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Abstract. Federated Learning is a machine learning paradigm where many
clients cooperatively train a single centralized model while keeping their data
private and decentralized. This novel paradigm imposes many challenges, such
as dealing with data that is not independent and identically distributed, spread
among multiple clients that are not synchronized and may have limited com-
puting power. These clients are often edge devices such as smartphones and
sensors, which form a system that is heterogeneous, highly distributed by nature
and difficult to manage. This work proposes an architecture for running fed-
erated learning experiments in a distributed edge-like environment. Based on
this architecture, a set of experiments are conducted to analyze how the overall
system performance is affected by different configuration parameters and varied
number of connected clients.

1. Introduction

Federated Learning is a solution proposed by [McMahan et al. 2016] in order to train ma-
chine learning models while keeping the data private and decentralized. It works by hav-
ing different clients training their own models with their own data, then averaging these
trained models in a single centralized server, creating a global model. These clients can
be consisted of smartphones, a single sensor, or any [oT device with internet connection
such as a smart TV or a smart car.

The clients train their models with their own data and, after finished, the models
are uploaded to a central server, where all the client models are aggregated, converging to
a single final model made from the uploaded models. While regular centralized machine
learning may outperform federated learning in terms of accuracy [Nilsson et al. 2018], it
requires the entire data set to be public. Federated learning allows large scale data sets to
be used for training models while keeping the data private to each client.

Federated learning has been greatly enabled by the vast advances and abundance
of IoT devices. According to [Cisco 2020], the number of devices connected to IP net-
works will be more than three times the global population by 2023, there will be 3.6
networked devices per capita by 2023, up from 2.4 networked devices per capita in 2018,
and there will be 29.3 billion networked devices by 2023, up from 18.4 billion in 2018.
This represents a rapid increase of potential federated learning use cases, considering the
plenitude of client data to be trained in order to produce high accuracy machine learning
models.

This work proposes an architecture that is able to run federated learning algorithms
in a distributed environment, where the clients are machines with limited power, similar



to edge devices. Then, on top of this architecture, a set of experiments have been con-
ducted with different configurations of data distribution for a varying number of clients,
while also changing parameters for both the client and the server. Collected data has been
analyzed in order to understand how to optimize for model accuracy while minimizing
computing resource usage on client-side. This analysis can be useful for further develop-
ment in federated learning technologies, such as orchestration between edge devices and
cloud for federated learning use cases.

The remainder of this work is organized as follows. In Section 2 an overview for
edge cloud orchestration and federated learning is presented. In Section 3 the conceptual
architecture of the proposed solution is presented. Section 4 approaches the layout of the
experiments and presents the obtained results. Section 5 concludes the paper outlining
opportunities for future research.

2. Edge Cloud Orchestration and Federated Learning

This section approaches the main topics of this work, providing an overview of the current
state of the art of edge computing and federated learning.

2.1. Edge Computing

The need for low latency computing along the rapid advancements in telecommunication
services motivated the edge computing paradigm. In edge computing, instead of having
the computing resources centralized in a data center — a cloud —, the idea is to distribute
these resources in devices — the edge — closer to the final user, thus allowing lower latency
and faster connections. These edge devices can be any device with Internet access such
as smartphones, smart cars, or other IoT devices.

Edge computing use cases include autonomous driving [Liu et al. 2019], where
edge devices need to process a large amount of data from different sensors at high speed
in real time in order to guarantee the safety of the drivers; and smart city traffic monitoring
[Barthélemy et al. 2019], where the decentralized and highly available nature of multi-
access edge computing is taken advantage to collect, store, and analyze city traffic data in
multiple sensors.

More recently, many advances connecting edge computing to artificial intelligence
were made. [Zhou et al. 2019] define Edge Intelligence as the union between Al and edge
computing, an opportunity that rose in virtue of the abundance of devices connected to
the internet that generate huge amounts of data on a daily basis. Edge Intelligence aims
to capitalize on this data to train machine learning models, using concepts such as Deep
Learning and Federated Learning.

Additionally, [Deng et al. 2020] further expand on Edge Intelligence and propose
a conceptual difference between artificial intelligence for edge and artificial intelligence
on edge. The former encompasses intelligence-enabled edge computing that provides
solutions to edge computing problems by utilizing artificial intelligence, while the latter
encompasses how to run artificial intelligence models on edge devices, extracting insights
from its distributed data nature. For this work, we are more interested in Al on edge.

2.2. Federated Learning

Federated learning is a decentralized form of machine learning used to train models at
scale while allowing the user data to be private. Federated learning was first introduced by



Google [McMahan et al. 2016], which provided the first definition of federated learning,
as well as the Federated Optimization [Konecny et al. 2016] approach to further improve
these federated algorithms. Google also explains in further detail the concept of federated
learning in the Federated Learning: Collaborative Machine Learning without Centralized
Training Data blog post [Google 2017], stating the usage to predict keyboard words as
seen in [Hard et al. 2018] and planning to also use federated learning for photo ranking
and further improving language models.

In order to properly define and further advance in federated learning subjects, the
FedML Research Library and Benchmark [He et al. 2020] has been proposed to facili-
tate federated algorithm development and performance comparison. FedML provides an
open-source framework that allows the development and evaluation of novel federated
algorithms. Similarly, the Flower Learning Research Framework [Beutel et al. 2021] also
provides heterogeneous environments that allow experimentation with heterogeneous data
and algorithms. FlowerML is used as the federated learning infrastructure facilitator for
this work.

Despite the novelty and the myriad of challenges, federated learning adoption is
rising. Besides Google’s keyboard, [Ji et al. 2019] proposes a novel optimized model
aggregation for keyboard suggestion that considers each client contribution to the global
model and weighs them instead of simply averaging. Federated learning is also key to
fully utilize machine learning capabilities in scenarios where the data cannot be shared
due to sensitivity such as for the health industry [Rieke et al. 2020].

Google, along researchers from many universities, at the workshop on feder-
ated learning and analytics, states that federated learning is inherently interdisciplinary
[Kairouz et al. 2021], encompassing techniques and methods from other fields such as
cryptography, security, differential privacy, fairness, compressed sensing, systems, infor-
mation theory, and more, requiring a collaborative effort in order to further advance the
subject. For this work, we are notably interested in the intersection that federated learning
has with edge computing.

3. Solution

Figure 1 shows the full solution diagram in a scenario running with ten different clients.
We can see the underlying infrastructure, i.e., the server and the VMs, and on top of that
the docker containers running each application: the server, the client, and the observer.
Further subsections will further expand on each part of this diagram. First, the underlying
infrastructure where the solution is running is presented. Then, the solution architecture
and its components are presented. Finally, the data that will be used for the experiments
is covered.

3.1. Infrastructure

To achieve the desired infrastructure, multiple machines are required. For this work, we
are interested in both how the centralized server and how the distributed clients function.

The centralized server, in an ideal federated learning scenario, runs on a traditional
cloud; a powerful computer capable of more complex operations. To achieve this, a VM
main runs exclusively the server and observer applications and is twice as powerful as the
VMs running the clients, having 4GB RAM.
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Figure 1. High-level diagram of the implemented solution when running with ten
clients

For the clients, as we are simulating an edge environment, we will utilize VMs
with limited power which run more than one client at once. We will call them work-
ers; machines with 2GB RAM that will run from zero to four federated clients at once
depending on the experiment.

3.2. Architecture

The solution has three architectural components. These are the server, the client, and
the observer services, which are all containerized services that can run in any underly-
ing infrastructure. Each client trains a local model and uploads this model to the server
which averages and returns the updated parameters. Meanwhile, the observer retrieves
and persists to a volume metrics of every running container besides itself.

Figure 2 shows the high-level architecture of the solution, highlighting each of
the aforementioned architectural components and their dependencies. The microservices
with their respective applications and dependencies are individually defined and deployed
together in a Docker Swarm using a docker-compose file. To the right in the figure, each
dependency for the Docker containers is explicit.

The server is a containerized Python application with the FlowerML server frame-
work as dependency. The server is responsible for receiving the models being trained by
the clients, averaging the received parameters, then updating the clients’ models with the
averaged parameters. The average is done by the server using Federated Average — Fe-
dAvg —, which is a standard federated learning averaging method, also used by Google
Keyboard, which simply averages the parameters received by the clients without attribut-
ing weights. The server connects to the clients through a gRPC connection and performs
a pre-defined number of averaging rounds.

The client is a containerized Python application with the FlowerML client frame-
work, Pytorch!, and the data that will be used as dependencies. The client is responsible
for training a local model with local data in a convolution neural network, then upload-
ing the model to a server which in turn returns updated values for the sent parameters.

! An open source machine learning framework: https://pytorch.org/ (Accessed April 21st, 2022)
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Figure 2. Solution architecture with the services and their dependencies

The client connects to the server through a gRPC connection and performs a pre-defined
number of epochs, which is the number of times that the data set passes through the neu-
ral network. When multiple clients are running, an individual client is oblivious to the
existence of the other clients — it can only communicate with the server.

The observer is a containerized JavaScript application with axios? as dependency.
The observer is responsible for logging information about the other containers — namely
the server and clients. The observer is the only container which does not stop unless
when forced to do so; it keeps continuously retrieving data of every other container in
the Swarm and persisting the data to the Docker volume when these other containers are
stopped, allowing for multiple runs of the same experiment without having to worry about
reboots. The observer has a volume which is mapped directly to a folder in the main VM.
In practice, every data that is persisted to an observer container is also persisted to the
host VM.

To collect containers stats, the observer leverages the Docker stats API?, with the
server accuracy being a separate case. As the accuracy is a metric created by the server
application, to retrieve the accuracy the observer looks at the container logs API instead
of using the stats API. Every request is done via HTTP requests do the Docker APIs,
being completely decoupled from the other services logic. The stats retrieved by the
Docker API include, but are not limited to, network information such as bytes received
and transmitted, and memory and CPU usage information. The full code for the observer
can be found in the observability module in the Github repository*.

ZPromise based HTTP client for the browser and node.js: https://axios-http.com/ (Accessed April 18th,
2022)

3https://docs.docker.com/engine/api/v1.21/ (accessed February 22nd, 2022)

“https://github.com/remde/federated-learning/tree/main/observability



3.3. Data

The dataset used for the experiments is the CIFAR dataset [Krizhevsky et al. 2009]. The
CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images.

The original dataset is divided into five training batches and one test batch, each
with 10000 images. The test batch contains exactly 1000 randomly-selected images from
each class. The training batches contain the remaining images in random order, but some
training batches may contain more images from one class than another. Between them,
the training batches contain exactly 5000 images from each class.

In order to properly divide this data between multiple clients, the five original data
batches have been divided into 500. This enables a higher level of granularity for testing
federated learning scenarios, as we are able to precisely state a percentage of data overlap
between clients. Additionally, for scenarios of more than five clients, the original five
batches wouldn’t be sufficient for having every client with a different dataset.

4. Experiments
4.1. Layout

Each experiment has been ran at least two times, with some being ran for up to sixteen
times. The results have been averaged to try to minimize any randomness. Every experi-
ment utilizes homogeneous client configurations, which means that every client involved
in a given experiment is exactly the same, except for the data that it contains and the host
in which it runs. Since every worker VM has the same specification, we can assume that
only the data is different between clients for any given experiment.

The data distribution has been separated into color codes: green and red. Both
green and red will have available the 500 batches mentioned in the previous section.
What differs between them is the amount of data each client will have. Green clients
have 50 batches, which means that for the experiment with 10 clients, every batch will
be used without any overlap. Red clients have 100 batches, so there will be data overlap
between clients, with 50% of the data being replicated for the 10 clients participating in
the experiment.

The number of epochs of the client is how many times the whole dataset is passed
in the CNN. Four different configurations will be tested: 1, 5, 10, and 25 epochs. Ad-
ditionally, each number of epochs configuration will have a matching number of server
rounds. Respectively, the maximum number of rounds is 100, 35, 20, and 10. This match-
ing is mainly to guarantee that every experiment converges, but also that the experiments
do not run for over one hour due to time constraints.

There are two different data distributions, five number of clients possibilities, and
four layouts for number of rounds and epochs. In total, 40 different experiments layouts
have been ran, with 270 total ran experiments as most layouts were executed multiple
times, generating over 1.25GB of plain text files containing observability logs.

4.2. System Accuracy

The first question to be answered regarding server is if data replication impacts the accu-
racy of the system. To answer this, a plot of accuracy through time has been done for both



red and green data distributions with ten clients. Green will have the 500 batches with 50
unique batches per client, totaling the 500; and red, while having the same 500 batches
available, will have 100 batches per client, with 50% of them being overlap data.
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Figure 3. Average accuracy with ten clients through time

Figure 3 shows the results of the proposed experiment. The X axis indicates the
time in seconds, while the Y axis indicates the accuracy. There is a red line, which
represents the averages for the red experiments with ten clients; and a green line which
represents the averages for the green experiments with ten clients. Even with twice the
number of batches, there wasn’t significant difference for the red experiments, not even
in experiment time. The curves are essentially the same, indicating that what matters to
the total accuracy is the unique data spread among clients.

Another experiment done to understand impact in accuracy is according to client
epochs and server rounds. To accomplish this, using exclusively experiments with ten
clients, red and green were averaged and split into four categories, one for each client
epoch and server round configuration. Figure 4 shows the results of the proposed experi-
ment. The X axis indicates the time in seconds, while the Y axis indicates the accuracy.

First thing that can be noted is that client epoch per client and server rounds are
not equal; at least not in a one-to-one relation. We cannot simplify the rounds as a multi-
plication of client epochs and server rounds. If they had the same effect on accuracy and
experiment time, the plots would indicate the green line as having the same result as the
blue one in half the time, for instance.

To achieve the maximum accuracy, and disregarding other aspects that may come
with this decision, if choosing between client epochs and server rounds, one should in-
crease server rounds as it is the more effective option.
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4.3. Transmitted Data

The first analysis for network stats will be done by understanding how the server transmits
data, i.e., packets and bytes, and if it is possible to understand a trend while changing
number of clients, epochs, and amount of data in the system.

Figure 5 shows a scatter plot for the many different server layouts that were run.
The X axis indicates the total amount of bytes transmitted, while the Y axis indicates the
total amount of packets transmitted. This plot, while containing a lot of information, can
be broken down and analyzed. Three different aspects can be inferred that contribute to
higher data transmission:

1. The more clients involved in the experiment, the more total data is transmitted. To
an experiment with the same layout for data distribution, client epochs and server
rounds, there will be a linear proportion relation between the number of clients
involved in the experiment and the total amount of transmitted data. This happens
because, with more clients involved, the server has more clients to update param-
eters after having them averaged, requiring a higher amount of network usage.

2. The higher the total amount of data involved in the system, the higher is the to-
tal transmitted data by the server. This can be seen because red experiments are
transmitting more data than their counterpart green experiments. Having this dif-
ference in the experiment with ten different clients as well means that every data
matters for the increase in transmitted data, not only unique data as previously
seen in the accuracy results. This may happen because the amount of parameters
to update for clients with models that were built with more data are larger than
similar ones built with less data.
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Figure 5. Total amount of bytes and packets transmitted by the server application

3. A higher amount of server rounds accounts to a higher amount of data transmitted
by the server. The impact client epochs may have for server transmission data
will be mostly indirectly related, as the client epochs will affect the local model,
which may affect the server data that is transmitted. Server rounds, however, is
the moment the server updates the parameters in the clients, so there is a greater
impact in the total amount of transmitted data.

4.4. Received Data

Fig 6 shows a scatter plot for the many different server layouts that were run. The X
axis indicates the total amount of bytes transmitted, while the Y axis indicates the total
amount of packets transmitted. Received data follows a similar pattern that transmitted
does. Data received scales linearly with the number of clients involved in the experiment,
as the more clients, the more parameters the server receives. Similarly, the more server
rounds in the experiment, the more are the times where the server receives the data from
the clients in order to average the data and update the clients.

The only difference from the data transmitted is that the amount of data in the
clients has no effect in the bytes received by the server, only slightly in the packets re-
ceived. This can be seen by noticing that, for each red marker, there is a green one right
next to it with the exact same configuration. This discrepancy in packets received may be
related to how the clients batch their data to send to the server, although it is curious as to
why there is no effect in received data, only when transmitting afterwards.

4.5. CPU and Memory

To better understand CPU and memory usage behavior on the client side, the chosen
experiment is the red data distribution with ten clients, 25 client epochs and 10 server
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Figure 6. Average total amount of bytes and packets received by the server ap-
plications

rounds. Figure 7 shows the results of the proposed experiment. The X axis indicates the
time in seconds, while the Y axis indicates average resource usage in percentage.

The CPU usage varies from 10% to 30%, with some spikes going up to 50%.
These spikes might have been caused by some external factor such as the server being
overloaded, or some other outlier being accounted for in the averages. However, there
is a tendency of periods in the CPU usage that lasts for approximately 1000s that the
usage is increased, then it drops to 10%, then repeat. There are ten of these periods in the
experiment, which is the number of server rounds. When the CPU is 30%, the client is
training the local model; when it is 10%, it is sending or receiving data from the server.
The memory, on the other hand, demonstrates a flat usage throughout the experiment,
being close to 10% from start to finish.

Figure 8 shows a scatter plot with the CPU usage for every experiment. The X
axis indicates the total time in seconds that the experiment took, while the Y axis indicates
average CPU used in percentage throughout the experiment.

The plot indicates a correlation between clients involved in the experiment, CPU
usage and experiment time. Experiments with fewer clients are able to utilize more CPU
power, allowing the experiment to finish faster. This can be seen, for example, looking
at the cluster in the top left corner, all of them being experiments with two clients. The
faster to finish, and using nearly 100% CPU. From there, around the 50% mark is the ex-
periments with four clients. Bottom right shows mainly the experiments with ten clients,
taking longer to finish and using less CPU. This makes clear the relationship between
CPU usage and time to finish the experiment.
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The tendency appears to be logarithmic curve: if there was an experiment with
only one client, it would use 200% of the CPU and finish in half the time. Likewise, if
there was an experiment with eleven clients, it wouldn’t be that much different from the
experiment with ten.

Figure 9 shows a scatter plot with the memory usage for every experiment. The X
axis indicates the total time in seconds that the experiment took, while the Y axis indicates
average memory used in percentage throughout the experiment. For memory, there is a
clear difference between red and green experiments. As the red clients carry more data,
they require more memory to perform, with a difference of up to 10% to their green
counterparts.

5. Conclusion and Future Work

This work achieves the intended proposal by laying the foundation for federated learn-
ing experiments and further understanding how the system scales when adding more
clients in regards to computing resources, and how this affects the overall system ac-
curacy. The findings can be useful to further improve federated learning technologies,
using the knowledge on the application behavior to build, for instance, an edge-cloud or-
chestrator specifically for federated learning use cases. Moreover, it helps the design of
federated learning systems that may scale to multiple clients.

The main takeaway point is that the system allows for horizontal scaling by adding
more client nodes in order to utilize more unique data and achieve higher accuracy num-
bers. By adding more nodes, however, the load in the server application will keep scaling
linearly, to the point where it may become the bottleneck for the system. Server rounds,
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Figure 8. Average CPU used by clients according to total experiment time

while previously mentioned to be more effective to increase accuracy, not only will even
further increase the server load as the server will have to average and update parameters
more frequently, but it will also make so that the clients will have to send their data more
frequently as well. The latter can be an issue especially for edge devices with limited
connectivity, because it cannot be guaranteed continuous access internet access in order
to match the frequency the server will expect.

All of the above indicate that, in order to have good federated learning use cases,
first a good strategy to train the local client model is required. For scenarios with a
huge amount of clients, placing some of the load on the clients and improving their local
model training allows the clients to make fewer connections, even if it may not be optimal
considering only the accuracy as previously analyzed. This also alleviates the load on the
server that having these many clients involved in the system will cause.

This trade-off, however, has to be considered on a case by case basis. If the clients
are guaranteed to always have good internet connectivity, for instance, and the cost of
maintaining a server that is powerful enough to scale as the number of clients increase is
not an issue, the load can be better placed in the server, allowing the clients to train less
rounds themselves. This option may also make sense to federated learning scenario with
fewer number of clients, e.g., the clients being a few different sensors in a farm.

This work also opens up opportunities to further experiment with federated learn-
ing scenarios. All of the code is publicly available and has been developed with extensi-
bility in mind, with well defined methods while prioritizing clean code, modularity, and
documentation as much as possible. The observability and plotting modules have been
thoroughly developed with the possibility of further advancement in mind.
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Figure 9. Average memory used by clients according to total experiment time

Regarding limited connectivity scenarios, one path would be to see how the sys-
tem would behave for clients with slow internet connection, and that may lose internet
connection between training. Fault tolerance, especially in the server, is an important as-
pect, since as it is right now the server application is a single point of failure in the system,
and if one of the clients fail the experiment stops until the connection is retrieved. Re-
garding client configuration, heterogeneous clients and superior models with real world
datasets may also lead to further discoveries.
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