Machine Learning for Detection of Distributed
Denial-of-Service Attacks from Queries Executed in DBMS

Danilo A. M. Chagas', Geraldo P. Rocha Filho?, Rodolfo I. Meneguette®
Rodrigo Bonacin, Vinicius P. Gongalves'

!'Universidade de Brasilia (UnB) — Brasilia — DF — Brazil
2Universidade Estadual do Sudoeste da Bahia (UESB) — Vitéria da Conquista — BA — Brazil
3Universidade de Sdo Paulo (USP) — Sdo Carlos — SP — Brazil
4CTI Renato Archer and Unifaccamp — Campinas — SP — Brazil
danilo.chagas@aluno.unb.br, geraldo.rochal@uesb.edu.br, meneguette@icmc.usp.br

rodrigo.bonacin@cti.gov.br, vpgvinicius@unb.br

Abstract. Denial-of-Service (DoS) attacks have been extensively studied in the
literature, especially in their most dangerous form, the Distributed Denial-of-
Service (DDoS). Database, a critical infrastructure for services, has mecha-
nisms for recording information (logs) of SQL queries and sessions. Although
they are vulnerable to DDoS, they are not entirely covered by commercial tools
or research on such a detection. Machine Learning (ML) techniques are highly
effective in identifying patterns in data such as database SQL logs. Thus, this
work proposes the application of ML to detect DDoS attacks on a database from
the logs of queries executed on it. As a result, the classification obtained an F1-
score of 94.44%, which indicates the effectiveness of the proposed approach.

1. Introduction

Denial-of-Service (DoS) attacks intend to exhaust the resources of the infrastructure of a
computational service, making it unavailable to legitimate users [Brooks et al. 2021]. A
consummated DoS attack violates the availability pillar of the organization’s Information
Security [Haider et al. 2020]. The attack on GitHub in 2018 illustrates a massive DoS
in its distributed form, Distributed Denial-of-Service (DDoS), demonstrating its potential
damage. This attack had a 1.35 Tbps of volume, making it the most significant DDoS
attack ever seen then [Chadd 2018, Haider et al. 2020].

DoS attacks can be targeted at protocols from lower layers of the Open Systems
Interconnect (OSI) and TCP/IP models, such as network and transport layers, up to the
highest (application) layer. Attacks on the network and transport layers - layers 3 and 4 of
both models - are more common and, due to this, most frequently investigated. Consider-
ing application layer attacks, the most frequent ones — and equally studied — are variants
of HTTP protocol attacks [Tripathi and Hubballi 2021, Vedula et al. 2021].

The most common attacks on Database Management Systems (DBMSs) are SQL
Injection (SQLIA — SQL Injection Attack) [Hashem et al. 2021]. SQLIA is intended for
unauthorized access to the database, recovery of sensitive data, or the unavailability of
such services [Alwan and Younis 2017, Varshney and Ujjwal 2019, Medeiros et al. 2019,
Aliero et al. 2020].

Machine Learning (ML) is a field of artificial intelligence that allows computers
to learn from data without being explicitly programmed to do so. ML has been used for
solving problems that cannot be resolved easily by traditional approaches, or algorithms
still need to be developed to solve them [Géron 2017]. As non-exhaustive examples of its
use, we have speech and image recognition, classification of unwanted messages (spam),
product recommendation systems, and pricing assets such as real estate or stocks. Another
area that hugely benefits from ML is detecting and preventing cyber-attacks, in which both
DoS and DDoS are found [Gormez et al. 2020, Kaur et al. 2019, Berman et al. 2019].

ML can rely on data collected from various parties of an infrastruc-
ture [Souza et al. 2021]. The models are first trained on this collected data
[Cavalcante et al. 2022]. Based on this trained model, it is possible to identify patterns
(or mathematical relations) representing information. For example, DDoS attacks tend
to have the same (or very close) pattern depending on the data analyzed. However, the
efficiency of an ML algorithm relies heavily on how well it can represent the input data.
Low-quality training data leads to imperfect representations and, consequently, lower per-
formance of ML techniques [Pouyanfar et al. 2018].

The literature has given greater focus to attacks related to communica-
tion protocols, using analysis of packets captured in a network [Akgun et al. 2022,
Aliero et al. 2020, Sofi et al. 2017, Mittal et al. 2022]. However, attacks directed at
DBMS may not be detected through such examinations since queries are forwarded to
it encapsulated in legitimately formed packets. This way, apparently legitimate queries —
which present normal behavior in communication protocols — can be executed solely to
exhaust the DBMS resources [Gurina and Eliseev 2019, Lima Filho et al. 2019].

Relational DBMSs typically record every session opened and every query per-
formed in log tables. These tables have valuable data about the number of query execu-
tions, the number of records returned, memory consumption, usage time, processor wait-
ing time, and the sessions opened [Togatorop et al. 2022]. Their information includes the
SQL command executed, query performance parameters, the user who ran it, and the ses-
sion’s state. Thus, the DBMS records quantitative parameters regardless of their nature,
whether they are legitimate queries and sessions or with malicious purposes — albeit, in
this case, having a coherent syntax.

Therefore, this work aims to use ML to detect DDoS attacks on databases. Our ap-
proach uses DBMS log tables with all session data for training supervised ML algorithms,
which are used to classify them in terms of their legitimacy regarding service availability.
The queries themselves are not analyzed in this work — there is no need for that since all
the necessary information can be extracted from the sessions logged.

It should be noted that this classification uses information about session states
generated whenever a SQL query is executed in the DBMS. In this work, we carry out a
study with data from legitimate sessions and attacks on an Oracle DBMS of a Brazilian
public institution of the judiciary system. Our work focuses on determining if it is possible
to detect Denial-of-Service attacks (including DDoS) on DBMS from the data collected
from the DBMS internal logs. We add that it is outside the scope of this work to deal
with their prevention. Three ML techniques were investigated. XGBoost presented the
best results, with accurate detection of DDoS attacks directed to databases, without False

Positives and with a low rate of False Negatives, reaching an F1-score of 94.44% for our
test dataset.

The remainder of this paper is organized as follows: Section 2 presents recent
works on detecting database attacks; Section 3 presents our approach; Sections 4 and 5
present the results and discussion, respectively; Section 6 wraps up the findings and points
out further research.

2. Related Work

DoS is a harmful threat to any organization, particularly in its distributed variant (DDoS).
Many studies on its detection have been conducted, most addressing services communi-
cations issues.

Alkasassbeh et al. (2016) used Multilayer Perceptron (MLP), Random Forest,
and Naive Bayes ML techniques to detect DDoS in the application and network layers.
They generated a dataset in Network Simulator 2 (NS2) since they believed the available
datasets would not allow realistic and practical results in detecting DDoS. This dataset
included HTTP flood and SQL Injection DDoS (SIDDoS), among other attacks from the
network layer. The results show high accuracy for all investigated attacks in their study.
However, they also show lower precision for SIDDoS.

Lima Filho et al. (2019) analyzed sneaky, low-volume DDoS in the application
layer. The authors state that security teams often do not even know these attacks are
happening because standard tools cannot detect them. They emphasize that these attacks
consume less bandwidth, exploit application layer protocols, respect other lower-level
protocols, and exhaust the victim’s resources. They also explained that ML offers high
flexibility in the classification process, which improves malicious traffic detection rates.
The paper presents a tool called Smart Detection. They used available datasets to detect
volumetric attacks on transport and application layers and stealth attacks on the HTTP
protocol (application layer). The Random Forest algorithm presented the best results for
their dataset.

Hashem et al. (2021) propose a mechanism to simultaneously detect DoS and
SQLIA. It uses a publicly available dataset called NSL-KDD that contains DDoS attack
records and is based on packet capture. The proposed system has two parts: the first is
responsible for detecting DDoS in the network, transport, and application layers, and the
second is responsible for detecting SQLIA. Their work uses tokenization to train an ML
model for query patterns to detect SQLIA. The system then checks every query executed
and classifies them into a suspicious pattern or not.

Sofi et al. (2017) analyze modern DDoS attacks, such as HTTP flood and SIDDoS.
Their work explains that detecting DDoS is difficult since illegitimate packets can be
indistinguishable from legitimate ones. They resorted to a new dataset containing modern
DDoS types to carry out the work since they found out that there is no dataset available
that includes the studied attacks. It is worth noting that this new dataset was collected
from network traffic (packet capture). The algorithms Naive Bayes, Random Forest, and
MLP were used, with the latter presenting the best overall performance.

Medeiros et al. (2019) noticed that the DBMS is an interesting place to add protec-
tion against DDoS because DBMS has unequivocal knowledge about clauses, predicates,

Table 1. Related works characteristics

Reference DBMS DDoS | Analysis at the | Maintains
Detection DBMS Level DBMS Archi-
tecture

Alkasassbeh et al. 2016]
Hashem et al. 2021]
Sofi et al. 2017]
Medeiros et al. 2019]
Our work

_————

ANENENENEN
N X X X
AN NENEN

and expressions in a SQL query. The work highlights that no mechanism outside the
DBMS would have such an awareness. They proposed a tool called SEPTIC, which deals
with two categories of attacks on databases: SQL Injection and storage injection. It was
implemented by a module inside the DBMS that checks every query executed for attacks.
The tool has the disadvantage of altering the DBMS architecture. However, it presents
low rates of false negatives and false positives.

As presented above, we identified that most works rely on analyzing and detect-
ing DDoS from packet captures. Some works make assumptions about HTTP packets,
functioning similarly to a Web Application Firewall (WAF). Only one work dealt directly
with catching such an attack from inside the DBMS. Hence, this points out the need to
explore the matter further.

Thus, to the best of our knowledge, this is a novel study because it uses a different
approach to the problem of identifying DDoS in databases. Instead of analyzing such an
attack using packet captures, we propose to verify the logs of the queries executed in a
database. This traffic was deemed legitimate by the network-level controls, thus bypassing
them, and making their way to the intended destination but causing a Denial-of-Service to
the DBMS. Table 1 presents key characteristics of the related works as well as this work.

3. Proposed Approach and Study

Firstly, this section presents the adopted ML methodology used in our approach to de-
tecting DDoS attacks on a DBMS (subsection 3.1), which implements an analysis of the
sessions created in the DBMS whenever a query is executed. Subsections 3.2 to 3.7
present the application of our approach in a study with an Oracle DBMS.

3.1. Overview of the Approach

The anatomy of a DoS/DDoS attack on a DBMS is illustrated in Figure 1. An organi-
zation can provide its service via publicly available software accessed by HTTP/HTTPS.
Users utilize the interface provided and send HTTP/HTTPS requests to the software’s
backend, that then forms queries and sends them to its database. The DBMS executes the
action, registers the query and its parameters in its internal logs, and responds with the
data needed to the backend. Under normal usage (identified by the number “1”), regular
users (presented by the letter “A”) make an access and receive the desired response. In
this situation, the whole infrastructure exhibits acceptable loads. However, in an attack
scenario (identified by the number “2”’), malicious users (letter “B”) send a significant

(»
® ..
Vil

s\;\\\ 7\ . f 2\
: ‘é \ ————————————) G >
. — N < P DBMS
v . T s
N

Collection of Internal
/ Logs

DoS/DDoS on DBMS

N
/ v (I
/ u : Detection of }

' \

@..

Figure 1. Anatomy of a DoS/DDoS attack on a DBMS

number of requests from one (DoS) or many (DDoS) origins [Brooks et al. 2021]. These
requests intend to cause strain on the DBMS infrastructure. It is noticeable, though, that
the application server (or HTTP/HTTPS server) is possibly not affected by these requests
in terms of load. In this case, such an attack will be a low-rate, non-volumetric attack in
which the traffic resembles a legitimate one [Giimiisbas et al. 2020, Vedula et al. 2021].

As a consequence of the scenario described, most of the processing required by the
malicious users is executed at the DBMS. As a result, the DBMS infrastructure becomes
saturated and, later, cannot cope with further requests. When such a situation happens, all
subsequent users do not receive a response from the DBMS, although the HTTP/HTTPS
portion of the software’s infrastructure is still responsive.

We chose to analyze the DMBS internal logs because of a few factors. Despite
being possible to detect such an attack from other components in the infrastructure, the
DBMS logs can be richer in terms of information likely to obtain in such an analysis.
They contain features that register the performance of the operations executed, as well as
the resource consumption of the server. These parameters store information known solely
inside the DBMS since they are the product of the queries’ executions [Oracle 2023]. For
this reason, these pieces of data are not present in packets like HTTP/HTTPS requests or
responses, nor on database requests initiated at the application server. Thus, we under-
stand that our work brings a complementary approach to detect DDoS attacks on DBMSs,
bringing an additional security layer to the infrastructure.

This work uses widely disseminated methods in ML and data mining. Yet, they
were instantiated and adapted for the context in focus, composing a five stages approach
(Figure 2). The first relates to collecting data from the DBMS, which consists of logs
of sessions created in the database every time it executes a query. These logs comprise
features that identify each session, including the user that runs it, time spent by the pro-
cessor, user identification, IP address, wait time, and others. These pieces of information
represent the performance parameters of queries the DBMS runs, making it a fingerprint
of each query.

The second stage is to label the records of the dataset based on an actual DDoS
attack to a production DBMS, in which the attack agents were identified using various

tools.

The third stage consists of feature extraction and feature engineering, in which we
excluded unnecessary features and extracted new characteristics from information present
in the dataset. The codification of categorical variables is performed during this stage,
alongside the creation of new features.

The fourth stage is to train the model to detect attacks using a cross-validation
technique. Several ML techniques can be evaluated in this stage. We evaluated three
techniques in the study presented in this paper: Logistic Regression, Random Forest, and
XGBoost. These techniques were chosen for this study because they showed promising
results in the literature and presented acceptable computational costs.

The fifth stage is the application of the trained model to new data. This strategy
was preferred, in this study, over the training-test split because the training dataset was
relatively small. Considering that our work utilized cross-validation with excellent results
in the training phase, this approach to new data would be more realistic than splitting a
small dataset. Other testing strategies can be used depending on the amount and charac-
teristics of the dataset.

The following subsections, in sequence, present details of how each stage men-
tioned above was carried out in our study.

DBMS

Logs™

Stage 1 Stage 2

Logs

L Data Collection
(g and test
datasets)

Data L

\ 4

ST Data Preprocessing j—’

ML Model
Testing
(test dataset)

Training
(training dataset)

[
|
| ML Model
|
|
|

Figure 2. Overview of the proposed stages for detecting DoS/DDoS attacks on a
DBMS

3.2. Collecting the Data from an Oracle DBMS

The data used in this project originates from the users’ sessions table in an Oracle DBMS.
A session in a database represents the state of users’ login to a database. It accompanies
the user life cycle in the database, from entering in execution until its disconnection from
the application. It holds the user’s identification (username, IP address, port, logon time)

and some performance markers — such as the state of the connection, time spent waiting
or executing, the memory that can be used, concurrency event messages [Oracle 2023].

The initial data was collected at the time of an actual attack on a production
database of a Brazilian federal institution of the judiciary system - its name will not be
mentioned due to confidentiality agreements. This database holds information for a vastly
utilized, in-house developed software in the attacked organization. It is available inside
and outside the organization, hence being susceptible to internal and external attacks.
Around 100 agents were identified as performing the attack, all coming from different
locations (i.e., IP addresses).

The data collection yielded almost 7,000 records generated in a single day. We
utilized this first batch of gathered data as the training dataset. For the test dataset, we
stored data from the same table on the subsequent day of the start of the attack.

As in a typical system scenario in a real-world situation, only a small fraction of
its activity is malicious. Therefore, the data used as the training set obtained was highly
imbalanced, with only 0.227% of the records labeled as attack records. In order to bring
consistent results to the ML models, an oversampling strategy was used for the training
dataset, balancing the row count to a 57/43 ratio — this ratio was chosen discretionarily.

3.3. Labeling DDoS Attack Data

The records in the datasets were labeled based on an actual DDoS attack that happened
in May 2022. The malicious activity occurred in a well-known Brazilian federal depart-
ment, potentially causing damage to its image and its function. An incident response
team comprised of developers, application server administrators, database administrators,
network administrators, and cybersecurity specialists performed the identification of the
attack. This malicious activity was not detected in the TCP/IP protocols’ lower layers
or cybersecurity appliances, such as IDS/IPS (Intrusion Detection Systems/Intrusion Pre-
vention Systems) or WAF. The suspicion remained because the DBMS server presented
poor performance due to high loads spread throughout its components, such as processors
and disks.

The investigation took place using tools such as DBMS performance software,
DBMS sessions’ table/view, and NMS (Network Monitoring System), determining which
database users were utilized by the attacker. To do so, the team analyzed each user with a
session opened at that moment, narrowing it down to the users performing the attack. The
sessions’ logs belonging to those users were then manually labeled as a DDoS attack; all
other records were marked as non-attack activity. Therefore, it represents a single-label
classification problem.

3.4. Feature Selection, Feature Engineering, and Missing Data of DBMS logs

The data obtained comprises 99 features, including 48 literal features, three (3) date and
time features, and 48 numeric features. Some literal features include hash or literal val-
ues that represent redundant information, making them dispensable. Other literal features
included helpful information, such as the IP address, and the name of the user who per-
formed the operations. We then encoded literals and date and time into numeric features
to be used by ML techniques. The rest of the literal features were excluded since they are
not directly or indirectly linked to possible attack activities. This analysis was based on

consultation of the sessions’ table documentation provided by the DMBS vendor referring
to the meaning of each feature.

Regarding missing data analysis, we found some features with a missing
rate higher than 70% - these are the ones likely to reduce the ML performance
[Yu et al. 2022]. In these cases, we discarded the features to avoid this loss in the training
metrics. We also analyzed rows with little data — less than 70% of the row populated — and
discarded them as a whole [Yu et al. 2022]. This threshold takes care of dropping only a
tiny portion of the data, which, in this case, represented less than 0.5% of the row count.
At the end of the feature selection process, our dataset required no data imputation.

Based on the documentation, we identified variables with categorical values and
performed their codification. Categorical attributes hold nominal values, which makes
them qualitative variables or representations of categories. However, the selected ML
algorithms do not deal with such features, making it necessary to transform them into
numeric attributes - this operation is called codification. The codification chosen was
the One-Hot Encoding technique, which transforms each feature category into one new
column, giving it the value “0” if it is not present in that particular row and “1” otherwise
[Kernbach and Staartjes 2022, Yu et al. 2022]. This codification suits the categories in
our dataset since they do not represent any order.

We analyzed the possible values for each category to avoid incurring the so-called
curse of dimensionality. This unwanted situation is presented when the number of fea-
tures (dimensions) grows to high numbers. It makes the model more complex and brings
drawbacks, such as high memory consumption and data sparsity, making it challenging to
analyze the dataset. One solution, in these cases, could be increasing the training dataset
size to reach a sufficient density of training instances. However, this was not feasible in
our case since there was no additional data to be collected. Another possible method is
to perform dimensionality reduction, which consists in condensing a high-dimensional
space into a low-dimensional one [Thudumu et al. 2020]. This transformation retains im-
portant properties of the original dimensions, keeping most of the meaning of the data.
As described above, we utilized feature selection to keep a low number of features. Thus,
it was not necessary to use a dimensionality reduction method.

3.5. Balancing the DBMS logs

Imbalanced data can affect ML algorithms as the models know little about one of the
classes. Models trained using imbalanced datasets tend to make a good prediction of the
most common class but an inaccurate prediction of the other. While, in some cases, this
may result in good predictive metrics, it is generally not desirable in real problems once
it is almost useless to predict the classes with fewer instances [Kaur et al. 2019].

This situation must be avoided, mainly because this work intends to emphasize a
precise prediction of attacks (that would represent the less numbered class in the dataset).
We treated this problem by applying balancing techniques, most notably the oversam-
pling of the smaller class, which consists in synthetically generating new rows of it. The
other approach we could have used would be undersampling, i.e., reducing the amount
of data of the predominant class to equalize with the smaller one. This choice would
lower the number of rows to a small amount, which is inappropriate for training a super-
vised ML model. For our dataset, we utilized SMOTE (Synthetic Minority Oversampling

Technique) to the oversampling [Kaur et al. 2019].

3.6. Training the Models for Predicting DDoS Attacks

To determine which model was more effective using our data, we performed a 10-fold
cross-validation of the three ML techniques. The dataset is divided into ten parts, nine
being used as the training dataset and the other as a validation dataset. The purpose of
this technique is to avoid overfitting and estimate how well the model will perform with
new data. Figure 3 presents the cross-validation process.

One thing we considered before the utilization of cross-validation is how this pro-
cess should divide our dataset. First, we had to assume that it is a single-label classifi-
cation problem. In this scenario, random data division could end up with partitions with
different statistical distributions for the target class. We applied a stratified split in the
cross-validation process to overcome this problem. This ensures that each split has the
same statistical distribution regarding the target variable. Thus, we end up with a more
precise evaluation of the models [Doan et al. 2022].

[Validation Set

- Training Set

Round 1 Round 2 Round 3 Round 10

1-700

701-1400 1401-2100 6300-7000
Figure 3. Cross-validation process.

3.7. Testing the Effectiveness of Models in Detecting DDoS Attacks

The most common way to test a model’s effectiveness is splitting the dataset
into two or three subsets, including training-test or training-validation-test
[Kernbach and Staartjes 2022]. However, as aforementioned, we collected the test
dataset not in the initial moment, although when the attack was still happening. We
elected to test the models on new data instead of splitting the training dataset for a few
reasons, as described below.

First, we had to consider that our initial dataset needed to be bigger to split without
negatively impacting training. Another considered aspect is that, by collecting a new test
dataset, we avoid any possibility of data leakage. Data leakage occurs when the trained
model has knowledge of the data present in the test dataset [Kernbach and Staartjes 2022].
When such a situation happens, the trained model will probably not perform as well with
production data as with the test dataset.

We also wanted to perceive how practical our proposal was in a real-world situa-
tion. However, to use this approach, it is imperative to determine whether the new data has
the same statistical distribution as the training dataset. We used Adversarial Validation to
this end [Burkov 2020].

Adversarial Validation is a technique applied to investigate if the characteristics
of the test dataset are the same as the training dataset. Identifying any changes in the data

distribution that could make the trained model underperform with new data is crucial.
This technique starts by excluding the target feature and creating a new one representing
whether the data comes from training or test records. Then a classification model makes
predictions and the metric ROC-AUC (Receiver Operating Characteristic - Area Under
the Curve) is evaluated in this technique. A resultant value close to 50% indicates that
both data are indistinguishable and therefore have the same distribution [Burkov 2020].
In our case, we attained a ROC-AUC of 51.31% on an XGBoost model, evidencing that
we can employ our new data as a test dataset.

4. Performance Evaluation

Our work uses the libraries Pandas and Numpy to handle the data and the libraries Scikit-
Learn and XGBoost to execute the ML techniques. The results were evaluated considering
precision, accuracy, recall, ROC-AUC, and F1-score. These measures describe different
aspects of the classifier performance as follows.

Precision indicates the accuracy of positive predictions and is obtained by the

equation:
TP

PTGCiSion = W (1)

Accuracy relates to the rate of the correctly classified instances of both classes,
and the following equation obtains it:
TP+TN

A _ 2
Uy = TP I TN+ FP+ FN 2)

The recall, also called true positive rate (TPR), represents the positive instances
correctly predicted by the model, and it is obtained by the equation:
TP

Recall = m (3)

The Fl-score is a common way of comparing classifiers; it combines precision
and recall into one metric — it is the harmonic mean of precision and recall:
Precision - Recall

Fl- — 9. 4
seore Precision + Recall)

ROC-AUC is another way to compare classifiers, plotting the recall (TPR)
against the false positive rate (FPR) [Carrington et al. 2022, Berman et al. 2019,
Molina et al. 2022]. The FPR relates to the negative instances classified incorrectly as
positive, and it is represented by the equation:

P

FPR=——
R=FpiTn

(&)

In our work, as aforementioned, we initially compared the performance of three
classifiers: Logistic Regressor, Random Forest, and XGBoost — we chose the metrics
mentioned in this section. The results of the training-validation dataset are presented in
Table 2.

Table 2. Performance results for the training-validation dataset

Performance Evaluation - Training Set - % - Average in Cross-Validation
Metric Logistic Regression | Random Forest XGBoost
Accuracy 95.87 99.97 99.89
Precision 91.84 99.92 99.75
Recall 100 100 100
F1-score 95.6 99.96 99.88
ROC-AUC 97.99 100 100

Table 3. Performance results for the test dataset
Performance Evaluation - Test Set - %

Metric Logistic Regression | Random Forest XGBoost
Accuracy 79.04 87.17 95.72
Precision 77.38 100 100
Recall 68.42 77.38 89.47
F1-score 72.63 81.25 94.44
ROC-AUC 88.78 81.4 97.5

5. Results and Discussion

After running the trained models on the test dataset, we obtained the results shown in

Table 3.

Although the best model regarding training-validation results was Random Forest,
on new data, XGBoost was the more effective, as it presents higher values for all metrics
chosen (Table 3). Figure 4 shows the ROC-AUC curve for all three classifiers with the test
dataset. The dashed line in a ROC-AUC graph represents the curve for a purely random
classifier. In a visual analysis, the closer a curve is to the upper left corner of the chart,
the better the classifier will be. This means that this classifier has a high true positive rate
—a low number of false negatives — and a low false positive rate - i.e., a low number of

false positives.

The ROC-AUC values for Logistic Regression and Random Forest classifiers were

True Positive Rate

1.0+

0.9 4

0.8 1

0.7 1

0.6

0.5 1

0.4 4

0.3

0.2 1

0.1+

0.0

ROC Curve Analysis

e --= Logistic Regression, AUC=0.888
f Pid Random Forest, AUC=0.814
k! —— XGBoost, AUC=0.975

00 01 02 03 04 05 06 07 08 09 1.0
False Positive Rate

Figure 4. ROC-AUC for the test dataset.

lower, which means that the XGBoost is the best of the analyzed classifier for the prob-
lem. It is worth noting that both Random Forest and XGBoost classifiers had no False
Positives for the testing dataset. Still, the Random Forest model had a higher rate of False
Negatives, based on its recall and F1-score results — the same analysis applies to the Lo-
gistic Regression classifier. This is far from a desirable situation since the classifier can
miss some valuable information in the event of an attack on the DMBS.

Despite utilizing standard ML classification models as its basis, our work is a
good baseline for future work. Therefore, its most meaningful contribution is the novelty
of using existing internal DBMS mechanisms to increase its security. Our literature re-
view shows that this approach is underexplored in the literature. Our proposal is relevant
for those interested in improving their system security since it has a straightforward im-
plementation and brings an additional layer of protection to database infrastructures. As
a baseline, this study opens the possibility of further research using several approaches,
such as the use of Deep Learning techniques. It also makes it possible to delve into alter-
native needs, such as improving other information security pillars for such a system.

It is essential to mention that we used a real-world test dataset. This shows that
not only is it possible to detect DDoS attacks on a DBMS using its data logs, but also it is
possible to achieve high confidence in the predictions.

6. Conclusion

This work presented a novel alternative for identifying DDoS attacks on DBMSs. Classi-
fying these attacks using a traditional packet analysis concept poses different challenges
and adds protection to other parts of the infrastructure, such as HTTP servers. Instead of
using well-studied approaches based on analyzing packets captured in the network, we
looked into the DBMS log table. The analyzed tables include records of the sessions cre-
ated in the database server and contain information that enabled us to use ML to detect
attacks on databases. As a result, attacks were detected with an accuracy of 95.72%, re-
call of 89.47%, ROC-AUC of 97.5%, and F1-score of 94.44% on our test dataset. This is
evidence that our proposal effectively detected this kind of threat in such a dataset.

As for future work, we plan to expand this research by changing the approach
from a classification standpoint to detecting anomalous behavior in a database using the
same log tables. This anomaly detection will adopt Deep Learning techniques and make
it possible to determine other types of database attacks in addition to DDoS attacks.

References

Akgun, D., Hizal, S., and Cavusoglu, U. (2022). A new ddos attacks intrusion detection
model based on deep learning for cybersecurity. Computers & Security, 118:102748.

Aliero, M. S., Qureshi, K. N., Pasha, M. F., Ghani, I., and Yauri, R. A. (2020). System-
atic review analysis on sqlia detection and prevention approaches. Wireless Personal
Communications, 112(4):2297-2333.

Alkasassbeh, M., Al-Naymat, G., Hassanat, A. B., and Almseidin, M. (2016). Detect-
ing distributed denial of service attacks using data mining techniques. International
Journal of Advanced Computer Science and Applications, 7(1).

Alwan, Z. S. and Younis, M. F. (2017). Detection and prevention of sql injection attack: A
survey. International Journal of Computer Science and Mobile Computing, 6(8):5-17.

Berman, D. S., Buczak, A. L., Chavis, J. S., and Corbett, C. L. (2019). A survey of deep
learning methods for cyber security. Information, 10(4):122.

Brooks, R. R., Yu, L., Oakley, J., Tusing, N., et al. (2021). Distributed denial of service
(ddos): A history. IEEE Annals of the History of Computing.

Burkov, A. (2020). Machine Learning Engineering. Andriy Burkov.

Carrington, A., Manuel, D., Fieguth, P., Ramsay, T., Osmani, V., Wernly, B., Bennett, C.,
Hawken, S., Mclnnes, M., Magwood, O., Sheikh, Y., and Holzinger, A. (2022). Deep
roc analysis and auc as balanced average accuracy for improved classifier selection,

audit and explanation. IEEE transactions on pattern analysis and machine intelligence,
PP.

Cavalcante, I. C., Meneguette, R. 1., Torres, R. H., Mano, L. Y., Gongalves, V. P., Ueyama,
J., Pessin, G., Nze, G. D. A., and Filho, G. P. R. (2022). Federated system for transport
mode detection. Energies, 15(23):9256.

Chadd, A. (2018). Ddos attacks: past, present and future. Network Security, 2018(7):13—
15.

Doan, Q. H., Mai, S.-H., Do, Q. T., and Thai, D.-K. (2022). A cluster-based data splitting
method for small sample and class imbalance problems in impact damage classifica-
tion[formula presented]. Applied Soft Computing, 120.

Géron, A. (2017). Hands-on machine learning with scikit-learn and tensorflow: Concepts.
Tools, and Techniques to build intelligent systems.

Gormez, Y., Aydin, Z., Karademir, R., and Gungor, V. C. (2020). A deep learning ap-
proach with bayesian optimization and ensemble classifiers for detecting denial of ser-
vice attacks. International Journal of Communication Systems, 33(11):e4401.

Gilimiisbas, D., Yildirim, T., Genovese, A., and Scotti, F. (2020). A comprehensive sur-
vey of databases and deep learning methods for cybersecurity and intrusion detection
systems. IEEE Systems Journal, 15(2):1717-1731.

Gurina, A. and Eliseev, V. (2019). Anomaly-based method for detecting multiple classes
of network attacks. Information, 10(3):84.

Haider, S., Akhunzada, A., Mustafa, 1., Patel, T. B., Fernandez, A., Choo, K.-K. R., and
Igbal, J. (2020). A deep cnn ensemble framework for efficient ddos attack detection in
software defined networks. leee Access, 8:53972-53983.

Hashem, I., Islam, M., Haque, S. M., Jabed, Z. I., and Sakib, N. (2021). A proposed
technique for simultaneously detecting ddos and sql injection attacks. International
Journal of Computer Applications, 975:8887.

Kaur, H., Pannu, H. S., and Malhi, A. K. (2019). A systematic review on imbalanced data
challenges in machine learning: Applications and solutions. ACM Computing Surveys
(CSUR), 52(4):1-36.

Kernbach, J. M. and Staartjes, V. E. (2022). Foundations of machine learning-based clin-
ical prediction modeling: Part ii—generalization and overfitting. Machine Learning in
Clinical Neuroscience, pages 15-21.

Lima Filho, F. S. d., Silveira, F. A., de Medeiros Brito Junior, A., Vargas-Solar, G., and
Silveira, L. F. (2019). Smart detection: an online approach for dos/ddos attack detec-
tion using machine learning. Security and Communication Networks, 2019.

Medeiros, 1., Beatriz, M., Neves, N., and Correia, M. (2019). Septic: detecting injec-
tion attacks and vulnerabilities inside the dbms. IEEE Transactions on Reliability,
68(3):1168-1188.

Mittal, M., Kumar, K., and Behal, S. (2022). Deep learning approaches for detecting ddos
attacks: a systematic review. Soft Computing, pages 1-37.

Molina, A., Gongalves, V., Jr., R. S., Giuntini, F.,, Pessin, G., Meneguette, R., and Filho,
G. R. (2022). Weapon: Uma arquitetura para deteccao de anomalias de comportamento

do usuério. In Anais do XI Brazilian Workshop on Social Network Analysis and Mining,
pages 121-132, Porto Alegre, RS, Brasil. SBC.

Oracle (2023). Database reference - v$session. https://docs.oracle.com/en/
database/oracle/oracle-database/19/refrn/V-SESSION.html.
[Online; accessed in 03-11-2023].

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen,
S.-C., and Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques,
and applications. ACM Computing Surveys, 51(5).

Sofi, I., Mahajan, A., and Mansotra, V. (2017). Machine learning techniques used for the
detection and analysis of modern types of ddos attacks. Int. Res. J. Eng. Technol.

Souza, A., Nobre, R., Gongalves, V., and Filho, G. R. (2021). Uma solu¢do em névoa
via objetos inteligentes para lidar com a heterogeneidade dos dados em um ambiente
residencial. In Anais Estendidos do XXXIX Simpdsio Brasileiro de Redes de Computa-
dores e Sistemas Distribuidos, pages 257-264, Porto Alegre, RS, Brasil. SBC.

Thudumu, S., Branch, P, Jin, J., and Singh, J. J. (2020). A comprehensive survey of
anomaly detection techniques for high dimensional big data. Journal of Big Data,
7(1):1-30.

Togatorop, P., Sitorus, H. A. T., Sirait, R. M., and Manurung, T. (2022). Database audit
system design and implementation. Jurnal Mantik, 5(4):2535-2541.

Tripathi, N. and Hubballi, N. (2021). Application layer denial-of-service attacks and
defense mechanisms: a survey. ACM Computing Surveys (CSUR), 54(4):1-33.

Varshney, K. and Ujjwal, R. (2019). Lssqlidp: Literature survey on sql injection detection
and prevention techniques. Journal of Statistics and Management Systems, 22(2):257—
269.

Vedula, V., Lama, P., Boppana, R. V., and Trejo, L. A. (2021). On the detection of low-rate
denial of service attacks at transport and application layers. Electronics, 10(17):2105.

Yu, L., Zhou, R., Chen, R., and Lai, K. K. (2022). Missing data preprocessing in credit
classification: One-hot encoding or imputation? Emerging Markets Finance and
Trade, 58(2):472-482.

