
Setting up a Jason Agent on Top of ROS to Control an
Autonomous UAV

Felipe da C. Calegari1, Iago O. Silvestre1, Jomi F. Hübner1,
Leandro B. Becker1, Maiquel de Brito2

1Programa de Pós-Graduação em Engenharia de Automação e Sistemas
Universidade Federal de Santa Catarina (UFSC) – Florianópolis, SC

2Departamento de Engenharia de Controle, Automação e Computação (CAC)
Universidade Federal de Santa Catarina (UFSC) – Blumenau, SC

felipecunhacalegari@gmail.com,iagosilvestre2004@gmail.com,

{jomi.hubner,leandro.becker,maiquel.b}@ufsc.br

Abstract. This paper describes the nuances related to properly setting up a Ja-
son agent on top of the Robot Operating System (ROS) to control an autonomous
Unmanned Aerial Vehicle (UAV) executing in a Gazebo simulation. To do so
we refactor a previously developed search-and-rescue (SAR) UAV application
with updated technology. We mainly address changing the interaction mecha-
nism between the agent and ROS, i.e., the way that the agent interacts with its
“physical body”. We also address using Docker technology to setup the design
environment and speed up the design process. Our results showed that it can
be challenging to adapt agents since different technologies have different setups
and different compatibilities, but it comes with advantages such as scalability in
agent programming and constant updates to work with different ROS versions.

1. Introduction
Currently, there is no standard way to architect the interaction between an agent and its
“physical body”, for instance the Unmanned Aerial Vehicle (UAV). However, as high-
lighted in [Dennis and Fisher 2023], the Robot Operating System (ROS)1 has gained at-
tention as an adequate technology to abstract from the agent the implementation details
concerning interacting with a physical device, i.e., connecting to sensors and actuators.

On the other hand, cognitive agents with BDI (Belief-Desire-Intention) ar-
chitecture [Bratman et al. 1988] are known for facilitating the design of high-level
tasks such as reasoning, percepting the environment, setting goals, and perform-
ing decision-making. For such a reason, over the last years, several works ad-
dressed the design of UAV control systems using BDI architectures, such as the Ja-
son language [Rafael H. Bordini and Wooldridge 2007]. Some examples can be seen in
[Menegol et al. 2018, Silva et al. 2021, Silvestre et al. 2023].

Different technologies were created to allow the interaction between BDI
agents and ROS: ROS-A [Cardoso et al. 2020], Jason-ROS [Silva et al. 2020], and E-
MAS [Silvestre et al. 2025]. For instance, ROS-A considers ROS as part of the envi-
ronment in which the agent acts, so that the actions upon ROS are treated as actions upon

1https://ros.org/

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

125

elements external to the agents (external actions). In Jason-ROS the agents have their
execution system integrated with an agent node, which has topics to record perceptions to
be handled and actions triggered by the agents. These topics are linked to the “physical
body” via a ROS node named bridge, which can be configured according to the appli-
cation hardware. E-MAS also allows this configuration, but it does not rely on bridging
nodes. The agent execution system is connected to the hardware nodes and can read top-
ics to get perceptions, as well as write in topics and request services to perform actions.
Moreover, while E-MAS is in constant update, Jason-ROS became deprecated.

The work in [Silva et al. 2021] describes an interface to connect a Jason agent
with ROS and employs it in a search-and-rescue (SAR) application. This application
has been refactored to use E-MAS instead of Jason-ROS to empower Jason agents with
up-to-date technologies for integration with ROS. This paper describes this refactoring,
highlighting advantages and disadvantages of such update, as well as the pros and cons
from both interface mechanism. Besides, we also discuss how to overcome the technolog-
ical problems related to updating ROS/Gazebo and Linux-Ubuntu versions. This allows
us the following:

• Empower the Jason-agents with up-to-date technologies;
• Discuss advantages and disadvantages related with such update and, consequently,

the pros and cons from both interface mechanisms.

The remainder parts of this paper are organized as follows: Section 2 presents the
technologies (languages, frameworks, interfaces) used throughout this work. Section 3
presents the application scenario in adaptation. Finally, Section 4 presents final consider-
ations and future work directions.

2. Related Technologies
The section starts by presenting the Jason language. Then it presents the ROS framework.
Afterward, it tackles the architecture of agents, discussing the mechanisms to interface
Jason and ROS.

2.1. Jason

AgentSpeak [Rao 1996] is one of the most influential abstract languages based on the BDI
framework. Beliefs are information the agent has about the world, other agents, and itself.
Desires are all possible states of affairs that the agent might like to accomplish. Intentions
are the states of affairs that the agent has decided to work towards.

Jason [Rafael H. Bordini and Wooldridge 2007]2 is an interpreter for an enhanced
version of AgentSpeak. It implements the operational semantics of this language and
offers a platform for developing Multi-Agent Systems (MAS). Jason is implemented in
Java (thereby it is multi-platform) and is made available as open-source software.

2.2. ROS

ROS [Quigley et al. 2009, Koubaa 2017] is an open-source set of libraries and tools for
developing robotic applications. It employs a messaging system that enables the commu-
nication among various nodes (programs) within a system. It uses topics, which works as

2https://jason-lang.github.io

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

126

a message-passing mechanism. Nodes can publish messages to a particular topic and can
also subscribe to receive messages from topics, facilitating the exchange of information
such as sensor data, motor commands, or other state-related data. A given node can also
request specific actions or responses from other nodes by means of services. A service
client can send a request to a service server, which processes the request and returns a re-
sponse. Services are commonly used for tasks that require a particular action to be carried
out. Although ROS 2 is the most up-to-date version, the current work uses ROS Noetic.

2.3. Agent Architecture

As previously mentioned, there are different technologies to allow the interaction between
Jason and ROS, such as ROS-A [Cardoso et al. 2020], Jason-ROS [Silva et al. 2020], and
E-MAS [Silvestre et al. 2025]. This paper focuses the last two, as follows.

2.3.1. Jason-ROS

The Jason-ROS framework uses Jason agents to integrate with robot systems that use the
ROS platform. This framework changes the agent’s main architecture on how it perceives
and acts on the environment in which it is situated, giving advantages such as control and
optimization of the system’s integration. This framework uses specific configuration files
stating the agents’ actions (for actuators) or perceptions (for sensors). In these files, the
developer needs to set up the method used (topic or service, for example), the path of this
method, message type, dependencies, and the necessary parameters for the message to be
properly sent. In the agent code, there is no difference since the name of the action used
by the agent is already stated in the configuration file.

The framework also uses four ROS nodes to integrate Jason with ROS. The first
is called Agent that is the agent itself. The second is called HW-Bridge which is respon-
sible to integrate the hardware and Jason agents. The third is the Hardware Controller,
responsible for the management of hardware. The final node is called Comm, responsible
for the communication protocols between the agents [Silva 2020].

2.3.2. E-MAS

The Embedded-Mas (E-MAS) framework can integrate ROS with BDI agents, specifi-
cally to the agent’s perceptions and actions. The same way as the Jason-ROS framework,
E-MAS extends the default Jason agents class ag-class with the RosBdiAgent class to be
able to include ROS topics among the perception sources and link the actions to the ser-
vice calls and topic writings. It also extends the default Jason architecture ag-arch with
RosBdiAgArch, which is responsible for including what has been written in the topic when
the agent perceives the environment.

The agent code (in an.asl file) does not have significant changes; actions, per-
ceptions, and beliefs are coded in the same way. The integration between the ROS and
the agents is set up in a .yaml file where each agent has its own file. This file makes it
possible to define the Java classes that implement the interface between Jason and ROS.
Furthermore, the item perceptionTopics configures the topics that produce perceptions

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

127

and the item actions configures the connection between the actions of the agent and the
ROS resources that control the actuators that realize such actions.

2.4. PX4

PX4 is an open-source flight control software commonly used in UAV development. It
provides support for autonomous flight, sensor integration, and control modes. In this
work, PX4 runs in Software-in-the-Loop (SITL) mode, allowing simulations to be exe-
cuted without physical hardware.

To connect PX4 with ROS, we use MAVROS, which acts as a bridge between the
PX4 autopilot and the ROS environment. MAVROS exposes topics and services used to
arm the UAV, set flight modes, publish target positions, and access telemetry data such as
position and state.

This setup enables the Jason agents to issue commands (e.g. takeoff, land, fly to
a position) and perceive the UAV state through ROS. All interactions happen within a
simulated environment using Gazebo, with PX4 controlling the low-level UAV behavior.

The Docker image used in this project (further detailed in 3.1) includes PX4,
MAVROS, ROS Noetic, and all required dependencies. This ensures the simulation be-
haves consistently across different systems and makes the environment easier to repro-
duce.

3. Case Study

The presented work consists of the adaptation of the search-and-rescue (SAR) application
presented in [Silva et al. 2021], which aims to rescue humans drowning in the open sea.
The scenario3 was run on Gazebo Simulator and Rezende’s Jason-ROS framework was
used to integrate the agents system with ROS.

In this SAR application, there are two types of UAVs: (i) the scouter, responsible
for flying above the water searching and identifying humans and then sending location
information to the second type of agent; (ii) the rescuer, which receives information about
the location of the human, goes to the specific coordinates, and then releases a buoy to
save the human. Figures 1 and 2 contain flowcharts representing the behavior of the scout
and rescuer agents, respectively. The scout’s and rescuer’s beliefs, goals, and plans, along
with their descriptions are presented in Tables 1 and 2.

The Scout agent is set up to start with the initial beliefs such as water offset, a
search area, flight altitude, and a setpoint goal. After, the agent flies with maximum
horizontal speed, maximum altitude the UAV would return, and the path that would be
calculated where the UAV would fly through. This calculated path generates a list of
coordinated points, and if a victim is detected in the specific area, the scout agent would
alert the Rescuers agents with the location. Since it’s a multiagent system, and in specific
with the possibility of multiple rescuer agents, once the location is sent from the scout
agent, they (rescuers) negotiate to decide who will drop the buoy at the victim’s location
based on who’s the closest. Table 3 contains each agent’s action and perception, and the
respective data types used by the agents.

3https://github.com/Rezenders/active-perception-experiments

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

128

Figure 1. Scout Agent Behavior Diagram

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

129

Figure 2. Rescuer Agent BehaviorDiagram

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

130

Table 1. List of Beliefs, Goal and Plans - Scout agent

Agent Property Name Description

Belief

water Y offset An offset in Y direction for path planning
search area Size of the area that should be searched

flight altitude Initial altitude that the UAV would fly
setpoint goal Initial coordinates goal

plan path result Add a belief that contains the result of the plan path and starts the mission
victim Adding to the belief base the position of a victim

victim position Given the position of the victim, resume the plan to contact the rescuers

Goal
setRTLAtlitude Altitude for ”Return to Lauch”
setMaxSpeed Maximum speed

planPath Path planning

Plans

setMaxSpeed Maximum speed
setRTLAtlitude Set the ”Return to Launch Altitude” to a given value

planPath Plan a box-shaped path for the UAV
defineGoal Define new waypoints

publishSetPoint Check for UAV’s mode, check for waypoint (X, Y, Z coordinates) and publish them
contactRescuers Inform the rescuers agents about victim position
informVictims Obtain victim’s coordinates and broadcast

mark as rescued Mark which victim was rescued

Table 2. List of Beliefs, Goal and Plans - Rescuer agent

Agent Property Name Description

Belief

flight altitude Default flight altitude
setpoint goal Initial setpoint - coordinates

victim position Location of the victim
victim in need Victim in certain location needs to be rescued

victim in rescue Rescue of the victim is the current process
gazebo pos Position in Gazebo simulator

gazebo offset Calculated offset between Gazebo and UAV’s coordinates

Goal getGazeboOffset Calculate simulation offset
setRTLAtlitude Altitude for ”Return to Launch”

Plans

setMaxSpeed Maximum speed
setRTLAtlitude Altitude for ”Return to Launch”
victim in need Register the victim at their coordinates and starts negotiation

start negotiation Start negotiation for rescue
negotiate Find and propose rescue for victims
propose Propose the rescue by rescuer’s name

broadcastProposal Broadcast the proposal
choose proposal Choose which rescuer is the best

check winner Check if the agent is elected for rescue
rescueVictim Execute rescue mission

publishSetPoint Publish waypoints to rescue the victim
defineGoalLocal Get list of waypoints, adjust with Gazebo’s offsets and updates the list of waypoints

drop buoy Drop the buoy at the victim’s location
resume negotiation Resume negotiation after rescue

returnHome Return to home coordinates and land
getGazeboPos Get position based on Gazebo simulation

getGazeboOffset Calculate offset from simulation
mark as rescued Mark victim as rescued

In table 3, the actions and perceptions with * were responsible for some slight
modifications of the source code of the agents. This happened because there are some
slight differences in how these two interfaces construct and interpret ROS messages.

As previously mentioned, the E-MAS framework has been used in this work to
integrate the Jason agents with ROS. The focus of this section is explaining the differences
in setting up both environments, the main difficulties observed for adapting it, and the
pros/cons.

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

131

Table 3. List of Actions, Perceptions and their Data Types

Name Method Data Type

Actions

set mode service SetMode
arm motors service CommandBool

takeoff service CommandTOL
setpoint global topic GeoPoseStamped
setpoint local* topic geometry msgs/PoseStamped

land service CommandTOL
plan path* topic boustrophedon msgs/PlanMowingPathActionGoal

set fcu param service mavros msgs/ParamSet
drop buoy topic geometry msgs/Pose

camera switch service std srvs/SetBool

Perceptions

state* topic State
local pos topic geometry msgs/PoseStamped

planPathResult* topic boustrophedon msgs/PlanMowingPathActionResult
modelStates topic gazebo msgs/ModelStates

victim topic geometry msgs/PoseStamped

3.1. Environment setup

The environment itself was adapted to work properly with a Docker container. Docker is
a containerization platform that enables the creation of portable and consistent environ-
ments for software development and deployment. By bundling an application with all its
dependencies, Docker ensures that it runs reliably across different systems. In robotics
and simulation, where toolchains often involve complex configurations—such as ROS,
Gazebo, and PX4—Docker significantly simplifies setup, improves reproducibility, and
reduces system-specific issues during development.

For the search-rescue-px4 project 4, a custom Docker image was created to support
autonomous UAV simulations using PX4 SITL, ROS Noetic, Gazebo 11, and MAVROS.
The image is based on the osrf/ros:noetic-desktop-full base and includes the full PX4
firmware, MAVROS dependencies, Jason interpreter and additional system tools useful
for simulation. The Dockerfile also sets up the ROS workspace and sources the appropri-
ate environment variables, allowing for immediate use of ROS and PX4 tools within the
container.

This containerized environment improves consistency across development and
testing setups and allows new contributors to replicate the simulation environment with
small effort. It also serves as a basis for testing new agents, ensuring that simulations
involving perception, planning, and actuation run predictably across different systems.

First, the environment itself was adapted to work properly with a Docker con-
tainer, preserving the original Gazebo scenario. On the agent side, in the original work, it
was used Jason-ROS interface which would include 3 configuration files that are required:
one for the actions, one for the scout perceptions and another for the rescuer perceptions.
From those files, it is possible to reuse the same topics and services for the perceptions
and actions of the agent when adapting to E-MAS. As an example, we present part of the
code of the actions configuration file, as follows:

[a rm motor s]
method = s e r v i c e
name = mavros / cmd / arming

4https://github.com/iago-silvestre/search-rescue-px4

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

132

msg type = CommandBool
d e p e n d e n c i e s = mavros msgs . s r v
params name = v a l u e
p a r a m s t y p e = boo l

[s e t p o i n t l o c a l]
method = t o p i c
name = mavros / s e t p o i n t p o s i t i o n / l o c a l
msg type = geomet ry msgs / PoseStamped
params name = pose . p o s i t i o n . x , pose . p o s i t i o n . y , pose . p o s i t i o n . z
p a r a m s t y p e = f l o a t , f l o a t , f l o a t

To adapt the agent to the E-MAS framework it was necessary to create an .yaml
configuration file within the agent directory. The initial setup of the file has been stated
in the listing below. In the perceptionTopics bracket, it is necessary to set up the topics
where the agent would perceive, and in the actions bracket, it is necessary to set up both
topics and services where the agent must act.

p e r c e p t i o n T o p i c s :
− topicName : / r e s c u e w o r l d / d rop buoy

t o p i c T y p e : g e o g r a p h i c m s g s / GeoPoseStamped
− topicName : uav0 / mavros / l o c a l p o s i t i o n / pose

t o p i c T y p e : geomet ry msgs / PoseStamped

a c t i o n s :
t o p i c W r i t i n g A c t i o n s :

− act ionName : s e t p o i n t l o c a l
topicName : / uav0 / mavros / s e t p o i n t p o s i t i o n / l o c a l
t o p i c T y p e : geomet ry msgs / PoseStamped
params :

− h e a d e r : [seq , stamp , f r a m e i d]
− pose :

− p o s i t i o n : [x , y , z]
− o r i e n t a t i o n : [x , y , z , w]

s e r v i c e R e q u e s t A c t i o n s :
− act ionName : arming

serv iceName : / uav0 / mavros / cmd / arming
params :

− v a l u e

3.2. Main Difficulties
Even though the E-MAS framework has performed well in different projects, it is a rela-
tively new framework, so there are still some difficulties related to its usage.

The main difficulty so far has been dealing with different message types that were
not originally supported. Commands like a boolean value “true” or “false” to arm the
UAV or a command to send the coordinates that the UAV should go where the parameters

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

133

are “nested” were not originally supported. Therefore, it has been implemented in newer
updates of the framework.

Another challenge to deal with is how the framework handles array messages and
how complex they can be. In the original project, an external package called Boustro-
phedon Planner responsible for the UAV’s path planner was used and requires a custom
message type that is an extension of other standard types that uses stamps, poses, and
polygon, all in agregated, which required a relatively complex array as a message because
of those types. To deal with that specific customized message type, it was also necessary
to adapt the framework.

3.3. Pros and Cons

Although both frameworks, Jason-ROS and E-MAS, have the purpose of integrating Jason
agents with robotic systems, each have their own positive and negative values.

Both frameworks use different types of configuration files to set up the topics and
services where the agents would act and perceive. However, in Jason-ROS it might be
necessary to set up multiple files for different cases (one specific for one agent’s actions
and another for perceptions, for example) and then for different agents as well. On the
other hand, with E-MAS the developer only need to set up one .yaml configuration file per
agent, which each file would contain all the actions, and perceptions that the agent needs.

When it comes to handling different message types, the Jason-ROS seems to han-
dle it well, ”out-of-the-box”. On the other hand, E-MAS needs to be updated depending
on how complex a message type can be.

In the agent code itself, they are both similar since extra configurations are hardly
necessary.

Finally, Jason-ROS stopped being updated while the E-MAS framework still re-
ceives constant updates. When Jason-ROS was developed, ROS 2 was starting to be
developed and therefore, wasn’t supported. On the other hand, E-MAS works with both
ROS 1 and ROS 2 versions since it is based on a Java-ROS interface compatible with both
versions 5.

3.4. Results

In terms of final results of this adaptation, Table 4 shows a comparison between the setting
up of agents with Jason-ROS and Embedded-Mas (E-Mas). The most visible differences
are related to the configuration files, since on Jason-ROS we have 2 files for one agent (the
action manifest file content is shared between both scout and rescuer agents), while on E-
Mas each agent will have their own file, but it could mean that if we increase the amount of
rescuers agents, it could increase the configuration files as well. In terms of lines of agent
code, the few changes made were due to syntax differences such as symbols for internal
actions from E-Mas that are not used on Jason-ROS. Another important difference is
regarding the extra files that are necessary to be created on the E-Mas end, such as .java
files. They’re necessary in the current version so the actions with different data types can
work properly since those files symbolize an ”extension” of the default Java class used on
E-Mas.

5https://github.com/h2r/java_rosbridge

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

134

Table 4. Comparison of the files between Jason-ROS and Embedded-Mas

Framework # of configuration files # of lines in configuration files # lines in agent code Extra files?

Scout E-Mas 1 80 80 Yes (.java)
Jason-ROS 2 72 (Actions) + 27 (Perceptions) 80 No

Rescuer E-Mas 2 64 159 Yes (.java)
Jason-ROS 2 72 (Actions) + 27 (Perceptions) 159 No

It is worth noting that the extra .java files present in the adaptation, add a non-
insignificant amount of lines-of-code, totaling at 281. These java files are only needed
momentarily as for this PX4 example, E-MAS needed help in constructing some types of
ROS messages, once these are built-in the interface these files will no longer be required.

An important note is that E-MAS allows to configure different perceptions and
actions for agents of the same source code. For example, rescuer1 and rescuer2, both
agents described in rescuer.asl Jason file, could be configured with different perceptions
and actions through respective rescuer1.yaml and rescuer2.yaml files.

Regarding changes in agent source code, these were only necessary on some occa-
sions due to differences in how these two interfaces process the ROS message and create
or update a belief based on it, which resulted in some beliefs having different arranging
of the information from the ROS Topic between the two versions.

In terms of agents functionalities, the E-Mas agents performed similarly to Jason-
ROS, even though E-Mas is more robust and complex.

4. Conclusions and Future Works
So far, the adaptation of the SAR application has focused on testing if different message
types work properly with the E-MAS framework and also debugging the framework’s
functionalities. Since the framework has been receiving constant updates, it has been
easier to adapt and test. If a client is not connected or if a message type is not compatible
with E-MAS, those issues can be seen on a debugger that is compatible with ROS and
Rosbridge, for example. Another great advantage is the possibility to set up an entire
agent with one .yaml configuration file, making it easier to scale and update the agent’s
perceptions and actions if needed.

In terms of simulation environment, the UAV has been capable of arming, setting
up different modes, and flying to a specific coordinate without issues through the actions
and perceptions that were set up on the agent code. These actions and perceptions are the
most, but not all, of what is needed in terms of communication with ROS.

Even though the E-MAS framework is a work in progress, it presents good ad-
vantages to integrate Jason agents with ROS compared to Jason-ROS. Some of what’s
missing to adapt, in terms of communication with ROS, is how the UAV would plan its
path to scout an area and the human detection itself (which is done by an external script
and the detection sent to a ROS topic). These implementations and integrations will be
done in future work.

References
Bratman, M. E., Israel, D. J., and Pollack, M. E. (1988). Plans and Resource-bounded

Practical Reasoning. Computational Intelligence, 4:349–355.

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

135

Cardoso, R. C., Ferrando, A., Dennis, L. A., and Fisher, M. (2020). An interface for
programming verifiable autonomous agents in ros. In Bassiliades, N., Chalkiadakis,
G., and de Jonge, D., editors, Multi-Agent Systems and Agreement Technologies, pages
191–205, Cham. Springer International Publishing.

Dennis, L. A. and Fisher, M. (2023). Verifiable Autonomous Systems: Using Rational
Agents to Provide Assurance about Decisions Made by Machines. Cambridge Univer-
sity Press.

Koubaa, A. (2017). Robot Operating System (ROS): The Complete Reference (Volume 2).
Springer, 1st edition.

Menegol, M. S., Hübner, J. F., and Becker, L. B. (2018). Coordinated uav search and
rescue application with jacamo. In Demazeau, Y., An, B., Bajo, J., and Fernández-
Caballero, A., editors, Advances in Practical Applications of Agents, Multi-Agent Sys-
tems, and Complexity: The PAAMS Collection, pages 335–338, Cham. Springer Inter-
national Publishing.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler,
R., and Ng, A. Y. (2009). ROS: An Open-source Robot Operating System. In Proc.
ICRA Workshop on Open Source Software.

Rafael H. Bordini, J. F. H. and Wooldridge, M. (2007). Programming Multi-Agent Systems
in AgentSpeak using Jason. John Wiley Sons Inc.

Rao, A. S. (1996). AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In Proceedings of the Seventh Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven, The Nether-
lands, number 1038 in Lecture Notes in Artificial Intelligence, pages 42–55, London.
Springer-Verlag.

Silva, G. R. (2020). Active perception within bdi agents reasoning cycle with applications
in mobile robots. Master’s thesis, Federal University of Santa Catarina.

Silva, G. R., Becker, L. B., and Hübner, J. F. (2020). Embedded architecture composed
of cognitive agents and ros for programming intelligent robots. IFAC-PapersOnLine,
53(2):10000–10005. 21st IFAC World Congress.

Silva, G. R., Hübner, J. F., and Becker, L. B. (2021). Active perception within bdi agents
reasoning cycle. In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’21, page 1218–1225, Richland, SC. Inter-
national Foundation for Autonomous Agents and Multiagent Systems.

Silvestre, I., Becker, L. B., Fisher, M., Hübner, J. F., and de Brito, M. (2025). Enhanced
agent-oriented programming for robot teams. Engineering Applications of Artificial
Intelligence, 158:111390.

Silvestre, I., de Lima, B., Dias, P. H., Buss Becker, L., Hübner, J. F., and de Brito, M.
(2023). Uav swarm control and coordination using jason bdi agents on top of ros. In
Mathieu, P., Dignum, F., Novais, P., and De la Prieta, F., editors, Advances in Practical
Applications of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS
Collection, pages 225–236, Cham. Springer Nature Switzerland.

19th Workshop-School on Agents, Environments, and Applications – WESAAC 2025

136

	AGENT ARCHITECTURES AND THEORIES
	Anticipatory Thinking in Multi-Agent Contexts – 11plus3minus6plus36.5plus3.5minus3Jomi F. Hubner (Federal University of Santa Catarina - UFSC); Samuele Burattini (University of Bologna); Alessandro Ricci (University of Bologna); Simon Mayer (University of St.Gallen)
	Agile Methodology and AI in Multi-Agent Systems: An agent for planning and executing sprints – 11plus3minus6plus36.5plus3.5minus3Elysson de Lacerda (Universidade Federal do Ceará - UFC); Franciel de Vasconcelos (Universidade Federal do Ceará - UFC); Gustavo Monteiro (Universidade Federal do Ceará - UFC); Marcos de Oliveira (Universidade Federal do Ceará – UFC)
	Towards the Integration of Reinforcement Learning into MASPY – 11plus3minus6plus36.5plus3.5minus3Alexandre Mellado (Federal University of Technology Paraná - UTFPR); André Pinz (Federal University of Technology Paraná - UTFPR); Rafael Cardoso (University of Aberdeen); Gleifer Alves (Federal University of Technology Paraná - UTFPR)

	AGENT ORGANIZATIONS, SOCIETAL ISSUES, NORMATIVE SYSTEMS
	A Systematic Review on Knowledge Transfer in Multi-Agent Systems using Reinforcement Learning – 11plus3minus6plus36.5plus3.5minus3Marcone Marques (Universidade Federal do Rio Grande - FURG); Giovani Farias (Universidade Federal do Rio Grande - FURG); Eder Gonçalves (Universidade Federal do Rio Grande - FURG); Diana Adamatti (Universidade Federal do Rio Grande - FURG)
	Perspectives on Regulation Adaptation in Multi-Agent Systems: from Agent to Organization Centric and Beyond – 11plus3minus6plus36.5plus3.5minus3Elena Yan (MINES Saint-Etienne); Luis G. Nardin (MINES Saint-Etienne); Jomi F. Hubner (Federal University of Santa Catarina - UFSC); Olivier Boissier (MINES Saint-Etienne); Jaime S. Sichman (University of São Paulo - USP)
	Modelagem de um Sistema Multiagente para Assistência Técnica e Pericial em Processos Judiciais Brasileiros – 11plus3minus6plus36.5plus3.5minus3Eduardo Ferreira (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Marcelo de Sousa Santos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca – CEFET/RJ)

	AGENT-BASED SOFTWARE DEVELOPMENT
	LLM-Powered Conversational Multi-Agent Cognitive System for Collaborative Task Solving – 11plus3minus6plus36.5plus3.5minus3Eryck Silva (Universidade Estadual de Campinas - UNICAMP); Frances A. Santos (Universidade Estadual de Campinas - UNICAMP); Pedro Henrique Thompson Furtado (Petróleo Brasileiro S.A. - PETROBRAS); Julio Cesar dos Reis (Universidade Estadual de Campinas - UNICAMP)
	Integração do SUMO e Traffic3D com o framework de agentes MASPY – 11plus3minus6plus36.5plus3.5minus3Gabriel Neres (Universidade Tecnológica Federal do Paraná - UTFPR); Gleifer Alves (Universidade Tecnológica Federal do Paraná - UTFPR); André Borges (Universidade Tecnológica Federal do Paraná - UTFPR); Rafael Cardoso (University of Aberdeen)
	Proposta de uma extensão do VSCode para facilitar a adoção do JaCaMo no desenvolvimento de Sistemas Multiagentes – 11plus3minus6plus36.5plus3.5minus3Mustafa Neto (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Diego Castro (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	RAG Multiagente para Recuperação de Conhecimento Organizacional – 11plus3minus6plus36.5plus3.5minus3Kalmax dos Santos Sousa (Universidade Federal do Ceará - UFC); Guilherme Moretti (Universidade Federal do Ceará - UFC); Matheus Mendes (Universidade Federal do Ceará - UFC); Marcos Oliveira (Universidade Federal do Ceará - UFC)
	Software Development Using a Multi-agent Approach – 11plus3minus6plus36.5plus3.5minus3Juliana Ribeiro (Federal University of Bahia - UFBA); Joel Pires (Federal University of Bahia - UFBA); Jonas Pereira (Federal University of Bahia - UFBA); Frederico Araujo Durão (Federal University of Bahia - UFBA); Celia Ralha (Federal University of Bahia - UFBA)

	AGENTS IN EMBEDDED AND ROBOTIC SYSTEMS
	Multi-Robot System Architecture Validation Using Disinfecting Robot Routine – 11plus3minus6plus36.5plus3.5minus3Rafael Melo Santos (Federal University of Bahia - UFBA); Carlos Joel da Silva (University of Brası́lia - UnB); Célia Ghedini Ralha (University of Bahia - UFBA; University of Brası́lia - UnB)
	Proposal of a Mission Management Module for Embedded Agent Systems – 11plus3minus6plus36.5plus3.5minus3Georgiy Tanca Nazarov (Universidade Federal de Santa Catarina - UFSC); Iago Silvestre (Universidade Federal de Santa Catarina - UFSC); Fernando R. Santos (Universidade Federal de Santa Catarina - UFSC); Jomi F. Hübner (Universidade Federal de Santa Catarina - UFSC); Leandro Buss Becker (Universidade Federal de Santa Catarina - UFSC)
	Setting up a Jason Agent on Top of ROS to Control an Autonomous UAV – 11plus3minus6plus36.5plus3.5minus3Felipe Calegari (Universidade Federal de Santa Catarina - UFSC); Iago Silvestre (Universidade Federal de Santa Catarina - UFSC); Leandro Becker (Universidade Federal de Santa Catarina - UFSC); Maiquel Brito (Universidade Federal de Santa Catarina - UFSC); Jomi Hübner (Universidade Federal de Santa Catarina - UFSC)
	BusAI: An BDI-agent based Urban Transport Information System – 11plus3minus6plus36.5plus3.5minus3Lucas Lira (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Andrei Serafim (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	Real-world verification techniques for Robotic and Embedded BDI agents: A systematic mapping – 11plus3minus6plus36.5plus3.5minus3Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ; Universidade Federal Fluminense - UFF); Carlos Eduardo Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); José Viterbo Filho (Universidade Federal Fluminense - UFF)
	Sistema Just-In-Time Baseado em Agentes, IoT e Blockchain – 11plus3minus6plus36.5plus3.5minus3Gabriel Pinto (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Isadora Passos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Raul Fernandes (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)

	APPLICATIONS OF AGENTS AND MULTI-AGENT SYSTEMS
	A BDI-based Multi-Agent System to Smart Parking Environment with Blockchain Technology – 11plus3minus6plus36.5plus3.5minus3Gabriel Oliveira (Universidade Tecnológica Federal do Paraná - UTFPR); Gleifer Alves (Universidade Tecnológica Federal do Paraná - UTFPR); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	A Comparative Analysis of Web Environment Representation for Agent Adaptation – 11plus3minus6plus36.5plus3.5minus3Iderli Filho (Universidade Federal de Santa Catarina - UFSC); Jomi Hubner (Universidade Federal de Santa Catarina - UFSC)
	A Multi-Agent organizational modeling at the backend of a metaversity – 11plus3minus6plus36.5plus3.5minus3Germana Nóbrega (Universidade de Brasília - UnB); Milene Serrano (Universidade de Brasília (UnB)); Maurício Serrano (Universidade de Brasília (UnB)); Fernando Cruz (Universidade de Brasília (UnB)); Fred Freitas (Universidade Federal de Pernambuco - UFPE)
	Aplicando os Princípios do Desenho Universal para a Aprendizagem (DUA) no Ensino de Sistemas Multiagentes – 11plus3minus6plus36.5plus3.5minus3Eduardo Augusto da Silva (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Livia de Lauro Antunes (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	Enhancing LLM Agent Effectiveness via Reflective Multi-Agent System – 11plus3minus6plus36.5plus3.5minus3Aissa Hadj Mohamed (Universidade Estadual de Campinas - UNICAMP); Frances Santos (Universidade Estadual de Campinas - UNICAMP); Julio Cesar dos Reis (Universidade Estadual de Campinas - UNICAMP)
	Modeling Urban Water Demand Using Agent-based Simulation: A Case Study in Salvador – 11plus3minus6plus36.5plus3.5minus3Edmilson Santos de Jesus (Federal University of Bahia - UFBA); Karen A. dos S. Pereira (Federal University of Bahia - UFBA); Gecynalda S. da S. Gomes (Federal University of Bahia - UFBA); Célia G. Ralha (Federal University of Bahia - UFBA)
	Revisão Sistemática da Literatura integrando Sistemas Multiagente e Large Language Models – 11plus3minus6plus36.5plus3.5minus3Míriam Born (Universidade Federal de Pelotas - UFPel); Bruno Alves (Universidade Federal de Pelotas - UFPel); Felipe Goulart (Universidade Federal de Pelotas - UFPel); Letícia Caldas (Universidade Federal de Pelotas - UFPel); Marilton Aguiar (Universidade Federal de Pelotas - UFPel)
	Sistema Multiagente para Monitoramento e Controle Automatizado de Comportas em Represas – 11plus3minus6plus36.5plus3.5minus3Guilherme Almeida (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Lucas de Mendonça Cardoso (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Diego Borda (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Heder Dorneles (Instituto Federal de São Paulo - IFSP)
	Sistemas Multiagente e Large Language Model: estudo de caso utilizando as ferramentas LM Studio e LangGraph – 11plus3minus6plus36.5plus3.5minus3Ulisses Júnior (Universidade Federal de Pelotas - UFPel); Míriam Born (Universidade Federal de Pelotas - UFPel); Agatha Santos (Universidade Federal de Pelotas - UFPel); Rodolfo Grossmann (Universidade Federal de Pelotas - UFPel); João Facklamm (Universidade Federal de Pelotas - UFPel); Vitor Castilhos (Universidade Federal de Pelotas - UFPel); Bruno Alves (Universidade Federal de Pelotas - UFPel); Marilton Aguiar (Universidade Federal de Pelotas - UFPel)
	Comparação de Regressão Linear e Redes Neurais para Predição de Desempenho e Alocação Autônoma de Recursos em Nuvem – 11plus3minus6plus36.5plus3.5minus3Aldo Henrique Mendes (Centro Universitário Euro-Americano - Unieuro); Célia Ghedini Ralha (Universidade de Brasília - UnB)
	Sistema Multiagente para Triagem de Pacientes com Base em Indicadores de Saúde – 11plus3minus6plus36.5plus3.5minus3Danilo Romoaldo Centro Federal de Educação Tecnológica do Rio de Janeiro (Cefet-RJ); Guilherme das Virgens Centro Federal de Educação Tecnológica do Rio de Janeiro (Cefet-RJ); Carlos Pantoja Centro Federal de Educação Tecnológica do Rio de Janeiro (Cefet-RJ); Diego Castro (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ);
	Solução Multiagente para Otimização de Vendas e Gestão de Clientes em Plataforma de CRM – 11plus3minus6plus36.5plus3.5minus3Lucas Bhering (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Eduardo Augusto da Silva (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	The BIG Agent - The Utilization of embedded MAS into Unmanned Aerial Vehicles as Security to citizens – 11plus3minus6plus36.5plus3.5minus3Kauã Santos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Daniel Costa (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)

	SOCIAL SIMULATIONS AND AGENT-BASED SIMULATION
	Assessing the Reproducibility of the Covid-19 Pandemic with COMOKIT: A Case Study in Ibirama, Brazil – 11plus3minus6plus36.5plus3.5minus3Denilson Laucsen da Rosa (Universidade do Estado de Santa Catarina - UDESC); Fernando Santos (Universidade do Estado de Santa Catarina - UDESC)
	Simulação Baseada em Agentes e Indicadores em ILPIs: Um Estudo para o Desenvolvimento do GeronTrack – 11plus3minus6plus36.5plus3.5minus3Raphael de Oliveira Dos Santos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Eduardo Ferreira (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Cristiano Fuschilo (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	Building Blocks’ Architecture for Social Decisions based in Multi Agent Systems – 11plus3minus6plus36.5plus3.5minus3André da Silva (Universidade de Brasília - UnB); Gabriel da Silva (Universidade de Brasília - UnB); Mariana Rio (Universidade de Brasília - UnB); Maurício Serrano (Universidade de Brasília - UnB); Milene Serrano (Universidade de Brasília - UnB)
	Sistema Multiagente para simulação de propagação viral no contexto da COVID-19 utilizando a ferramenta NetLogo – 11plus3minus6plus36.5plus3.5minus3Bruno Alves (Universidade Federal de Pelotas - UFPel); Letícia Caldas (Universidade Federal de Pelotas - UFPel); Ulisses Junior (Universidade Federal de Pelotas - UFPel); Agatha Santos (Universidade Federal de Pelotas - UFPel); Rodolfo Grossmann (Universidade Federal de Pelotas - UFPel); Míriam Born (Universidade Federal de Pelotas - UFPel); Marilton Aguiar (Universidade Federal de Pelotas - UFPel)

