
A strategy to the reduction of communication overhead and
overfitting in Federated Learning

Alex Barros1, Denis Rosário1, Eduardo Cerqueira1, Nelson L. S. da Fonseca2

1Federal University of Pará (UFPA)
Belém – PA – Brazil

2Institute of Computing
University of Campinas

Campinas, Brazil

{alexbarros, denis, cerqueira}@ufpa.br, nfonseca@ic.unicamp.br

Abstract. Federated learning (FL) is a framework to train machine learning
models using decentralized data, especially unbalanced and non-iid. Adaptive
methods can be used to accelerate convergence, reducing the number of rounds
of local computation and communication to a centralized server. This paper pro-
poses an adaptive controller to adapt the number of epochs needed that employs
Poisson distribution to avoid overfitting of the aggregated model, promoting fast
convergence. Our results indicate that increasing the local update of the model
should be avoided, but yet some complementary mechanism is needed to model
performance. We evaluate the impact of an increasing number of epochs of
FedAVG and FedADAM.

1. Introduction

Emerging technologies, such as augmented reality, the Internet of Things (IoT), and so-
cial networking applications, have led to unprecedented growth in the volumes of data
generated daily. In line with that, organizations must rethink their data governance, re-
tention, and data privacy policies. For instance, the International Data Corporation (IDC)
[Mukherjee and Rojas 2020] predicted that, by 2025, 79ZB of data will be created by bil-
lions of IoT devices. On the other hand, data privacy has been the focus of attention of
several governments which makes the centralization of data in cloud servers a real con-
cern. Some legislation such as the U.S. Consumer Privacy Bill of Rights, the European
Commission’s General Data Protection Regulation (GDPR), and the General Law of Data
Protection (LGPD) in Brazil have been designed to protect users’ privacy.

Large propagation delays to the cloud server and the lack of capacity to provide
the requirements of delay-sensitive applications have motivated the deployment of edge
computing which aims at bringing cloud services to the network edge close to the end-
user [Abdulrahman et al. 2021]. Federated Learning (FL) paradigm has recently been
proposed to enable distributed machine learning process while preserving the privacy of
data by processing them at the site (client) they are usually generated. the parameters of
locally trained models are then sent over the network to a central server which aggregates
the value of the several parameters received and return to the clients a consolidated model,
which then will be trained again with local data by the participant clients in a federation
[McMahan et al. 2017] and [McMahan et al. 2017].



FL can be realized mainly in two different settings namely, cross-silo and cross-
device [Kairouz et al. 2021]. Cross-silo FL usually occurs by the exchange of machine
learning models between institutions assuming reliable network connection and a more
controlled environment. For example, training a model for medical treatment using pa-
tient records from multiple hospitals [Yu et al. 2020]. Cross-device FL involves thou-
sands of edge-devices participating in the federation. In this setting, usually, a small frac-
tion of clients participate in each round of model training, clients cannot maintain state
across rounds most of the time, and there are constraints related to network communica-
tion, mobility, and edge computing [Reddi et al. 2020]. For example, training a next-word
prediction model on texts typed by users into their smartphones or image-classification
task of driving signals. There are many others related to keyboard prediction such as Fed-
erated Recurrent Neural Network (RNN) that increases next-word prediction accuracy by
+24% [Hard et al. 2019], Emoji prediction [Ramaswamy et al. 2019], Action prediction,
and discovering new words that people are typing [Chen et al. 2019].

In this paper, we investigate the last scenario for which communication-efficient
protocols still need to be developed. In a cross-device setting, each client has a local
training dataset that is never uploaded to the server [McMahan et al. 2017]. Instead, each
client computes a local update of the model parameter that is communicated to the server.
This reduces privacy and security risks by limiting the attack surface to individual devices,
rather than all the devices and the cloud.On the other hand, standard optimization methods
highly used in machine learning, such as distributed Stochastic Gradient Descent (SGD),
are may incur large communication overhead if frequently communicated to the central
server. Alternatively, clients perform multiple local updates before communicating the
model parameters to the server. This can significantly reduce the amount of communi-
cation required to train a model [Reddi et al. 2020]. Federated averaging (FedAVG) is a
baseline algorithm proposed in [McMahan et al. 2017] to aggregate at the central server
parameters coming from several clients. Although highly used, convergence issues exist
when employing this algorithm [Karimireddy et al. 2021].

Moreover, we explored the FedOPT, a flexible algorithmic framework that allows
clients and server to choose optimization methods other than the SGD method in FedAVG
[Reddi et al. 2020]. However, only a few works have explored this framework and per-
formed an empirical evaluation of its effectiveness considering communication efficiency
issues [Hsu et al. 2019] [McMahan and Streeter 2010].

The main contributions of this paper are:

1. An evaluation of how local adaptation can lead to better accuracy of a model con-
sidering communication restrictions and overfitting of machine learning models.
For that, we performed an empirical evaluation of FedAVG and FedOPT using
ADAM optimizer.

2. Demonstration based on numerical results that multiple times of local updates can
be used to improve the accuracy of training, due to the reduced number of rounds
required to achieve a desired accuracy or loss, especially in scenarios with network
constraints and heterogeneity of clients’ resources and data distribution.

3. A dynamic adaptation to include a variable number of epochs at each round to find
the better trade-off between high accuracy, less round communication, and avoid
overfitting.



The remainder of this paper is structured as follows: Section 2 outlines an
overview of FL and its main challenges. Section 3 outlines the strategies to improve
communication efficiency adopted by recently related works. Section 4 introduces our
experiments varying some parameters of federated algorithms implementations and sec-
tion 5 presents our results. Section 6 presents the concluding remarks and future works.

2. Federated Learning challenges
The main advantage of FL is to train a machine learning model in a distributed way,
protecting the privacy of local data by communicating only the model’s parameters to a
central server, and not the dataset. The edge devices are called clients, which are the data
owner and responsible for storing local data observations. A coordinating server (often
called parameter server) aggregates the local parameters from all the clients, derives an
updated model, and shares this model with the participating clients to benefit from their
learning experience and to enable them to pursue their local training in future iterations
[Wahab et al. 2021]. FL has faces several challenges related to privacy, communication,
latency, data heterogeneity, and connectivity.

Privacy is one of the most relevant features of FL. In FL, raw local data never
leaves the user’s device since the training is done locally on each device. However, it
could be a target of inference attacks that aim to infer sensitive information from user’s
training data [Melis et al. 2018]. As a huge number of devices can be used in the training,
this risk may be of concern.

Communication overhead is reduced in FL since no raw data need to be trans-
ferred to a central server. However, since the machine learning models are trained
collaboratively, updates on the parameters of the models need to be communicated be-
tween to the server in several iterations, which poses additional communication costs
[Wahab et al. 2021]. The naive strategy to reduce communication in federated optimiza-
tion is limiting the number of devices involved. Alternatively, reducing the number of
communication rounds, and reducing the size of messages sent over the network. The
present work focuses on the reduction of communication rounds [Yu et al. 2020] and
[Wang et al. 2021].

Latency is expected to decrease as the models are trained locally on the edge/end
devices and can be updated faster and have greater generalization power. Such gener-
alization depends on the statistical heterogeneity and their usage patterns. The local
dataset of a client is not expected to be representative of the overall data distribution
[Wahab et al. 2021] because clients use their own services or applications in different
degrees. As a consequence, local datasets have different sizes and content distribution.
Another issue is related to connectivity, client devices are frequently offline or on slow
or expensive connections caused by the channel heterogeneity when on move. The client
selection process can be biased toward certain conditions (e.g., local time zone, the device
being charged or not, etc.) [Wahab et al. 2021]

[Wahab et al. 2021] divided the main challenges in FL into six areas and observed
that the statistical and communication efficiency challenges have been the most inves-
tigated, accounting for 25% of the surveyed papers, followed by privacy concerns with
19%, client selection and scheduling with 14%, the security concerns with 10%, and,
finally the service pricing with 7%.



The general idea of FL is depicted in Figure 1. It consists of one central server
called parameter server and a set of N clients, each having its local dataset. At the begin-
ning of each federated training iteration, a subset C ⊆ N of clients is chosen to receive
the current global state of the shared model in terms of model weights. This model is
broadcasted to clients (step 1). Each client uses its CPU and energy resources to carry out
local computations on its dataset based on the shared parameters (step 2). Clients then
send the model updates (step 3) to the parameter server which applies these updates to its
current global model to generate a new one (step 4).

Figure 1. The overview of four main steps of FL Training Process

This process is repeated over several iterations (sometimes referred to as epochs)
until the global model reaches a certain accuracy level determined by the parameter server.
In summary, an FL scenario consists of two main phases, i.e., local update and global ag-
gregation. The local update phase refers to the process of computing the gradient descents
by the client devices to minimize the underlying loss function for their local data. Global
aggregation includes the steps of collecting the updated model parameters by the server
from the different client devices, aggregating these parameters, and then sending back the
aggregate parameters to the clients to be used in their next training iteration.

In terms of optimization research, there are opportunities in client and server op-
timization. The former is related to the process of local updates/training while the later
is related to the process aggregating the model parameters sent by clients to produce an
enhanced model. FL needs some orchestration back and forth between the server and
the devices to train and evaluate a model, there are many architecture and strategies re-
lated to this orchestration. The initial model can be either initialized randomly or can be
pre-trained. This process happens hundreds or even thousands of times in model training.

The service provider is interested in the data that the device has. The initial model
can be initialized randomly or we can pre-trained it. This process is going to happen
hundreds or maybe thousands of times. Both the initial model and how the model evolves
are important and must get attention from the management entity that controls all this
process.

To determine the optimal set of parameters that fits the training data, the training
model has to optimize a loss (objective) function, which penalizes the model when it



produces an inaccurate label on a data point. Stochastic gradient descent is the backbone
of ML and for large datasets, it is implemented distributed where the dataset is shuffled
and split equally across worker nodes. Ideally, if we have more nodes, we are processing
more data per iteration and we expect to increase the speed to get a target accuracy, but in
reality, it is not so easy to achieve such speed due to issues related to synchronization and
communication delays that increase with the number of clients. The problems related to
synchronization delays are related to workers with less computing power as demonstrated
in [Dutta et al. 2018]. Communication delay is the time taken to aggregate the gradients,
update them, and send the updated model back to the workers/clients.

One solution to overcome this communication delay is called local update SGD,
basically, the workers perform more local updates instead of computing only one update
and send the model to the server aggregates. This reduces the frequency of communica-
tion and makes the derivation of a single model more efficient. However, clients are not
homogeneous as expected and they are not available for training all the time. Then, just
add more clients does not bring the process to convergence. If too many clients drop off
the training process can become unstable.

Finally, we highlight the challenges as data are heterogeneous across devices, both
in size and composition. For example, if two devices are in a different part of the world
they might have a different pattern of application use, and the data generated can be very
different. The computation resource can also greatly vary between devices (mobile de-
vices, tablets, vehicles) and they can be geographically distributed. Further, only a sub-set
of clients at a given time. Moreover, the choice of the best clients can be stated as an op-
timization problem. In the following section, we summarize some related research that
addressed the problem of communication efficiency in FL. Many of than explored alterna-
tive algorithms to increase the accuracy and reduce the loss considering the heterogeneity.

3. Related Works
Several works have been proposed to improve the FL. Some of them propose customiza-
tion of both server and client. [Li et al. 2020] proposed FedProx, including a component
to represent the statistical heterogeneity across client devices. The authors added a prox-
imal term to the local training subproblem on each client device. This adaptation allows
the local updates to get closer to the initial global model, limiting the influence of each
local model update on the global model. This adaptation is proposed to improve the con-
vergence when dealing with statistically heterogeneous data, and when all the devices
are weighted equally in the global aggregation phase, disregarding the differences in the
device capabilities (e.g., hardware).

[Reisizadeh et al. 2020] proposed FedPAQ focusing on periodic averaging of the
local model updates. Instead of synchronizing their model updates with the server at each
iteration, it enables clients to carry out multiple local updates on the model prior to sharing
the updates with the server. The clients should be chosen to participate in the training at
each iteration on the basis of factors such as the device connectivity to a free wireless
network, idle, and reachable to a base station. No evaluation of overfitting or fairness was
performed in this work.

[So et al. 2021] introduced a communication and security-oriented aggregation
technique based on a multi-group circular strategy. Turbo-Aggregate divided the clients



into multiple groups and at each iteration the clients belonging to one group transmit the
aggregated model updates of all clients in the previous groups and the local model updates
of the current group to the clients of the next group. It includes a security component for
sharing mechanisms and preserve the privacy of clients’ data. This proposition does not
adapt to new users that join the network and could be extended to a self-configurable
protocol.

In addition, [Wang et al. 2020] proposed the FedMA, a statistics-oriented aggre-
gation technique which uses permutation invariance of the neurons in the neural net-
work model before performing aggregation. It aims to adapt the model size employing
a Bayesian non-parametric mechanism which allows it to adjust the size of the central
model to the heterogeneity of data distribution. Unfortunately, FedMA can be vulnerable
to model poisoning attacks and some additional mechanisms should be added to improve
security.

The problem of ‘client-drift’ is investigated in [Karimireddy et al. 2021], when
data are heterogeneous (non-iid), resulting in unstable and slow convergence. The au-
thors proposed a new algorithm called Stochastic Controlled Averaging algorithm (SCAF-
FOLD), that uses control variate to reduces the effect of data heterogeneity and client
sampling. This work also indicates that most of the methods benefit from an increasing
number of epochs but they didn’t evaluate potential overfitting.

The non-IID data distribution is a consequence of the inherent heterogeneity in the
local data generated across clients’ device. Since each local device records the activities
of its owner, data across devices tend to have different sizes, features, and target classes
distribution. Naturally, the local data of one single client cannot be considered to be
representative of the overall data distribution [Wahab et al. 2021].

Federated optimization methods that perform local updating can significantly re-
duce communication rounds needed for convergence. However, heterogeneity can poten-
tially lead to slower convergence, reduced stability, or divergence. In our experiments,
we evaluate the impact of the increasing number of epochs (local updates) of FedAVG
and FedADAM using the same protocol proposed in [Reddi et al. 2020]. With the proven
impact and possible overfitting of the model, we propose an adaptive controller to vary
the number of epochs using a Poisson distribution to avoid overfitting.

4. Evaluation
In this section, We present an empirical comparison between FedAVG and FedADAM in
different scenarios involving different local update settings. The aim is to assess how the
number of epochs(local updates) can impact the convergence, especially in cross-device
settings. To accomplish this, we conduct simulations employing the dataset EMNIST. It
consists of images of digits and upper and lower case English characters, with 62 total
classes. The federated version of EMNIST [Caldas et al. 2019] partitions the digits by
author. The dataset has natural heterogeneity stemming from the writing style of each
person. We train a Convolutional Network for character recognition. The network has
two convolutional layers (with 3 x 3 kernels), max pooling, and dropout, followed by a
128 unit dense layer similar as used in [Reddi et al. 2020].

The implementation was based on TensorFlow Federated and we should highlight
some features as the clients are sampled uniformly at random, without replacement in



a given round, but with replacement across rounds. Second, instead of performing K
training steps per client, we perform E epochs of training over each client’s dataset. Last,
to account for varying numbers of gradient steps per client, we weight the average of the
client outputs by each client’s number of training samples. This follows the approach
adopted in [McMahan et al. 2017].

An implementation based on FedOpt was used. For the FedAVG simulations, we
used ClientOpt and ServerOpt with SGD with learning rates 0.l and 1.0 for client and
server, respectively; The batch size was defined in 20 for EMNIST. For FedAdam, the
client learning rate was 0.03 and the server was at 0.003. Other parameters were defined
as proposed in [Reddi et al. 2020], which showed an extensive evaluation and grid-search
of the best parameter values to minimize the average training loss over the last 100 rounds
of training.

The simulations also collected some validation metrics. They were measured on a
validation set throughout training using the entire test set. The number of communication
rounds is the main parameter to evaluate how fast is the convergence, but a more complex
and realistic scenario can be defined.

We perform 1500 rounds of training and Figure 2 shows how the increase in local
updates can improve the speed of convergence. The metric loss and accuracy improve
needing fewer communication rounds as demonstrated in Table 1 .

0 200 400 600 800 1000
0

1

2

3

4
FedAVG Loss

e=1
e=2
e=5
e=10

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0

FedAVG Accuracy

e=1
e=2
e=5
e=10

Figure 2. The impact of increasing local updated into Loss and Accuracy for
Federated Average Algorithm

Considering only these findings, we can conclude that a high number of epochs
yield better results. However, due to heterogeneity of data distribution, performing a high
number of local updates could generate optimal local models. To investigate this line of
thought, we evaluated the difference in collected metric values as well as the validation
loss and accuracy. For instance, in training with only one epoch, the mean accuracy of the
last 200 rounds was 75.28% and validation 77.13%. With 10 epochs the mean accuracy
was 94.95% and the validation accuracy was 83.96%. The difference between metrics
using epochs equals ten increased 5.94 times the gap between accuracy and validation



Table 1. Communication Rounds necessary to achieve target loss and accuracy

0.75 Loss Epoch 1 Epoch 2 Epoch 5 Epoch 10
FedAVG 744 43 14 7
FedADAM 614 39 11 5
75% Accuracy Epoch 1 Epoch 2 Epoch 5 Epoch 10
FedAVG 305 189 111 57
FedADAM 258 163 87 48

accuracy. In terms of loss, similar behavior was observed, the loss and validation loss for
one and ten epochs were respectively: 0.8818 and 0.7565, and, 0.1613 and 0.6338. This
comparison can be graphically analyzed in Figure 3.

0 200 400 600 800 1000
0

1

2

3

4
FedAVG Loss vs Validation Loss

Loss e=1 
Validation Loss e=1
Loss e=10
Validation Loss e=10

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0

FedAVG Accuracy vs Validation Accuracy

Accuracy e=1 
Validation Acc e=1
Accuracy e=10
Validation Accuracy e=10

Figure 3. Comparative between loss/accuracy and validation loss/accuracy for
epoch equals one and ten

We performed the same simulations using FedADAM and the increasing number
of epochs also improved the results (Figure 4). The validation accuracy of ten epochs
setting achieved the same result of one epoch. This demonstrates that increasing local up-
dates for Adam optimizer can speed the convergence but no improved result was obtained
at the end. Thus, the use of a high number of epochs for Adam optimizer is discouraged,
since it will increase the time necessary to compute local updates.

We compared the Federated Average and Federated Adam algorithms as a function
of the number of epochs. Results demonstrated that FedAVG produces better results for
ten epochs, but when the number of communication rounds is not an issue, for instance
in cross-silo settings, FedADAM provides faster convergence using one epoch per round.
Considering the data collected through these simulations, we proposed an adaptation at
the client-side, where the number of the local update should vary for less when using ten
epochs settings. The goal is to diminish the overfitting and still increase the speed of
convergence. This experiment is described in the next section.



0 200 400 600 800 1000
0

1

2

3

4
FedADAM Loss

e=1
e=2
e=5
e=10

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0

FedADAM Accuracy

e=1
e=2
e=5
e=10

Figure 4. The impact of increasing local updated into Loss and Accuracy for
Federated Adam Algorithm

0 200 400 600 800 1000
0

1

2

3

4
FedADAM Loss vs Validation Loss

Loss e=1 
Validation Loss e=1
Loss e=10
Validation Loss e=10

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0

FedADAM Accuracy vs Validation Accuracy

Accuracy e=1 
Validation Acc e=1
Accuracy e=10
Validation Accuracy e=10

Figure 5. Comparative between accuracy and validation accuracy for epoch
equals one and ten

5. Proposed adaptation and Results

In this section, we introduce a proposal for communication-efficient FL that tries to avoid
communication overhead and overfitting due to the number of rounds pursued. The num-
ber of client epochs determines the amount of ”sequential progress” (or learning) each
client makes before updating the global model. A high number of epochs results in more
local progress each round, this can manifest as a much faster per-round convergence rate.
The risk of overfitting may be correlated to non-IID distribution of client datasets. The
less similar to the ”global” dataset each client dataset is, the more likely there will be
”drift” (clients converge to different optimal points) [Karimireddy et al. 2021] when us-
ing a high number of epochs during rounds closer to potential convergence.



0 200 400 600 800 1000
0

1

2

3

4
FedAVG vs FedADAM Loss

AVG e=1
ADAM e=1
AVG e=10
ADAM e=10

0 200 400 600 800 1000
0.0
0.2
0.4
0.6
0.8
1.0

FedAVG vs FedADAM Accuracy

AVG e=1
ADAM e=1
AVG e=10
ADAM e=10

Figure 6. FedAVG works better than FedADAM for ten epochs

In this scenario, validation/test accuracy is less likely to improve. To reduces this
negative effect, we added a controller at the client-side to vary the number of epochs and
periodically reduces the local updates. We employed a Poisson distribution for that. We
simulate two scenarios, the first with 1 epoch per round. The controller in this case peri-
odically adds rounds using a Poisson distribution. In the second scenario, we considered
10 epochs per round, and the controller reduces the number of local updates, expecting to
reduce the chance of yielding an optimum local. We performed 1500 rounds and set the
probability of an event once in 1500 chances and for the other setting, we set ten times in
1500 rounds. Then, the limits of epochs were [1,10] for all settings.

Figure 7 shows the comparison of loss metrics for FedAVG before and after the
adjustment for our first scenario, considering only one epoch as the default. As Poisson
distribution will increase the number of local updates, but most of the time the proba-
bility will be concentrated around one epoch, the result improves just a little. It means
that our approach doesn’t boost enough the FedAVG. However, when considering the sce-
nario with ten epochs that we analyze in the last section our method achieve considerable
improvement. Figure 8 shows that using our variable number epochs, the gap between
training and validation metrics is reduced. This behavior indicates that this model has
less probability of overfitting. Even when it achieves less accuracy or higher loss, it still
has better generalization and can be considered a better model according to these param-
eters.

The results of Figure 9 indicates that our approach can also be used with ADAM
optimizer to improve model quality. Table 2 summarizes the results of both scenarios
with FedAVG and FedADAM. For instance, the difference between loss and validation
loss was 0.4541 before the adjustment and 0.0365 within. Also, the validation loss de-
creased 7.16% using the Poisson distribution controller. The same behavior happened
with FedADAM, the difference between training and validation metrics reduces a lot and
the comparison between validation accuracy with and without the adjustment showed a
small decrease.



0 100 200 300 400 500

1

2

3

4
FedAVG without Epochs Adjustment

AVG loss e=1
AVg Valid Loss e=1

0 100 200 300 400 500
1

2

3

4
FedAVG with Epochs Adjustment

AVG loss e=1
AVg Valid Loss e=1

Figure 7. FedAVG Adjust using one epoch

0 100 200 300 400 500
0

1

2

3

4
FedAVG without Epochs Adjustment

AVG loss e=10
AVg Valid Loss e=10

0 100 200 300 400 500

1

2

3

4
FedAVG with Epochs Adjustment

AVG loss e=10
AVg Valid Loss e=10

Figure 8. FedAVG Adjust using ten epoch

Table 2. Loss and Acc after our proposed adjustment

Metric between [200-300] rounds Loss Valid Loss Acc Valid Acc
FedAVG 10 Epochs 0.2046 0.6587 93.74% 82.61%
FedAVG 1 Epoch 1.9806 1.8252 52.61% 57.66%
FedAVG 10 E Adjust 0.6480 0.6115 80.78% 80.14%
FedADAM 10 Epochs 0.3175 0.6963 90.32% 79.86%
FedADAM 1 Epoch 1.0906 0.9330 71.11% 73.33%
FedADAM 10 E Adjust 1.0962 0.9703 70.87% 72.43%

6. Conclusion and Future Works
In this paper, we first performed an empirical evaluation of the impact of local updates on
FedAVG and FedADAM performance. We showed that increase in the number of epochs



0 200 400 600 800 1000
0

1

2

3

4
FedADAM without Epochs Adjustment

AVG loss e=10
AVg Valid Loss e=10

0 200 400 600 800 1000

1

2

3

4
FedADAM with Epochs Adjustment

AVG loss e=10
AVg Valid Loss e=10

Figure 9. FedADAM Adjust using ten epoch

can speed up convergence but yields a high chance of producing overfitting (reducing
the generalization). To mitigate the side effects of using too many local updates, we
further propose the utilization of a controller that increases or reduces the number of
epochs periodically to improve the model generalization. The probability of the number
of epochs used was configured with Poisson Distribution, we verified the advantages of
the proposed methods reducing the difference between training and validation metrics.
We conclude that the number of epochs shouldn’t be defined statically; it depends on
other constraints such as connectivity, mobility, computing resource. For example, if the
client has weak connectivity or the network is overload, it should dynamically increase
the number of local updates, but eventually reducing it to avoid model problems.

As future works, we can extend the evaluation by adding more variables to the
simulation as more sophisticated client selection criteria or evaluate how the drop-off
of clients during training might impact on the overall performance. We might evaluate
other tasks related to natural language processing (NLP) or regression to evaluate how
our proposed method performs in different scenarios.

References

Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., and Guizani, M.
(2021). A survey on federated learning: The journey from centralized to distributed
on-site learning and beyond. IEEE Internet of Things Journal, 8(7):5476–5497.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečný, J., McMahan, H. B., Smith, V., and
Talwalkar, A. (2019). Leaf: A benchmark for federated settings.

Chen, M., Mathews, R., Ouyang, T., and Beaufays, F. (2019). Federated learning of
out-of-vocabulary words.

Dutta, S., Joshi, G., Ghosh, S., Dube, P., and Nagpurkar, P. (2018). Slow and stale
gradients can win the race: Error-runtime trade-offs in distributed sgd.



Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augenstein, S., Eich-
ner, H., Kiddon, C., and Ramage, D. (2019). Federated learning for mobile keyboard
prediction.

Hsu, T.-M. H., Qi, H., and Brown, M. (2019). Measuring the effects of non-identical data
distribution for federated visual classification.

Kairouz, P., McMahan, H. B., Avent, B., and et al. (2021). Advances and open problems
in federated learning.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., and Suresh, A. T.
(2021). Scaffold: Stochastic controlled averaging for federated learning.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020). Feder-
ated optimization in heterogeneous networks.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017).
Communication-efficient learning of deep networks from decentralized data.

McMahan, H. B. and Streeter, M. (2010). Adaptive bound optimization for online convex
optimization.

Melis, L., Song, C., Cristofaro, E. D., and Shmatikov, V. (2018). Exploiting unintended
feature leakage in collaborative learning.

Mukherjee, A. and Rojas, B. (jul-2020). Business models for the long-term
storage of internet of things use case data, idc report - market perspec-
tive,https://www.idc.com/getdoc.jsp?containerid=prap46737220.

Ramaswamy, S., Mathews, R., Rao, K., and Beaufays, F. (2019). Federated learning for
emoji prediction in a mobile keyboard.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., Kumar, S., and
McMahan, H. B. (2020). Adaptive federated optimization.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., and Pedarsani, R. (2020). Fed-
paq: A communication-efficient federated learning method with periodic averaging
and quantization.

So, J., Guler, B., and Avestimehr, A. S. (2021). Turbo-aggregate: Breaking the quadratic
aggregation barrier in secure federated learning.

Wahab, O. A., Mourad, A., Otrok, H., and Taleb, T. (2021). Federated machine learning:
Survey, multi-level classification, desirable criteria and future directions in communi-
cation and networking systems. IEEE Communications Surveys Tutorials, 23(2):1342–
1397.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and Khazaeni, Y. (2020). Federated
learning with matched averaging.

Wang, J., Xu, Z., Garrett, Z., Charles, Z., Liu, L., and Joshi, G. (2021). Local adaptivity
in federated learning: Convergence and consistency.

Yu, T., Bagdasaryan, E., and Shmatikov, V. (2020). Salvaging federated learning by local
adaptation.


