernández, F. (2020). Multi-layered multi-robot
control architecture for the robocup logistics league. In Proc. of IEEE Int. Conf. on
Autonomous Robot Systems and Competitions, pages 120–125.

Kiener, J. and von Stryk, O. (2010). Towards cooperation of heterogeneous, autonomous
robots: A case study of humanoid and wheeled robots. Robotics and Autonomous Sys-
tems, 58(7):921–929. Advances in Autonomous Robots for Service and Entertainment.

Klavins, E. (2004). Communication Complexity of Multi-robot Systems, pages 275–291.
Springer, Berlin, Heidelberg.

Komenda, A., Stolba, M., and Kovacs, D. L. (2016). The international competition of
distributed and multiagent planners (CoDMAP). AI Magazine, 37(3):109–115.

Lesire, C., Bailon-Ruiz, R., Barbier, M., and Grand, C. (2022). A hierarchical deliberative
architecture framework based on goal decomposition. In Proc. of IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), pages 9865–9870.

Magnaguagno, M. C., Meneguzzi, F., and De Silva, L. (2022). HyperTensioN: A three-
stage compiler for planning. In Proc. of 30th Int. Conf. on Automated Planning and
Scheduling (ICAPS), pages 1–4.

49

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024



Martı́n, F., Clavero, J. G., Matellán, V., and Rodrı́guez, F. J. (2021). PlanSys2: A planning
system framework for ROS2. In Proc. of IEEE Int. Conf. on Intelligent Robots and
Systems (IROS), page 9742–9749.

Matsumoto, Y. 2022). Ruby. https://www.ruby-lang.org/en/. Accessed:
2024-06-03.

Moreira, L. H. and Ralha, C. G. (2021a). Evaluation of decision-making strategies
for robots in intralogistics problems using multi-agent planning. In Proc. of IEEE
Congress on Evolutionary Computation, pages 1272–1279.

Moreira, L. H. and Ralha, C. G. (2021b). Plan recovery process in multi-agent dynamic
environments. In Gusikhin, O., Nijmeijer, H., and Madani, K., editors, Proc. of 18th

Int. Conf. on Informatics in Control, Automation and Robotics (ICINCO), pages 187–
194.

Moreira, L. H. and Ralha, C. G. (2022a). An efficient lightweight coordination model to
multi-agent planning. Knowledge and Information Systems, 64:415–439.

Moreira, L. H. and Ralha, C. G. (2022b). Method for evaluating plan recovery strategies in
dynamic multi-agent environments. Journal of Experimental & Theoretical Artificial
Intelligence, pages 1–25.

Object Management Group (OMG) (2015). Meta-Object Facility (MOF) Specification,
version 2.5. OMG Document Number formal/2015-03-01.

Rizk, Y., Awad, M., and Tunstel, E. W. (2019). Cooperative heterogeneous multi-robot
systems: A survey. ACM Comput. Surv., 52(2).

Rodrigues, G., Caldas, R., Araujo, G., de Moraes, V., Rodrigues, G., and Pelliccione, P.
(2022). An architecture for mission coordination of heterogeneous robots. Journal of
Systems and Software, 191(111363).

Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education.

Salzman, O. and Stern, R. (2020). Research challenges and opportunities in multi-agent
path finding and multi-agent pickup and delivery problems. In Proc. of 19th Int. Conf.
on Autonomous Agents and MultiAgent Systems (AAMAS), page 1711–1715.

Schmitt, P. S., Wirnshofer, F., Wurm, K. M., Wichert, G. v., and Burgard, W. (2019).
Modeling and planning manipulation in dynamic environments. In Proc. of Int. Conf.
on Robotics and Automation (ICRA), pages 176–182.

Silva, L. d., Meneguzzi, F., and Logan, B. (2020). BDI Agent Architectures: A Survey.
In Proc. of 29th Int. Joint Conf. on Artificial Intelligence, (IJCAI), pages 4914–4921.

Sun, Y., Wu, J., and Liu, T. (2023). Joint task allocation and path planning for space robot.
IEEE Access, 11:42314–42323.

Verma, J. K. and Ranga, V. (2021). Multi-robot coordination analysis, taxonomy, chal-
lenges and future scope. Journal of Intelligent & Robotic Systems, 102(1).

Weiss, G. (2016). Multiagent Systems. The MIT Press, 2nd edition.

Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons.

50

Anais do XVIII Workshop-Escola de Sistemas de Agentes, seus Ambientes e Aplicações - WESAAC 2024

https://www.ruby-lang.org/en/

	Multi-agent System Architectural Aspects for Continuous Replanning

