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Abstract. Software development involves complexities in requirements analysis,
code generation, and continuous validation. This work presents a multi-agent
system (MAS) designed to enhance the software engineering process by inte-
grating Large Language Model (LLM) capabilities with human oversight. The
MAS comprises five specialized agents that communicate through a shared mes-
sage broker and maintain context in a persistent knowledge base. These agents
autonomously handle tasks such as architectural planning, artifact generation,
code review, and operational management, while human experts intervene to
ensure accuracy and strategic alignment. The findings indicate that LLMs can
impact software engineering, offering tools and techniques that automate tasks,
enhance code generation, and potentially improve the development process.
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1. Introduction

Software development is inherently complex, involving multiple stages, from requirement
gathering to coding, testing, and deployment, each with specific challenges. Challenges
such as collaborative development, schedule estimation, and project management persist
despite technological advances. Exists variation in development standards, discrepancies
in technical skills, and high-quality software to meet real-world demands.

Focusing on human communication gaps, inconsistent development standards,
and varying technical skills often leads to inefficiencies and errors. Problems like de-
tecting term ambiguities in requirement documents, improving clarity and consistency
in interdisciplinary projects, demand the ability to collaborate with humans and external
tools to address complex tasks.

Recent research has explored Large Language Model (LLM) with Multi-Agent
System (MAS) to automate and streamline these tasks [Cinkusz et al. 2025, Jin et al. 2024,
Liu et al. 2024]. Multiple intelligent agents can work along with humans to achieve soft-
ware project goals, automating the generation of artifacts such as requirement documents,
offering intelligent code suggestions, and assisting with tasks like code refactoring and
test generation.

This work presents an MAS to guide the entire software development process,
from requirements gathering to coding. The system provides recommendations to human
experts, who can accept or reject, steering the process in the correct direction. By com-
bining the strengths of LLM with human expertise, this approach aims to enhance the
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efficiency, accuracy, and reliability of software development processes. By releasing the
implementation openly,! we support reproducibility and promote further research.

The rest of this manuscript includes, in Section 2, related work, in Section 3,
materials and methods, presenting five agent roles, the architecture, and the Tropos model
to elucidate the agent-oriented software system. Section 4 presents the results of the MAS,
while Section 5 includes a conclusion and future work.

2. Related Work

In the literature, some approaches faced issues with low-information-density outputs and
vague requirements. [Jin et al. 2024] leverage transformer-based models, detecting term
ambiguities in requirements engineering, while [Liu et al. 2024] demonstrate LLM agents’
versatility in various software tasks. [Lin et al. 2024] explore LLM-driven process mod-
eling for code generation and testing, yet struggled with correctness and modularization.
[Qian et al. 2024a] integrate LLM into multi-agent frameworks with specialized roles us-
ing ChatDev.

In testing and validation, [Jorgensen et al. 2024] showed that prompt precision
significantly impacts LLM-generated test cases, leading to inconsistent results. In project
management, [Sami et al. 2024] applied ChatGPT to requirement prioritization via the
Analytic Hierarchy Process (AHP) and Weighted Shortest Job First (WSJF) but omitted
scheduling considerations. [Hong et al. 2024] proposes meta-programming for a multi-
agent collaborative framework called MetaGPT, although innovative in collaborative de-
velopment, still resource-intensive. [Cinkusz et al. 2025] found scalability limitations in
cognitive agents powered by LLM-driven agile software development.

Platforms such as AutoGen [Wu et al. 2023] and SWE-agent [Yang et al. 2024]
enable LLM agents to interact directly with file systems, compilers, and test environ-
ments, granting them IDE-like capabilities and leading to significant improvements in
code quality and test success rates. Other tools, such as MacNet [Qian et al. 2024b],
model thousands of agents as instruction-level components in a distributed computing ar-
chitecture, achieving state-of-the-art performance on complex system design benchmarks
by leveraging collaborative scaling effects.

Several works also demonstrate the effectiveness of agent teams in debugging and
quality assurance. In user-acceptance testing (UAT), XUAT-Copilot [Wang et al. 2024]
orchestrates agent roles such as planner, executor, and verifier, automating tests at scale,
achieving a pass rate nearly four times higher than single-agent baselines. MapCoder
[Islam et al. 2024] exemplifies the power of modular agent roles by separating retrieval,
planning, coding, and debugging stages, enabling a structured and efficient development
pipeline. AgileCoder [Nguyen et al. 2024] adopts a multi-agent approach based on Scrum
roles, showing that agent-driven implementations of Agile practices can further enhance
testing and code generation outcomes.

Together, these studies illustrate that multi-agent coordination not only scales code
generation and debugging but also emulates real-world development processes with in-
creasing performance. Despite the advancements, existing solutions still fall short of ad-
dressing the full spectrum of software development challenges. LLM suffer from critical

'mttps://github.com/joel021/agents
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limitations such as hallucinations, inconsistent contextual understanding, and difficulty
autonomously managing the software development lifecycle [Rao et al. 2025]. These re-
sults suggest that LLM-powered systems should not replace human experts but rather
work collaboratively with them.

3. Materials and Methods

This section presents the MAS with five essential roles, which are fundamental to any
software development team: Project Manager, Software Engineer, Developer Specialist,
Operation System Controller, and Research. These agents are incorporated in the archi-
tecture, collaborating to cover all aspects of the software development lifecycle:

* Project Manager - coordinates the entire development lifecycle, translating high-level user re-
quirements into actionable tasks, interfaces with expert users to guide architecture and project
management decisions, tracks progress, delegates responsibilities to other agents, and maintains
project state beliefs. It interacts with the Developer Specialist and Software Engineer to assign and
monitor tasks.

» Software Engineer - ensures software quality, compliance with development standards, validates
code, initiates refactoring, and may generate corrective tasks based on beliefs about code quality.
It reviews artifacts from the Developer Specialist and flags issues or approves deliverables with the
Project Manager.

* Developer Specialist - implements software components based on specifications, generates and
modifies code, responds to feedback, and manages commits. It collaborates with the Software
Engineer for validation and integrates research findings provided by the Research Agent. For
example, when building an authentication system, it applies best practices such as JSON Web
Token (JWT) and hashing.

» Operation System Controller - executes environment-level tasks and manages resource allocation,
validates and performs system commands requested by other agents, ensuring safe and stable exe-
cution. For example, it might prepare the development environment before the Developer Special-
ist begins implementation.

* Research - provides external technical knowledge by conducting targeted internet searches, re-
sponds to queries from other agents (e.g., for bug fixes or design options), and delivers validated
findings, giving support to the Developer Specialist in aligning with current standards.

The system operates in a partially observable environment where agents have lim-
ited access to Internet resources and system states. The environment is non-deterministic,
requiring robust error handling and replanning capabilities when agents generate incorrect
artifacts or encounter execution failures. The system maintains stability through discrete
state management and sequential processing, ensuring agents only deliberate when the
environment is stable.

3.1. System’s architecture

The MAS architecture enables agents to autonomously select recipients based on evolving
task goals, rather than relying on predefined communication flows, such as when the
Project Manager interacts with both the Software Engineer and the Developer Specialist
to coordinate a new implementation.

Figure 1 presents the system’s implementation harnesses Python? for seamless in-
tegration with machine learning components. Real-time communication among agents
is achieved through Redis,® which uses in-memory storage and Pub/Sub functionality to

Zhttps://aws.amazon.com/pt/what-is/python/
3https://www.ibm.com/br-pt/topics/redis
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enable a shared channel for asynchronous message exchange. Redis allows communica-
tion between the user and agents using the same channel, functioning as a bridge for all
participants.
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Figure 1. Software development architecture using an MAS approach.

For persistent storage and long-term context tracking, MongoDB* maintains all
relevant project artifacts, including user commands, messages, epics, and tasks. Thus,
agents can reason with historical data — for instance, retrieving the status of a task, re-
viewing previous decisions, or identifying unresolved requirements. The Project Manager
may use this information to assess current progress and decide whether to create, initiate,
or complete tasks or stories. The Software Engineer may consult the database to deter-
mine new dependencies or to refactor, and then guide the Developer Specialist and Op-
erating System agents accordingly. Such structured memory plays a key role in reducing
hallucination risks by anchoring LLM outputs to concrete, verifiable project data.

In addition, the architecture includes actuator interfaces for file system access and
internet queries, used respectively for codebase operations and technical research. These
interfaces (namely, Code Font and Internet) allow agents to interact directly with the oper-
ating system, executing command-line operations such as creating, updating, or deleting
files, and to search external sources for technical documentation. By combining this mod-
ular architecture with persistent state management and multi-agent oversight, the system
enforces checks and balances that help mitigate common LLM errors and hallucinations.

3.2. Agents’ Reasoning Model

The system employs LLM as the cognitive engine for each agent, enabling sophisticated
pattern recognition and reasoning capabilities while maintaining controlled interaction
patterns to mitigate hallucination risks. Building upon these capabilities, a predicate-
based reasoning model allows agents to represent and reason about the current state of the
system, context-specific conditions, and actions using well-defined predicates:

“https://www.ibm.com/br-pt/topics/mongodb
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* Objects — fundamental entities or events that agents interact with, such as messages, tasks, and
project specifications.

* Beliefs (facts) - reflect the current state and context captured by predicates. For example, when a
message is received or a task is identified, these beliefs help guide agent decision-making. They
express conditions such as message_received (m) or task_id.-present (m)

 Propositional rules - logical rules specifying how agents should act based on their beliefs, con-
ditional statements that govern the agent’s actions, such as executing tasks if certain conditions
occur. For example, a rule might state message_received (m) A sender_is pm(m) —
retrieve_task (t). This rule means that when a message is received and the sender is verified
as the Project Manager, the system should retrieve the corresponding task.

By defining inference rules, the decision-making process is mapped into formal,
testable logical expressions. The predicates are implemented across the five agents to
ensure reliable and traceable decision-making:

* Project Manager - uses this model to process user requirements and coordinate development activ-
ities with beliefs about the project state and rules for task delegation.

» Software Engineer - applies the model to code validation, using beliefs about code quality and
propositions that determine when to request revisions or approve deployments.

* Developer Specialist - focuses on code generation, with beliefs about requirements and rules gov-
erning when to incorporate feedback or submit completed artifacts.

* Operation System Controller - uses beliefs about the system state and propositions to ensure the
safe execution of requested actions.

» Research - employs beliefs about information needs and propositions for validating and delivering
relevant findings to other agents.

3.3. Tropos Methodology

The Tropos agent-oriented software development methodology was used to model the
MAS using the piStar online tool (version 2.1.0) [Pimentel and Castro 2018]. Figure 2
presents the MAS architectural design. The model represents the agents collaborating
to achieve system goals, while maintaining clear boundaries of responsibility and ex-
plicit dependency relationships. In the model, there are actors (red circles), goals (orange
rounded rectangles), tasks (beige hexagons), and resources (pink rectangles). Dependen-
cies between elements are represented by ‘D’ links, while task decomposition and means-
end relationships are shown through connecting lines. Dashed boundaries group related
elements that belong to a single actor’s scope of responsibility [Bresciani et al. 2004].
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Figure 2. The Tropos model representing the interaction of agents in the MAS.
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The human-in-the-loop contribution is represented through bidirectional interac-
tion patterns between the User and Project Manager, with dedicated user interaction nodes
enabling continuous feedback incorporation. The feedback loop extends through the Soft-
ware Engineer’s oversight of Developer Specialist outputs, creating multiple validation
points.

End-to-end process automation is achieved through a chain of dependencies from
initial user requirements to final artifact delivery. The Project Manager’s central role en-
sures systematic task allocation and progress tracking. The Operation System Controller
validates and executes all automated actions, creating a controlled development pipeline
with clear handoff points.

Hallucination mitigation is embedded in the model’s multi-layered validation struc-
ture, where each agent contributes to reliability: the Research validates information sources,
the Operation System Controller ensures command validity, and the Software Engineer
verifies the Developer Specialist’s outputs. The database integration provides a persistent
truth reference, while user interaction nodes enable expert validation.

Code quality and modularization are enforced through dedicated quality control
mechanisms in the Software Engineer’s domain. Code artifacts undergo validation before
database updates, with explicit dependencies ensuring quality standards are met before
task completion. This separation between task resolution and quality assurance maintains
high development standards.

4. Results
The MAS using the Gemini Al Chatbot (gemini-2.0-flash) is illustrated in Listing 1.

Listing 1. Agents interaction using LLM.

Developer Specialist Agent, Software Engineer Agent, Research Agent, Project Manager Agent Started.

Service started

Send a message: Desciption: Backend service built using Python and Flask that provides the following functionalities:
User Authrentication: User registration (name, email, password), User login with JWT-based authentication, Token
refresh and logout. User Management (CRUD): Create, Read, Update, and Delte users, Fetch a single user by ID, Fetch a
list of users with pagination. Security Considerations: Password hashing (bcript or similar), Role-based access con-
trol (admin/user roles), Secure endpoints with authentication middleware. Tech Stack & Dependencies: Flash (or Flask-
RESTful), Flask-JWI-Extended for authentication, SQLAlchemy (PostgreSQL preferred), Marshmallow for request valida-
tion, Docker support (optional).API documentation.The projet location is at: /home/joel/Documents/agents/work_dir/crud
Location is at:/home/joel/Documents/agents/work_dir/crud

2025-02-12 20:42:52 Projeto Manager: @Software Engineer

Software Engineer, please start working on the User Authentication story. Begin by setting up the develop environment,
including installing necessary packages.

2025-02-12 20:42:52 Software Engineer: @Operation System Controller

Operation System Controller, please set up a new project directory at Documents/agents/work_dir/crud and crate a vir-
tual environment within it. Install the following packages: Flask, Flask-JWT-Extended, SQLAlchemy, Marshmallow, and
bcrypt. Let me know when it’s ready.

2025-02-12 20:42:52 Project Manager: (@Developer Specialist

Developer Specialist, please start the development of the User Authentication API endpoints based on the tasks created
by the Project Manager.Ensure to implement security measures such as password hashing and JWT authentication.
2025-02-12 20:42:52 Developer Specialist: (@Research

Research, please gather information on best practices for implementing JWT-based authentication in Flask, including
token refresh and secure storage of secret keys. Provide a summary.

2025-02-12 20:42:52 Software Engineer: @Project Manager

I could not attend to the message: Software Engineer, please start working on the User Authentication story. Begin by
setting up the development environment, including installing necessary packages..

In this work, the implemented MAS validates four key contributions:

* Human-in-the-loop - the system accepts high-level user requirements through a command-line
interface, which triggers the initialization of specialized agents. The Project Manager translates
high-level inputs into actionable tasks, ensuring continuous expert oversight.

* End-to-end process automation with validation mechanisms - the system automates workflow ex-
ecution through a chain of coordinated actions. When tasked with implementing user authenti-
cation, the Project Manager automatically delegates environment setup to the Operation System
agent, development tasks to the Developer Specialist, and research queries to the Research agent.
This structure enables traceable execution paths and verifiable task completion.
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» Hallucination mitigation and error handling - safeguards address LLM hallucinations and errors.
When issues like missing directories or invalid dependencies occur, agents promptly report fail-
ures, enabling the Software Engineer to initiate corrective actions. Transparent error reporting and
cross-agent validation form a robust framework for detecting and correcting inconsistencies.

¢ Modularization and code quality enforcement - the results illustrate systematic enforcement of
development standards through structured agent interactions. For example, in implementing au-
thentication features, the Developer Specialist incorporates security best practices such as JWT
authentication and password hashing, while the Research agent ensures alignment with current
industry standards. The system maintains a modular organization with components for agents,
utilities, and configurations, reflecting commitment to maintainable high-quality code.

5. Conclusion

The MAS demonstrates semi-autonomous software development capabilities through con-
tinuous interaction with software engineering experts. It employs an agile methodology to
handle epics, user stories, and tasks dynamically while autonomously managing subtask
decomposition and prioritization. A notable innovation is the system’s ability to propose
contextually appropriate architectural solutions, advancing the state of semi-autonomous
software development.

Several directions for future work have been identified. These include expanding
agent actuator capabilities, implementing persistent memory across system restarts, sup-
porting multiple concurrent projects, developing a web-based user interface, optimizing
the single-threaded message handling architecture, and refining LLM interaction prompts.
Addressing these limitations would enhance the system’s robustness and practical appli-
cability in complex software development environments.
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