19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

Software Development Using a Multi-agent Approach

Juliana Gomes Ribeiro', Joel Machado Pires', Jonas Oliveira Pereira',
Frederico Araujo Durio!, Célia Ghedini Ralha!

!Computer Institute — University of Bahia (UFBA)
Campus Ondina, 40.170-110 Salvador, Brazil

{julianagr, joelpires, jonas.pereira, fdurao,celiaralha}@Qufba.br

Abstract. Software development involves complexities in requirements analysis,
code generation, and continuous validation. This work presents a multi-agent
system (MAS) designed to enhance the software engineering process by inte-
grating Large Language Model (LLM) capabilities with human oversight. The
MAS comprises five specialized agents that communicate through a shared mes-
sage broker and maintain context in a persistent knowledge base. These agents
autonomously handle tasks such as architectural planning, artifact generation,
code review, and operational management, while human experts intervene to
ensure accuracy and strategic alignment. The findings indicate that LLMs can
impact software engineering, offering tools and techniques that automate tasks,
enhance code generation, and potentially improve the development process.

Keywords: Gemini Al Chatbot, LLM, multi-agent system, software engineer.

1. Introduction

Software development is inherently complex, involving multiple stages, from requirement
gathering to coding, testing, and deployment, each with specific challenges. Challenges
such as collaborative development, schedule estimation, and project management persist
despite technological advances. Exists variation in development standards, discrepancies
in technical skills, and high-quality software to meet real-world demands.

Focusing on human communication gaps, inconsistent development standards,
and varying technical skills often leads to inefficiencies and errors. Problems like de-
tecting term ambiguities in requirement documents, improving clarity and consistency
in interdisciplinary projects, demand the ability to collaborate with humans and external
tools to address complex tasks.

Recent research has explored Large Language Model (LLM) with Multi-Agent
System (MAS) to automate and streamline these tasks [Cinkusz et al. 2025, Jin et al. 2024,
Liu et al. 2024]. Multiple intelligent agents can work along with humans to achieve soft-
ware project goals, automating the generation of artifacts such as requirement documents,
offering intelligent code suggestions, and assisting with tasks like code refactoring and
test generation.

This work presents an MAS to guide the entire software development process,
from requirements gathering to coding. The system provides recommendations to human
experts, who can accept or reject, steering the process in the correct direction. By com-
bining the strengths of LLM with human expertise, this approach aims to enhance the

93

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

efficiency, accuracy, and reliability of software development processes. By releasing the
implementation openly,! we support reproducibility and promote further research.

The rest of this manuscript includes, in Section 2, related work, in Section 3,
materials and methods, presenting five agent roles, the architecture, and the Tropos model
to elucidate the agent-oriented software system. Section 4 presents the results of the MAS,
while Section 5 includes a conclusion and future work.

2. Related Work

In the literature, some approaches faced issues with low-information-density outputs and
vague requirements. [Jin et al. 2024] leverage transformer-based models, detecting term
ambiguities in requirements engineering, while [Liu et al. 2024] demonstrate LLM agents’
versatility in various software tasks. [Lin et al. 2024] explore LLM-driven process mod-
eling for code generation and testing, yet struggled with correctness and modularization.
[Qian et al. 2024a] integrate LLM into multi-agent frameworks with specialized roles us-
ing ChatDev.

In testing and validation, [Jorgensen et al. 2024] showed that prompt precision
significantly impacts LLM-generated test cases, leading to inconsistent results. In project
management, [Sami et al. 2024] applied ChatGPT to requirement prioritization via the
Analytic Hierarchy Process (AHP) and Weighted Shortest Job First (WSJF) but omitted
scheduling considerations. [Hong et al. 2024] proposes meta-programming for a multi-
agent collaborative framework called MetaGPT, although innovative in collaborative de-
velopment, still resource-intensive. [Cinkusz et al. 2025] found scalability limitations in
cognitive agents powered by LLM-driven agile software development.

Platforms such as AutoGen [Wu et al. 2023] and SWE-agent [Yang et al. 2024]
enable LLM agents to interact directly with file systems, compilers, and test environ-
ments, granting them IDE-like capabilities and leading to significant improvements in
code quality and test success rates. Other tools, such as MacNet [Qian et al. 2024b],
model thousands of agents as instruction-level components in a distributed computing ar-
chitecture, achieving state-of-the-art performance on complex system design benchmarks
by leveraging collaborative scaling effects.

Several works also demonstrate the effectiveness of agent teams in debugging and
quality assurance. In user-acceptance testing (UAT), XUAT-Copilot [Wang et al. 2024]
orchestrates agent roles such as planner, executor, and verifier, automating tests at scale,
achieving a pass rate nearly four times higher than single-agent baselines. MapCoder
[Islam et al. 2024] exemplifies the power of modular agent roles by separating retrieval,
planning, coding, and debugging stages, enabling a structured and efficient development
pipeline. AgileCoder [Nguyen et al. 2024] adopts a multi-agent approach based on Scrum
roles, showing that agent-driven implementations of Agile practices can further enhance
testing and code generation outcomes.

Together, these studies illustrate that multi-agent coordination not only scales code
generation and debugging but also emulates real-world development processes with in-
creasing performance. Despite the advancements, existing solutions still fall short of ad-
dressing the full spectrum of software development challenges. LLM suffer from critical

'mttps://github.com/joel021/agents

94

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

limitations such as hallucinations, inconsistent contextual understanding, and difficulty
autonomously managing the software development lifecycle [Rao et al. 2025]. These re-
sults suggest that LLM-powered systems should not replace human experts but rather
work collaboratively with them.

3. Materials and Methods

This section presents the MAS with five essential roles, which are fundamental to any
software development team: Project Manager, Software Engineer, Developer Specialist,
Operation System Controller, and Research. These agents are incorporated in the archi-
tecture, collaborating to cover all aspects of the software development lifecycle:

* Project Manager - coordinates the entire development lifecycle, translating high-level user re-
quirements into actionable tasks, interfaces with expert users to guide architecture and project
management decisions, tracks progress, delegates responsibilities to other agents, and maintains
project state beliefs. It interacts with the Developer Specialist and Software Engineer to assign and
monitor tasks.

» Software Engineer - ensures software quality, compliance with development standards, validates
code, initiates refactoring, and may generate corrective tasks based on beliefs about code quality.
It reviews artifacts from the Developer Specialist and flags issues or approves deliverables with the
Project Manager.

* Developer Specialist - implements software components based on specifications, generates and
modifies code, responds to feedback, and manages commits. It collaborates with the Software
Engineer for validation and integrates research findings provided by the Research Agent. For
example, when building an authentication system, it applies best practices such as JSON Web
Token (JWT) and hashing.

» Operation System Controller - executes environment-level tasks and manages resource allocation,
validates and performs system commands requested by other agents, ensuring safe and stable exe-
cution. For example, it might prepare the development environment before the Developer Special-
ist begins implementation.

* Research - provides external technical knowledge by conducting targeted internet searches, re-
sponds to queries from other agents (e.g., for bug fixes or design options), and delivers validated
findings, giving support to the Developer Specialist in aligning with current standards.

The system operates in a partially observable environment where agents have lim-
ited access to Internet resources and system states. The environment is non-deterministic,
requiring robust error handling and replanning capabilities when agents generate incorrect
artifacts or encounter execution failures. The system maintains stability through discrete
state management and sequential processing, ensuring agents only deliberate when the
environment is stable.

3.1. System’s architecture

The MAS architecture enables agents to autonomously select recipients based on evolving
task goals, rather than relying on predefined communication flows, such as when the
Project Manager interacts with both the Software Engineer and the Developer Specialist
to coordinate a new implementation.

Figure 1 presents the system’s implementation harnesses Python? for seamless in-
tegration with machine learning components. Real-time communication among agents
is achieved through Redis,® which uses in-memory storage and Pub/Sub functionality to

Zhttps://aws.amazon.com/pt/what-is/python/
3https://www.ibm.com/br-pt/topics/redis

95

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

enable a shared channel for asynchronous message exchange. Redis allows communica-
tion between the user and agents using the same channel, functioning as a bridge for all
participants.

Code Font

read/validation r’;

Pt/tl«om

5 j y—L L j %3 e

MongoDB Developer Spegialist Agent ? .
@7) onge- i B SoPtware E ngineer Agent eveloper Speaialist Ager i :search <7D
Database Pmy;ct Manager Agent ‘—J—> %
H ;) N
tasks > i
: search result J ;
<

Research Agent

Agents

System Opemt ion

Figure 1. Software development architecture using an MAS approach.

For persistent storage and long-term context tracking, MongoDB* maintains all
relevant project artifacts, including user commands, messages, epics, and tasks. Thus,
agents can reason with historical data — for instance, retrieving the status of a task, re-
viewing previous decisions, or identifying unresolved requirements. The Project Manager
may use this information to assess current progress and decide whether to create, initiate,
or complete tasks or stories. The Software Engineer may consult the database to deter-
mine new dependencies or to refactor, and then guide the Developer Specialist and Op-
erating System agents accordingly. Such structured memory plays a key role in reducing
hallucination risks by anchoring LLM outputs to concrete, verifiable project data.

In addition, the architecture includes actuator interfaces for file system access and
internet queries, used respectively for codebase operations and technical research. These
interfaces (namely, Code Font and Internet) allow agents to interact directly with the oper-
ating system, executing command-line operations such as creating, updating, or deleting
files, and to search external sources for technical documentation. By combining this mod-
ular architecture with persistent state management and multi-agent oversight, the system
enforces checks and balances that help mitigate common LLM errors and hallucinations.

3.2. Agents’ Reasoning Model

The system employs LLM as the cognitive engine for each agent, enabling sophisticated
pattern recognition and reasoning capabilities while maintaining controlled interaction
patterns to mitigate hallucination risks. Building upon these capabilities, a predicate-
based reasoning model allows agents to represent and reason about the current state of the
system, context-specific conditions, and actions using well-defined predicates:

“https://www.ibm.com/br-pt/topics/mongodb

96

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

* Objects — fundamental entities or events that agents interact with, such as messages, tasks, and
project specifications.

* Beliefs (facts) - reflect the current state and context captured by predicates. For example, when a
message is received or a task is identified, these beliefs help guide agent decision-making. They
express conditions such as message_received (m) or task_id.-present (m)

 Propositional rules - logical rules specifying how agents should act based on their beliefs, con-
ditional statements that govern the agent’s actions, such as executing tasks if certain conditions
occur. For example, a rule might state message_received (m) A sender_is pm(m) —
retrieve_task (t). This rule means that when a message is received and the sender is verified
as the Project Manager, the system should retrieve the corresponding task.

By defining inference rules, the decision-making process is mapped into formal,
testable logical expressions. The predicates are implemented across the five agents to
ensure reliable and traceable decision-making:

* Project Manager - uses this model to process user requirements and coordinate development activ-
ities with beliefs about the project state and rules for task delegation.

» Software Engineer - applies the model to code validation, using beliefs about code quality and
propositions that determine when to request revisions or approve deployments.

* Developer Specialist - focuses on code generation, with beliefs about requirements and rules gov-
erning when to incorporate feedback or submit completed artifacts.

* Operation System Controller - uses beliefs about the system state and propositions to ensure the
safe execution of requested actions.

» Research - employs beliefs about information needs and propositions for validating and delivering
relevant findings to other agents.

3.3. Tropos Methodology

The Tropos agent-oriented software development methodology was used to model the
MAS using the piStar online tool (version 2.1.0) [Pimentel and Castro 2018]. Figure 2
presents the MAS architectural design. The model represents the agents collaborating
to achieve system goals, while maintaining clear boundaries of responsibility and ex-
plicit dependency relationships. In the model, there are actors (red circles), goals (orange
rounded rectangles), tasks (beige hexagons), and resources (pink rectangles). Dependen-
cies between elements are represented by ‘D’ links, while task decomposition and means-
end relationships are shown through connecting lines. Dashed boundaries group related
elements that belong to a single actor’s scope of responsibility [Bresciani et al. 2004].

Vs o

AN

7
\
\

Produce |
———————— | actionable tasks | = = 5 e = iR S s
—

(™ augn N J

| requirements | 1
with user |

— war ——— "
Manage project
|ifgcy';|=‘) nginee \Resolve tasks | \

[proviee
| requirements for |
_ the project

(Ensure code
P W N {_PromptDs) _ quaity)
\ (Produce actionabe | | Define project's | Read user \ / Ansy \ /
) |)| properties | Tinput)

| messages _messages / !

I \
I i
ReadpM's \ Answerpms\ | !
I i
i
i

(validate 0, " query pB) (Update DB) |
o/ N (aueryp) (Just !
{ Inserttasks)\ _ properties ,

(swportpropeet ™ [N/ 1] T e
_development |

/" validate
(S {
/ (supportproject \ ——— \ "actions
| “development |
AN

7/ supportproject ">,/ vaiidate
\ ﬂ:g:lopm':l]/ "\ requested actions,
h /

g

. TN/

Validate
\ \\requested actions/

[_Ensure comrect | i
| system operations |
\ /

=

(* Develop)
artifacs) \

X
: /00N
{:\'lana-uquem&; E O\

1
Y \ |
{ Build artifacts) i
actions \ %
1

| : - : ! S r.,..,,, —

[owcose

\ SE
~J Instructions

(Execute validated,
\ actions /

Agent 0 command |+
commands interface /'

\

Figure 2. The Tropos model representing the interaction of agents in the MAS.

97

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

The human-in-the-loop contribution is represented through bidirectional interac-
tion patterns between the User and Project Manager, with dedicated user interaction nodes
enabling continuous feedback incorporation. The feedback loop extends through the Soft-
ware Engineer’s oversight of Developer Specialist outputs, creating multiple validation
points.

End-to-end process automation is achieved through a chain of dependencies from
initial user requirements to final artifact delivery. The Project Manager’s central role en-
sures systematic task allocation and progress tracking. The Operation System Controller
validates and executes all automated actions, creating a controlled development pipeline
with clear handoff points.

Hallucination mitigation is embedded in the model’s multi-layered validation struc-
ture, where each agent contributes to reliability: the Research validates information sources,
the Operation System Controller ensures command validity, and the Software Engineer
verifies the Developer Specialist’s outputs. The database integration provides a persistent
truth reference, while user interaction nodes enable expert validation.

Code quality and modularization are enforced through dedicated quality control
mechanisms in the Software Engineer’s domain. Code artifacts undergo validation before
database updates, with explicit dependencies ensuring quality standards are met before
task completion. This separation between task resolution and quality assurance maintains
high development standards.

4. Results
The MAS using the Gemini Al Chatbot (gemini-2.0-flash) is illustrated in Listing 1.

Listing 1. Agents interaction using LLM.

Developer Specialist Agent, Software Engineer Agent, Research Agent, Project Manager Agent Started.

Service started

Send a message: Desciption: Backend service built using Python and Flask that provides the following functionalities:
User Authrentication: User registration (name, email, password), User login with JWT-based authentication, Token
refresh and logout. User Management (CRUD): Create, Read, Update, and Delte users, Fetch a single user by ID, Fetch a
list of users with pagination. Security Considerations: Password hashing (bcript or similar), Role-based access con-
trol (admin/user roles), Secure endpoints with authentication middleware. Tech Stack & Dependencies: Flash (or Flask-
RESTful), Flask-JWI-Extended for authentication, SQLAlchemy (PostgreSQL preferred), Marshmallow for request valida-
tion, Docker support (optional).API documentation.The projet location is at: /home/joel/Documents/agents/work_dir/crud
Location is at:/home/joel/Documents/agents/work_dir/crud

2025-02-12 20:42:52 Projeto Manager: @Software Engineer

Software Engineer, please start working on the User Authentication story. Begin by setting up the develop environment,
including installing necessary packages.

2025-02-12 20:42:52 Software Engineer: @Operation System Controller

Operation System Controller, please set up a new project directory at Documents/agents/work_dir/crud and crate a vir-
tual environment within it. Install the following packages: Flask, Flask-JWT-Extended, SQLAlchemy, Marshmallow, and
bcrypt. Let me know when it’s ready.

2025-02-12 20:42:52 Project Manager: (@Developer Specialist

Developer Specialist, please start the development of the User Authentication API endpoints based on the tasks created
by the Project Manager.Ensure to implement security measures such as password hashing and JWT authentication.
2025-02-12 20:42:52 Developer Specialist: (@Research

Research, please gather information on best practices for implementing JWT-based authentication in Flask, including
token refresh and secure storage of secret keys. Provide a summary.

2025-02-12 20:42:52 Software Engineer: @Project Manager

I could not attend to the message: Software Engineer, please start working on the User Authentication story. Begin by
setting up the development environment, including installing necessary packages..

In this work, the implemented MAS validates four key contributions:

* Human-in-the-loop - the system accepts high-level user requirements through a command-line
interface, which triggers the initialization of specialized agents. The Project Manager translates
high-level inputs into actionable tasks, ensuring continuous expert oversight.

* End-to-end process automation with validation mechanisms - the system automates workflow ex-
ecution through a chain of coordinated actions. When tasked with implementing user authenti-
cation, the Project Manager automatically delegates environment setup to the Operation System
agent, development tasks to the Developer Specialist, and research queries to the Research agent.
This structure enables traceable execution paths and verifiable task completion.

98

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

» Hallucination mitigation and error handling - safeguards address LLM hallucinations and errors.
When issues like missing directories or invalid dependencies occur, agents promptly report fail-
ures, enabling the Software Engineer to initiate corrective actions. Transparent error reporting and
cross-agent validation form a robust framework for detecting and correcting inconsistencies.

¢ Modularization and code quality enforcement - the results illustrate systematic enforcement of
development standards through structured agent interactions. For example, in implementing au-
thentication features, the Developer Specialist incorporates security best practices such as JWT
authentication and password hashing, while the Research agent ensures alignment with current
industry standards. The system maintains a modular organization with components for agents,
utilities, and configurations, reflecting commitment to maintainable high-quality code.

5. Conclusion

The MAS demonstrates semi-autonomous software development capabilities through con-
tinuous interaction with software engineering experts. It employs an agile methodology to
handle epics, user stories, and tasks dynamically while autonomously managing subtask
decomposition and prioritization. A notable innovation is the system’s ability to propose
contextually appropriate architectural solutions, advancing the state of semi-autonomous
software development.

Several directions for future work have been identified. These include expanding
agent actuator capabilities, implementing persistent memory across system restarts, sup-
porting multiple concurrent projects, developing a web-based user interface, optimizing
the single-threaded message handling architecture, and refining LLM interaction prompts.
Addressing these limitations would enhance the system’s robustness and practical appli-
cability in complex software development environments.

References

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004). Tropos:
An agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems, 8(3):203-236.

Cinkusz, K., Chudziak, J. A., and Niewiadomska-Szynkiewicz, E. (2025). Cognitive
agents powered by large language models for agile software project management. Elec-
tronics, 14(1).

Hong, S., Zhuge, M., Chen, J., Zheng, X., Cheng, Y., Zhang, C., Wang, J., Wang, Z.,
Yau, S. K. S., Lin, Z., Zhou, L., Ran, C., Xiao, L., Wu, C., and Schmidhuber, J.
(2024). MetaGPT: Meta programming for a multi-agent collaborative framework.
arXiv:2308.00352, https://arxiv.org/abs/2308.00352.

Islam, M. A., Ali, M. E., and Parvez, M. R. (2024). MapCoder: Multi-agent code genera-
tion for competitive problem solving. arXiv:2405.11403, https://doi.org/10.
48550/arXiv.2405.11403.

Jin, H., Huang, L., Cai, H., Yan, J., Li, B., and Chen, H. (2024). From LLMs to LLM-
based agents for software engineering: A survey of current, challenges and future.
arXiv:2408.02479, https://arxiv.org/abs/2408.02479.

Jorgensen, S., Nadizar, G., Pietropolli, G., Manzoni, L., Medvet, E., O’Reilly, U.-M., and
Hemberg, E. (2024). Large language model-based test case generation for gp agents.
In Genetic and Evolutionary Computation Conference (GECCO’24), page 914-923,
New York, NY, USA. ACM.

99

19th Workshop-School on Agents, Environments, and Applications - WESAAC 2025

Lin, F.,, Kim, D. J., et al. (2024). When LLM-based code generation meets the software
development process. arXiv:2403.15852, https://arxiv.org/html/2403.
15852v1.

Liu, J., Wang, K., Chen, Y., Peng, X., Chen, Z., Zhang, L., and Lou, Y. (2024). Large
language model-based agents for software engineering: A survey. arXiv:2409.02977,
https://arxiv.org/abs/2409.02977.

Nguyen, M. H., Chau, T. P., Nguyen, P. X., and Bui, N. D. Q. (2024). AgileCoder:
Dynamic collaborative agents for software development based on agile methodology.
arXiv:2406.11912, https://doi.org/10.48550/arXiv.2406.11912.

Pimentel, J. and Castro, J. (2018). piStar Tool — a pluggable online tool for goal modeling.
In IEEE 26th Int. Requirements Engineering Conference (RE), pages 498—499.

Qian, C., Liu, W,, Liu, H., Chen, N., Dang, Y., Li, J., Yang, C., Chen, W., Su, Y., Cong, X.,
Xu, J., Li, D., Liu, Z., and Sun, M. (2024a). ChatDev: Communicative agents for soft-
ware development. In the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15174-15186, Bangkok, Thailand.

Qian, C,, Xie, Z., Wang, Y., Liu, W,, Zhu, K., Xia, H., Dang, Y., Du, Z., Chen, W., Yang,
C., Liu, Z., and Sun, M. (2024b). Scaling large language model-based multi-agent col-
laboration. arXiv:2406.07155, https://doi.org/10.48550/arXiv.2406.
07155. Accepted to ICLR 2025.

Rao, H., Zhao, Y., Hou, X., Wang, S., and Wang, H. (2025). Software engineer-
ing for large language models: Research status, challenges and the road ahead.
arXiv:2506.23762v1, https://arxiv.org/html/2506.23762v1.

Sami, M. A., Waseem, M., Rasheed, Z., Saari, M., Systd, K., and Abrahamsson, P. (2024).
Experimenting with multi-agent software development: Towards a unified platform.
arXiv:2406.05381, https://doi.org/10.48550/arXiv.2406.05381.

Wang, Z., Wang, W., Li, Z., Wang, L., Y1, C., Xu, X., Cao, L., Su, H., Chen, S., and
Zhou, J. (2024). Xuat-copilot: Multi-agent collaborative system for automated user
acceptance testing with large language model. arXiv:2401.02705, https://doi.
0rg/10.48550/arXiv.2401.02705.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang, L., Zhang, X., Zhang, S.,
Liu, J., Awadallah, A. H., White, R. W., Burger, D., and Wang, C. (2023). Autogen:
Enabling next-gen 1lm applications via multi-agent conversation. arXiv:2308.08155,
https://doi.org/10.48550/arXiv.2308.08155.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao, S., Narasimhan, K., and Press, O.
(2024). SWE-agent: Agent-computer interfaces enable automated software engineer-
ing. arXiv:2405.15793, https://doi.org/10.48550/arXiv.2405.15793.

100

	AGENT ARCHITECTURES AND THEORIES
	Anticipatory Thinking in Multi-Agent Contexts – 11plus3minus6plus36.5plus3.5minus3Jomi F. Hubner (Federal University of Santa Catarina - UFSC); Samuele Burattini (University of Bologna); Alessandro Ricci (University of Bologna); Simon Mayer (University of St.Gallen)
	Agile Methodology and AI in Multi-Agent Systems: An agent for planning and executing sprints – 11plus3minus6plus36.5plus3.5minus3Elysson de Lacerda (Universidade Federal do Ceará - UFC); Franciel de Vasconcelos (Universidade Federal do Ceará - UFC); Gustavo Monteiro (Universidade Federal do Ceará - UFC); Marcos de Oliveira (Universidade Federal do Ceará – UFC)
	Towards the Integration of Reinforcement Learning into MASPY – 11plus3minus6plus36.5plus3.5minus3Alexandre Mellado (Federal University of Technology Paraná - UTFPR); André Pinz (Federal University of Technology Paraná - UTFPR); Rafael Cardoso (University of Aberdeen); Gleifer Alves (Federal University of Technology Paraná - UTFPR)

	AGENT ORGANIZATIONS, SOCIETAL ISSUES, NORMATIVE SYSTEMS
	A Systematic Review on Knowledge Transfer in Multi-Agent Systems using Reinforcement Learning – 11plus3minus6plus36.5plus3.5minus3Marcone Marques (Universidade Federal do Rio Grande - FURG); Giovani Farias (Universidade Federal do Rio Grande - FURG); Eder Gonçalves (Universidade Federal do Rio Grande - FURG); Diana Adamatti (Universidade Federal do Rio Grande - FURG)
	Perspectives on Regulation Adaptation in Multi-Agent Systems: from Agent to Organization Centric and Beyond – 11plus3minus6plus36.5plus3.5minus3Elena Yan (MINES Saint-Etienne); Luis G. Nardin (MINES Saint-Etienne); Jomi F. Hubner (Federal University of Santa Catarina - UFSC); Olivier Boissier (MINES Saint-Etienne); Jaime S. Sichman (University of São Paulo - USP)
	Modelagem de um Sistema Multiagente para Assistência Técnica e Pericial em Processos Judiciais Brasileiros – 11plus3minus6plus36.5plus3.5minus3Eduardo Ferreira (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Marcelo de Sousa Santos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca – CEFET/RJ)

	AGENT-BASED SOFTWARE DEVELOPMENT
	LLM-Powered Conversational Multi-Agent Cognitive System for Collaborative Task Solving – 11plus3minus6plus36.5plus3.5minus3Eryck Silva (Universidade Estadual de Campinas - UNICAMP); Frances A. Santos (Universidade Estadual de Campinas - UNICAMP); Pedro Henrique Thompson Furtado (Petróleo Brasileiro S.A. - PETROBRAS); Julio Cesar dos Reis (Universidade Estadual de Campinas - UNICAMP)
	Integração do SUMO e Traffic3D com o framework de agentes MASPY – 11plus3minus6plus36.5plus3.5minus3Gabriel Neres (Universidade Tecnológica Federal do Paraná - UTFPR); Gleifer Alves (Universidade Tecnológica Federal do Paraná - UTFPR); André Borges (Universidade Tecnológica Federal do Paraná - UTFPR); Rafael Cardoso (University of Aberdeen)
	Proposta de uma extensão do VSCode para facilitar a adoção do JaCaMo no desenvolvimento de Sistemas Multiagentes – 11plus3minus6plus36.5plus3.5minus3Mustafa Neto (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Diego Castro (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	RAG Multiagente para Recuperação de Conhecimento Organizacional – 11plus3minus6plus36.5plus3.5minus3Kalmax dos Santos Sousa (Universidade Federal do Ceará - UFC); Guilherme Moretti (Universidade Federal do Ceará - UFC); Matheus Mendes (Universidade Federal do Ceará - UFC); Marcos Oliveira (Universidade Federal do Ceará - UFC)
	Software Development Using a Multi-agent Approach – 11plus3minus6plus36.5plus3.5minus3Juliana Ribeiro (Federal University of Bahia - UFBA); Joel Pires (Federal University of Bahia - UFBA); Jonas Pereira (Federal University of Bahia - UFBA); Frederico Araujo Durão (Federal University of Bahia - UFBA); Celia Ralha (Federal University of Bahia - UFBA)

	AGENTS IN EMBEDDED AND ROBOTIC SYSTEMS
	Multi-Robot System Architecture Validation Using Disinfecting Robot Routine – 11plus3minus6plus36.5plus3.5minus3Rafael Melo Santos (Federal University of Bahia - UFBA); Carlos Joel da Silva (University of Brası́lia - UnB); Célia Ghedini Ralha (University of Bahia - UFBA; University of Brası́lia - UnB)
	Proposal of a Mission Management Module for Embedded Agent Systems – 11plus3minus6plus36.5plus3.5minus3Georgiy Tanca Nazarov (Universidade Federal de Santa Catarina - UFSC); Iago Silvestre (Universidade Federal de Santa Catarina - UFSC); Fernando R. Santos (Universidade Federal de Santa Catarina - UFSC); Jomi F. Hübner (Universidade Federal de Santa Catarina - UFSC); Leandro Buss Becker (Universidade Federal de Santa Catarina - UFSC)
	Setting up a Jason Agent on Top of ROS to Control an Autonomous UAV – 11plus3minus6plus36.5plus3.5minus3Felipe Calegari (Universidade Federal de Santa Catarina - UFSC); Iago Silvestre (Universidade Federal de Santa Catarina - UFSC); Leandro Becker (Universidade Federal de Santa Catarina - UFSC); Maiquel Brito (Universidade Federal de Santa Catarina - UFSC); Jomi Hübner (Universidade Federal de Santa Catarina - UFSC)
	BusAI: An BDI-agent based Urban Transport Information System – 11plus3minus6plus36.5plus3.5minus3Lucas Lira (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Andrei Serafim (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	Real-world verification techniques for Robotic and Embedded BDI agents: A systematic mapping – 11plus3minus6plus36.5plus3.5minus3Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ; Universidade Federal Fluminense - UFF); Carlos Eduardo Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); José Viterbo Filho (Universidade Federal Fluminense - UFF)
	Sistema Just-In-Time Baseado em Agentes, IoT e Blockchain – 11plus3minus6plus36.5plus3.5minus3Gabriel Pinto (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Isadora Passos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Raul Fernandes (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)

	APPLICATIONS OF AGENTS AND MULTI-AGENT SYSTEMS
	A BDI-based Multi-Agent System to Smart Parking Environment with Blockchain Technology – 11plus3minus6plus36.5plus3.5minus3Gabriel Oliveira (Universidade Tecnológica Federal do Paraná - UTFPR); Gleifer Alves (Universidade Tecnológica Federal do Paraná - UTFPR); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	A Comparative Analysis of Web Environment Representation for Agent Adaptation – 11plus3minus6plus36.5plus3.5minus3Iderli Filho (Universidade Federal de Santa Catarina - UFSC); Jomi Hubner (Universidade Federal de Santa Catarina - UFSC)
	A Multi-Agent organizational modeling at the backend of a metaversity – 11plus3minus6plus36.5plus3.5minus3Germana Nóbrega (Universidade de Brasília - UnB); Milene Serrano (Universidade de Brasília (UnB)); Maurício Serrano (Universidade de Brasília (UnB)); Fernando Cruz (Universidade de Brasília (UnB)); Fred Freitas (Universidade Federal de Pernambuco - UFPE)
	Aplicando os Princípios do Desenho Universal para a Aprendizagem (DUA) no Ensino de Sistemas Multiagentes – 11plus3minus6plus36.5plus3.5minus3Eduardo Augusto da Silva (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Livia de Lauro Antunes (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	Enhancing LLM Agent Effectiveness via Reflective Multi-Agent System – 11plus3minus6plus36.5plus3.5minus3Aissa Hadj Mohamed (Universidade Estadual de Campinas - UNICAMP); Frances Santos (Universidade Estadual de Campinas - UNICAMP); Julio Cesar dos Reis (Universidade Estadual de Campinas - UNICAMP)
	Modeling Urban Water Demand Using Agent-based Simulation: A Case Study in Salvador – 11plus3minus6plus36.5plus3.5minus3Edmilson Santos de Jesus (Federal University of Bahia - UFBA); Karen A. dos S. Pereira (Federal University of Bahia - UFBA); Gecynalda S. da S. Gomes (Federal University of Bahia - UFBA); Célia G. Ralha (Federal University of Bahia - UFBA)
	Revisão Sistemática da Literatura integrando Sistemas Multiagente e Large Language Models – 11plus3minus6plus36.5plus3.5minus3Míriam Born (Universidade Federal de Pelotas - UFPel); Bruno Alves (Universidade Federal de Pelotas - UFPel); Felipe Goulart (Universidade Federal de Pelotas - UFPel); Letícia Caldas (Universidade Federal de Pelotas - UFPel); Marilton Aguiar (Universidade Federal de Pelotas - UFPel)
	Sistema Multiagente para Monitoramento e Controle Automatizado de Comportas em Represas – 11plus3minus6plus36.5plus3.5minus3Guilherme Almeida (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Lucas de Mendonça Cardoso (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Diego Borda (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Heder Dorneles (Instituto Federal de São Paulo - IFSP)
	Sistemas Multiagente e Large Language Model: estudo de caso utilizando as ferramentas LM Studio e LangGraph – 11plus3minus6plus36.5plus3.5minus3Ulisses Júnior (Universidade Federal de Pelotas - UFPel); Míriam Born (Universidade Federal de Pelotas - UFPel); Agatha Santos (Universidade Federal de Pelotas - UFPel); Rodolfo Grossmann (Universidade Federal de Pelotas - UFPel); João Facklamm (Universidade Federal de Pelotas - UFPel); Vitor Castilhos (Universidade Federal de Pelotas - UFPel); Bruno Alves (Universidade Federal de Pelotas - UFPel); Marilton Aguiar (Universidade Federal de Pelotas - UFPel)
	Comparação de Regressão Linear e Redes Neurais para Predição de Desempenho e Alocação Autônoma de Recursos em Nuvem – 11plus3minus6plus36.5plus3.5minus3Aldo Henrique Mendes (Centro Universitário Euro-Americano - Unieuro); Célia Ghedini Ralha (Universidade de Brasília - UnB)
	Sistema Multiagente para Triagem de Pacientes com Base em Indicadores de Saúde – 11plus3minus6plus36.5plus3.5minus3Danilo Romoaldo Centro Federal de Educação Tecnológica do Rio de Janeiro (Cefet-RJ); Guilherme das Virgens Centro Federal de Educação Tecnológica do Rio de Janeiro (Cefet-RJ); Carlos Pantoja Centro Federal de Educação Tecnológica do Rio de Janeiro (Cefet-RJ); Diego Castro (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ);
	Solução Multiagente para Otimização de Vendas e Gestão de Clientes em Plataforma de CRM – 11plus3minus6plus36.5plus3.5minus3Lucas Bhering (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Eduardo Augusto da Silva (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	The BIG Agent - The Utilization of embedded MAS into Unmanned Aerial Vehicles as Security to citizens – 11plus3minus6plus36.5plus3.5minus3Kauã Santos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Daniel Costa (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Nilson Lazarin (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Bruno Freitas (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Carlos Pantoja (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)

	SOCIAL SIMULATIONS AND AGENT-BASED SIMULATION
	Assessing the Reproducibility of the Covid-19 Pandemic with COMOKIT: A Case Study in Ibirama, Brazil – 11plus3minus6plus36.5plus3.5minus3Denilson Laucsen da Rosa (Universidade do Estado de Santa Catarina - UDESC); Fernando Santos (Universidade do Estado de Santa Catarina - UDESC)
	Simulação Baseada em Agentes e Indicadores em ILPIs: Um Estudo para o Desenvolvimento do GeronTrack – 11plus3minus6plus36.5plus3.5minus3Raphael de Oliveira Dos Santos (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Eduardo Ferreira (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ); Cristiano Fuschilo (Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET/RJ)
	Building Blocks’ Architecture for Social Decisions based in Multi Agent Systems – 11plus3minus6plus36.5plus3.5minus3André da Silva (Universidade de Brasília - UnB); Gabriel da Silva (Universidade de Brasília - UnB); Mariana Rio (Universidade de Brasília - UnB); Maurício Serrano (Universidade de Brasília - UnB); Milene Serrano (Universidade de Brasília - UnB)
	Sistema Multiagente para simulação de propagação viral no contexto da COVID-19 utilizando a ferramenta NetLogo – 11plus3minus6plus36.5plus3.5minus3Bruno Alves (Universidade Federal de Pelotas - UFPel); Letícia Caldas (Universidade Federal de Pelotas - UFPel); Ulisses Junior (Universidade Federal de Pelotas - UFPel); Agatha Santos (Universidade Federal de Pelotas - UFPel); Rodolfo Grossmann (Universidade Federal de Pelotas - UFPel); Míriam Born (Universidade Federal de Pelotas - UFPel); Marilton Aguiar (Universidade Federal de Pelotas - UFPel)

