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{mrmf, cbbs, amb4,kld}@cin.ufpe.br

Abstract. Unmanned Aerial Vehicle (UAV) communication networks and Multi-
access Edge Computing (MEC) will occupy an important position in the future
wireless communication system. Unlike regular datacenter environments, MEC
can help mobile devices improve computing and communication capabilities,
and its combination with UAVs helps to deal with the Line of Sight (LoS) issues,
besides allowing node mobility. This work addresses the dynamic resource pro-
visioning in a UAV equipped with MEC resources (MEC-enabled UAV) that pro-
vides on demand communication capabilities to Ultra-reliable and Low-latency
Communication (URLLC) services. We adopt a Continuous Time Markov Chain
(CTMC) to analyze the overall node availability and reliability, while taking into
account virtual host setup (repair) delays and failure events for Virtual Network
Functions (VNFs) hosted on MEC-enabled UAVs. Our results show that the
containerized VNF setup delays critically impact the admission process, whe-
reas reliability is more prone towards VNF failures.

Resumo. Redes de comunicação de veı́culos aéreos não tripulados (UAV) e
computação de borda de acesso múltilplo (MEC) ocuparão uma posição im-
portante no sistema de comunicação sem fio do futuro. Diferentemente dos
ambientes comuns de datacenter, o MEC pode ajudar os dispositivos móveis
a melhorar as capacidades de computação e comunicação, e sua combinação
com UAVs ajuda a lidar com os problemas de Linha de Visão (LoS), além de per-
mitir a mobilidade dos nós. Este artigo aborda o provisionamento dinâmico de
recursos de um UAV equipado com uma nuvem MEC que fornece capacidades
de comunicação/processamento sob demanda para serviços de confiabilidade
alta e latência baixa (URLLC). Nós analisamos a disponibilidade e confiabili-
dade dos nós via cadeia de markov de tempo contı́nuo (CMTC), considerando
o atraso de incialização/reparo e eventos de falha de funções de redes virtu-
ais (VNFs) embarcadas em UAVs com MEC. Nossos resultados mostram que
os atrasos de configuração de VNF em contêineres impactam criticamente o
processo de admissão, enquanto a confiabilidade é mais afetada pelas falhas.

1. Introduction

The fifth and sixth generations (5G and 6G) of mobile communication networks are ex-
pected to meet several service categories, including URLLC, which encompasses autono-
mous vehicles and smart industry applications. To do so, MEC and Network Functions



Virtualization (NFV) are put forward together for extending the notion of cloud compu-
ting to the network edge, while enabling network function (e.g., Mobility Management
Function) decoupling from dedicated hardware, respectively [Sarrigiannis et al. 2020].

It is widely accepted that each additional hop between the User Equip-
ment (UE) and application server represents increased latency and lower reliability
[Santoyo-González and Cervelló-Pastor 2018], which indicates that the best possible lo-
cation for a MEC node is theoretically one hop away from the UE, especially for URLLC
services. Hence, recent efforts have put forward the design of densely deployed MEC-
NFV ground and air-based nodes (Fig. 1), both of which can serve as edge computing
platforms to offload tasks from Internet-of-Things (IoT) devices, cache popular contents
to reduce the burden of backhaul networks [Cheng et al. 2018], or act as one or multiple
mobile VNFs [Strinati et al. 2020].
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Figure 1. MEC Location Scopes

In terms of practical applications, MEC-enabled UAVs have been considered a
promising paradigm to facilitate URLLC, playing a key role in providing service recovery
in disaster-stricken regions, enhancing public safety networks or where fixed infrastruc-
ture is unfeasible. More recently, since the New Radio (NR) specification in the 3rd Ge-
neration Partnership Project (3GPP) Release 17 [3GPP 2019], MEC-enabled UAVs have
received considerable attention in terms of traffic management [Lyu et al. 2017], cove-
rage enhancement [Li et al. 2019], improving quality of service [Wang et al. 2019], trans-
mission powers [Zeng et al. 2019], latency minimization [Mozaffari et al. 2019], and
network access [Nasir et al. 2019].

Since most efforts are focused on latency and power consumption, computational
resource availability and failure resiliency are often neglected in the context of MEC-
enabled UAVs [Emara et al. 2021]. As a result, the problem of onboard task execution,
accounting for the joint restrictions of physical resources and failure-prone virtual com-
ponents is still not addressed. Motivated by the above, we assess both the availability and
reliability based on the proposed CTMC framework that encompasses a dynamic edge re-
source allocation process [Falcao et al. 2021]. The CTMC approach is a well-known tool
for multiple studies in the telecommunications field and has also been used for evaluating
modern service classes such as URLLC [Nielsen et al. 2018].

The remainder of this paper is organized as follows. The related work is described
in Section 2. Section 3 describes the CTMC-based system model and the formulations
for reliability and availability. Numerical Analysis of a single MEC-enabled UAV node



serving critical URLLC applications are conducted in Section 4. Section 5 concludes this
work.

2. Related Work
The architectural alternative of MEC-enabled UAVs allows great improvements towards
latency requirements, however, unlike traditional ground MEC nodes, MEC-enabled
UAVs are usually powered by limited battery which highly impacts its onboard com-
putational capacity. Hence, several studies proposed different architecture and analytical
models comprising optimal use of UAV infrastructure.

In [Jeong et al. 2018], the authors attempted to host cloudlets on a UAV so as
to minimize energy consumption at the UE while optimizing data rates and the UAV’s
trajectory under latency constraints. Similarly, in [Hu et al. 2019], the authors mini-
mize the power consumption by jointly optimizing computation offloading and trajec-
tory design. In [Xiong et al. 2019], the authors proposed UAV-aided edge servers for
heterogeneous IoT devices aiming at minimizing the overall energy consumption. In
[Zhang et al. 2019], the authors used stochastic optimization tools for energy consump-
tion minimization while optimizing the UAV’s trajectory. In [Costanzo et al. 2020], a
dynamic communication and computation allocation strategy is proposed for selecting
the ideal altitude and minimizing the energy consumption while concomitantly satisfying
latency constraints. In [Yang et al. 2019], the authors propose a MEC network over mul-
tiple UAVs, focusing on minimizing the total power consumption. More recently, the
authors in [Bekkouche et al. 2020] explored the performance of UAVs as edge nodes for
Aerial Control System (ACS) function hosting, which is responsible for controlling and
orchestrating an UAV fleet, focusing on UAVs as backhaul and core network equipment.
Finally, in [Wang et al. 2021] a multi-agent deep reinforcement learning based trajectory
control algorithm was proposed for jointly maximizing the fairness among UEs and UE-
load of each UAV, as well as minimizing the energy consumption. Table 1 compares our
work to the existing literature.

Table 1. Summary of Existing Related Work

Work MEC Single UAV Multiple UAVs Access Network Computing Resources

[Jeong et al. 2018] ✓ ✓ ✗ ✓ ✗
[Hu et al. 2019] ✓ ✓ ✗ ✓ ✗
[Xiong et al. 2019] ✓ ✓ ✗ ✓ ✗
[Zhang et al. 2019] ✓ ✓ ✗ ✓ ✗
[Costanzo et al. 2020] ✓ ✓ ✗ ✓ ✗
[Yang et al. 2019] ✓ ✗ ✓ ✓ ✗
[Bekkouche et al. 2020] ✓ ✓ ✗ ✓ ✗
[Wang et al. 2021] ✓ ✗ ✓ ✗ ✗
This Work ✓ ✓ ✗ ✗ ✓

It is noticeable how previous works prioritized power management mechanisms
based on either trajectory optimization or in Radio Access Network (RAN) improve-
ments, not accounting for the computational standpoint, where two practical points play
a key role: (1) virtualization technology and the (2) on-demand resource activation (sca-
ling). With regard to the first, although NFV has traditionally been implemented over



Virtual Machines (VMs), it is widely accepted that containers (CTNs) are the most cost-
effective solution in terms of physical resource utilization, besides having lower instanti-
ation overheads [Morabito 2015], which impacts on the latter, specially to support VNF
scaling for URLLC services. However, they are still not mature compared to VMs, i.e.,
there are multiple security risks involved in containerization since they share a single ker-
nel, which may affect both availability and reliability, especially for critical applications.

Motivated by this gap, we adopt and analyze a hybrid VM-containerized onboard
infrastructure that leverages the best of both: the VM’s strong isolation and the flexibility
of containers, while considering how commonly neglected assumptions such as the vir-
tual resource setup (repair) delays and failures can impact communication constraints for
URLLC services.

3. System Model
The role of UAVs on enhancing 5G/6G networks can be widely diverse, with UAVs ac-
ting as radio, core Network Functions (NFs), edge cloud servers or backhaul equipment
[Bekkouche et al. 2020]. The benefits of co-locating these capabilities on a single UAV
include improvements on service latency and signaling overhead, while the limitations
are mainly related to availability and reliability.

UAV-enabled NFs complement ground core network, facilitating cooperation.
Core NFs on UAVs can reduce latency while ensuring stable connectivity, also provi-
ding a means of collecting local environment data for enriching network analytics, e.g.,
for Quality of Service (QoS) assurance. Given the natural energy limitations on UAVs,
core NFs that hold user registration data, policy and authentication are not suitable to be
hosted on UAVs to avoid losing critical data. Typical core NFs that can be hosted on
UAVs include Control plane functions e.g., Access and Mobility Function (AMF), Ses-
sion Management Function (SMF), and Network Exposure Function (NEF).

In this work, a single isolated MEC-enabled UAV node is evaluated (Fig. 2),
where URLLC requests originated from UEs are processed by onboard VNFs, which can
be scaled to cope with intensive request periods.

3.1. Key Assumptions
In order to process URLLC requests, a MEC-enabled UAV node first must receive the
request and then execute an onboard VNF to process it. The result is then sent back
to the mobile user. This work focuses on computing capacity-related issues, thus we
assume that mobile users are within the UAV’s coverage area and that radio resources are
allocated appropriately. Radio resource allocation and UAV coverage management have
been thoroughly discussed in [Wang et al. 2021].

The use of NFV in UAV environments provides flexibility to adapt the functions
offered by MEC-enabled UAVs to the specific service requirements and accommodate
deployment scenarios according to the resource demands, by incorporating new VNFs
or scaling when necessary [Borja et al. 2018]. In this respect, NFV is said to leverage
the use of physical hardware by allowing seamless elastic resource provisioning, which
is a key aspect when dealing with capacity-restricted UAV nodes. Since onboard VNFs
should use limited resources, while minimizing energy expenditures, the adoption of a
dynamic VNF scaling mechanism may prove to be beneficial.



3.2. Computing Model

In our framework, each VNF runs independently on a single microvi-
sor/microkernel–based VM [Fautrel et al. 2019] or container, with VMs executing
continually while containers are activated/deactivated upon demand. A centralized
control unit accounts for blocking or admitting requests, only activating containers
if all available VMs are processing requests. On the other hand, the containerized
VNF activation is fulfilled in two major steps: kernel image initialization and function
launch, assumed to be a single transition interval (setup time), during which power and
computing resources are in use but the request is not being processed.

Active container-hosted VNFs may fail during request processing, implying in a
service migration to an available VM/container or a reset (new setup period), with pro-
gress being lost only in the latter. In practice, recovery intervals are highly dependant
on failure type; for instance, some software crashes can be immediately fixed by the host
in few microseconds, while others may take longer (usually few milliseconds) to reboot
device and/or VNF. We have opted for mapping only the worst-case since the proposed
framework deals exclusively with URLLC flows, knowing, however, that other traffic ty-
pes may be added and thus multiple failure situations can be mapped accordingly. Finally,
immediately after a VNF ends processing the URLLC request and there is no other re-
maining, the VNF instance can switch to a low power consumption state (denoted as OFF
state) if hosted by a container or remain active if located in a VM. For being significantly
smaller than the setup (repair) magnitudes, in this work the shutdown delay is ignored as
in [Kaur et al. 2017]. The above process is summarized in Fig. 2.
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Figure 2. System Model Diagram

3.3. Analytical Model

The system comprises a single MEC-enabled UAV with a simultaneous capacity of n
VMs, c containers and k URLLC services, where k = n + c. The service request fol-
lows a Poisson process with rate λ (requests/ms) and server capacities of one service per
unit time, which are exponentially distributed (service rate µ) for both VM-based and
container-hosted VNFs. It is currently accepted that URLLC control applications are li-
kely to fit a isochronous packet trace, i.e., a superposition of deterministically spaced
and sporadic packet streams, with each part contributing to the overall traffic, being ap-
propriately modeled as a Poissonian process [Anand and de Veciana 2018]. Furthermore,



container setup times and failures are also exponentially distributed respectively with rates
α and γ, although there is currently no literature to support that when they are exponen-
tial random variables [Ren et al. 2016]. With respect to the attendance order, a typical
First Come First Served (FCFS) queue was assumed for new requests but prioritization
for retrial requests (due to failures) are accepted.
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Figure 3. CTMC State Diagram

In this respect, we apply queueing theory for quantitative analysis. We assume
that the URLLC networks are standalone deployment and the system is modeled as an
M/M/k/k queue with setup time and failure, n, c, k > 0 and n+c = k (no buffer allowed).
The feasible state space is given by Ω = (i, j) | 0 ≤ i ≤ c, 0 ≤ j ≤ k, provided that i ≤
j − n, with i, j, n, c, k ∈ Z+. Each state (i,j) designates the number of active containers
and URLLC services, respectively. Since VMs are always active, regardless of being busy
or idle, the states (0, j) with 0 ≤ j ≤ n indicate that only VMs are processing the current
load, whereas states with j ≥ n imply that in addition to all available VMs, containers
are processing the extra load. Fig. 3 presents the state transition diagram of our system.
Considering (i, j) ∈ Ω for all equations to follow, the steady-state probabilities π(i, j)
can be obtained from the linear system formed by the normalization condition (Eq. 1)
and balance equations (Eqs. 2-10) in Table 2.

∑
Ω

πi,j = 1. (1)

The balance-equation for the empty system (0, 0) can be expressed in Eq. 2. For
states where no container is active (i = 0), there is at least one service (j > 0) and there
are enough VMs to process the admitted requests, the following will apply: Eq. 3 if j < n
and n > 1 or Eq. 4 if j = n. However, if the ongoing services overcome the existing VM



limit and the system allows at least two containers and two services (j > n, c > 1 and
k > 1), then only Eq. 5 applies. Finally, other border states are represented by Eq. 6, i.e.,
no container is on (i = 0, j > 0) and request limit k is reached (j = k and c > 0).

λπ0,0 = µπ0,1 (2)

(λ+ jµ)π0,j = λπ0,j−1 + (j + 1)µπ0,j+1 (3)

(λ+ nµ)π0,n = (λπ0,n−1) + (nµπ0,n+1) + ((n+ 1)µπ1,n+1) (4)

(λ+ (min(c, j − n)α) + nµ)π0,j = (λπ0,j−1) + (nµπ0,j+1) + (γπ1,j) (5)

((min(c, k − n)α) + nµ)π0,k = (λπ0,k−1) + (γπ1,k) (6)

For the states where the number of active containers varies between 0 < i < c,
Eq. 7 only applies if the amount of active containers and VMs is equal to the number of
active services (j = i + n, j < k and c > 1), otherwise, if the active service number is
bounded by that value and the limit k (i + n < j < k and k > n + 2), then Eq. 8 is
applicable. The remaining states covered by Eq. 9 are limited by k (j = k and c > 1).

(λ+ (n+ i)µ+ iγ)πi,j = ((n+ i)µπi,j+1) + (απi−1,j) + (n+ i+ 1)µπi+1,j+1) (7)

(λ+ (n+ i)µ+ ((min(c, j − n)− i)α + iγ))πi,j

= λπi,j−1 + ((min(c, j − n)− (i− 1))απi−1,j) + ((n+ i)µπi,j+1) + ((i+ 1)γπi+1,j)
(8)

((n+ i)µ+ ((min(c, k − n)− i)α + iγ)πi,k

= ((min(c, k − n)− (i− n))απi−1,k) + (λπi,k−1) + ((i+ 1)γπi+1,k) (9)

Lastly, Eq. 10 refers to the set of states where all containers are active (i = c) and
the service limit (j = k) is reached.

((n+ c) + iγ)µπc,k = (απc−1,k) (10)



Table 2. Balance Equation Description

No. Equation States Condition(s) Meaning
(2) λπ0,0 = µπ0,1 (0, 0) n/a Empty system
(3) (λ+ jµ)π0,j = λπ0,j−1 + (j + 1)µπ0,j+1 (0, j) (0 < j < n) and

(n > 1)
All services running on
VMs

(4) (λ+nµ)π0,n = (λπ0,n−1)+(nµπ0,n+1)+
((n+ 1)µπ1,n+1)

(0, j) (j = n) Existing VMs match ser-
vice load

(5) (λ + (min(c, j − n)α) + nµ)π0,j =
(λπ0,j−1) + (nµπ0,j+1) + (γπ1,j)

(0, j) (n < j < k), (c >
1) and (k > 1)

Service load surpasses VM
capacity; Containers are
setting up

(6) ((min(c, k − n)α) + nµ)π0,k =
(λπ0,k−1) + (γπ1,k)

(0, j) (j = k) Similar to (5) but with Full
system;

(7) (λ+(n+i)µ+iγ)πi,j = ((n+i)µπi,j+1)+
(απi−1,j)

(i, j) (0 < i < c), (j =
n+ i) and (c > 1)

All VMs are busy and some
Containers are serving;

(8) (λ + (n + i)µ + ((min(c, j − n) −
i)α + iγ))πi,j = ((min(c, j − n) − (i −
1))απi−1,j) + ((n + i)µπi,j+1) + ((i +
1)γπi+1,j)

(i, j) (0 < i < c), (n+i <
j < k) and (k > n+
2)

Similar to (7) but there are
containers setting up

(9) ((n + i)µ + ((min(c, k − n) − i)α +
iγ)πi,k = ((min(c, k − n) − (i −
n))απi−1,k)+(λπi,k−1)+((i+1)γπi+1,k)

(i, k) (0 < i < c), (k >
n+ 2) and (c > 1)

Similar to (8) but with full
system

(10) ((n+ c)µ+ cγ)πc,k = (απc−1,k) (c, k) n/a All resources are being
used and the system is full

3.4. Performance Metrics

Recent advancements on the field of URLLC push forward to the adoption of a MEC-
NFV environment for multiple network parts, e.g., core network and application functi-
ons, bringing cloud features to the extreme opposite side of the network (from a location
point of view). This phenomenon allows reduced Latency as well as increased Reliabi-
lity for such sensitive traffic. On the other hand, MEC-enabled UAV nodes are particu-
larly restricted in terms physical computational resources and energy consumption levels,
which highly impact its availability. In other words, if maximum node capacity is reached
either due to the high demand or to low battery levels, requiring the node to power off
part of its already scarce resources [Li et al. 2021], the node must forward the excessive
flow to a neighbor (ground/aerial node) or to the central cloud [Chen et al. 2020], both
of which incurs on a new challenge since multiple intermediate hops might be introdu-
ced, causing some degree of uncertainty towards reliability. Thus, guarantying maximum
MEC-enabled UAV node availability and reliability becomes specially relevant and chal-
lenging considering the URLLC environment.

3.4.1. Availability

In our framework, the Availability (A) quantifies the probability that an incoming URLLC
request finds a vacant VM-hosted or containerized VNF at the MEC-UAV node, being
given by Eq. 11, which is obtained by the probability sum of all states except those of full
capacity.



A = 1−
c∑

i=0

πi,j with j = k. (11)

3.4.2. Reliability

Another relevant metric that quantifies the degree of successful task execution. In our
system, the Reliability (R) is the probability that a URLLC service is served without
experiencing failures in the MEC-enabled UAV, given by Eq. 12, which combines the
admitted flow (λ*A) with the overall failure rate (effective).

R = 1− 1

λ ∗ A

c∑
i=1

k∑
j=1

iγπi,j. (12)

4. Results
This section analyzes the proposed metrics focusing on a single MEC-enabled UAV node
in terms of VMs and containers, serving critical URLLC applications. Following a subset
from the 3GPP Release 16 (TR 38.824), the service time is set to 1ms (1 service/ms)
while service arrivals range from 1 to 5 requests/ms. Unless otherwise stated, the baseline
for failure (γ) and setup rates (α) are 0.001 and 1 unit/ms, respectively [Kaur et al. 2017].
The total number of VNFs in the following experiments is restricted to 10 units, which
denotes the capacity of a small MEC-enabled UAV, although the proposed model is not
limited to a specific amount of VNFs. The default network parameters are summarized in
Table 3 while alternative configurations are indicated in Figs. 4-6.

Table 3. Default Parameter Settings

Parameter Values

Max. number of VNFs (k) 10
URLLC request rate (λ) [1, 5]
URLLC service rate (µ) 1
Container setup rate (α) 1
Container failure rate (γ) 0.001

Three scenarios are evaluated in terms of multiple VM-hosted/containerized VNF
arrangements, and improved setup/failure rates. The analytical model is validated against
extensive discrete-event simulations in Figs. 4-6, where the analytical model is denoted
by lines whereas markers represent simulation results.

4.1. Multiple VM/Container Arrangements
The impact of varying VM/container ratios is registered in Figs. 4a-4b. The results reveal
that configurations with smaller VM/containers ratios are more likely to underperform
with regard to both availability and reliability, which is somehow expected since containe-
rized VNFs are less stable compared to VM-hosted VNFs. In particular, for both metrics,
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Figure 4. MEC node Availability and Reliability for multiple VM/container arran-
gements

we expected similar results between configurations at least until λ = 2, since theoreti-
cally, this is the load in which all tested configurations have enough VMs n = (2, 5, 8).
However, in Fig. 4a the curves start to differentiate at λ = 1.75 with larger discrepancies
becoming clear as λ increases. As soon as all VMs occupied by URLLC requests, new
incoming requests are sent to containerized VNFs. Yet, containers require a startup time,
which affects node availability since, although it is not yet processing, it no longer counts
as an available resource. This interval causes the service limit on the MEC-enabled UAV
node to be reached.

In Fig. 4b the MEC-enbaled UAV configuration with 2 VMs kicks off with consi-
derably lower reliability, breaking the Smart Manufacturing (SM) threshold at λ = 1.25
and drifting away rapidly in comparison to other configurations. Differently from the avai-
lability, the reliability standards are determined for URLLC, depending on the application.
For instance, the Smart Manufacturing (SM) and Transport Industry (TI) thresholds are
99.99% and 99.999%, respectively (3GPP Rel-16).

In Fig. 4b, the only fairly compatible arrangement with all depicted applications
for every λ is the configuration with 8 VMs and 2 containers. Curiously, the set with 5
VMs and 5 containers rapidly degrades even though the maximum λ value matches with
the VM number, breaking two application thresholds. In particular, considering URLLC
applications, even relatively few requests experiencing setup delays and one or multiple
failures can cause capacity issues, leading to unavailability and lower reliability as more
containerized VNFs are needed. On the other hand, building a platform formed only by
VMs would likely become costly in terms of power consumption since VMs are not fast
enough to be dynamically scaled for URLLC applications.

A possible solution is to adjust the VM/container ratio according to the demand,
i.e., an operator can select configurations with more containers for low demands and vice-
versa. For instance, considering only the reliability in Smart Manufacturing applications
(Fig. 4b), the MEC-enabled UAV configuration with 2 VMs and 8 containers could be
used if λ < 1.25, whereas if λ < 4.75 a more balanced set (5 VMs and 5 containers) could
take place and finally, the arrangement with 8 VMs, 2 containers would only become
available if λ > 4.75.
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Figure 5. MEC node Availability and Reliability for improved setup rates

4.2. Improved Setup Rates

A single configuration with 2 VMs and 8 containerized VNFs was adopted with varying
setup rates (α) in this section. A larger α means smaller container setup delays, i.e.,
more VNF instances become available per unit time. In the following lines, the impact
of improved α is assessed, considering ten and one-hundred times the original baseline
values while keeping the same failure rates.

In Fig. 5a the availability significantly increases as α improves, implying a th-
roughput increase since the remaining parameters are fixed. It was noted that the curve in
which α = 100 surpasses the one depicted by the configuration with 8 VMs, 2 containers
(α = 1, red line with crosses) from the previous experiment, even though there are four
times more stable VMs. Despite that, Fig. 5b reveals the opposite: interestingly, for smal-
ler setup delays the reliability decreases, pushing the configuration away from the SM and
TI reliability thresholds. This occurs since shorter setup delays lower the probability of a
service to be processed in a VM, i.e., containerized VNFs become more available. This
indicates that isolated improvements in the containerized VNF setup rate may concomi-
tantly aid the admission process and become a burden to the admitted URLLC flows.

4.3. Improved Failure Rates
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Figure 6. MEC node Availability and Reliability for improved failure rates

Similarly to the previous experiment, a fixed configuration with 2 VMs and 8
containerized VNFs was adopted, but with varying failure rates (γ). A larger γ means
smaller intervals between successive containerized VNF failures. In Fig. 6a, it was noted



that, although distinct failure rate magnitudes were tested, the availability remains almost
unchanged in relation to the baseline configuration. On the contrary, the failure rate re-
duction has a deep effect on the edge reliability (Fig. 6b), allowing the configuration to
be suited for the Smart Manufacturing threshold when γ = 0.0001 and even the Transport
Industry threshold when γ = 0.00001, besides showing similar behavior compared to the
configuration with 8 VMs, 2 containers (γ = 0.001, red line with crosses).

These findings suggest what level of improvement that containerized VNFs must
achieve to meet specific requirements, recalling that both software and hardware share
relevance towards this aspect [Lal et al. 2017]. This clearly indicates that the containeri-
zed VNF setup delays critically impact the admission process, whereas reliability is more
reactive towards VNF failures. Besides, the joint analysis of availability and reliability
reveals the amount of traffic that would experience uncertainty by being dodged to other
MEC nodes besides the effective failure rate for the admitted flow, both of which should
be considered by a mobile operator when opting for a given infrastructure set.

5. Conclusion
This paper introduced a dynamic resource allocation framework for MEC-enabled UAV
nodes leveraging NFV, which allows mobile service providers to address multiple pro-
blems such as node dimensioning. To yield the framework practical, we characterize the
MEC-enabled UAV node with the following assumptions: a hybrid virtualization envi-
ronment with continuously powered VMs and dynamically scaled failure-prone contai-
nerized VNFs. In particular, we evaluated the combined impact of setup (repair) delays
and failures by individually quantifying node Availability and Reliability, which revea-
led that individual containerized VNF setup/failure rate improvements may not positively
impact the overall performance in every case. Ongoing works include power consump-
tion and end-to-end latency analysis and model extension to cover other features such as
different users (e.g., enhanced Mobile Broadband and URLLC) sharing the node resour-
ces. Another extension is to generalize the VNF setup time, since there is no literature to
support that when they are exponential random variables.
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