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Abstract. This research paper presents a Virtual Machine Placement algorithm
designed to optimize the service allocation process, which is one of the most sig-
nificant challenges in resource allocation and management. Our solution em-
ploys a ranking strategy based on global resource scarcity, where we consider
all the information contained in datacenter hosts during the allocation process.
We compare our approach with two different literature-based methods regard-
ing task allocation time and the number of allocated resources. To evaluate our
proposal, we consider scenarios in which requisitions arrive at different times
or simultaneously. The first scenario represents a realistic situation where no
knowledge is available regarding task arrival. Meanwhile, the second scenario
represents a dense situation where many tasks arrive together. Our evaluations
show that our solution yields better results in both cases, especially when req-
uisitions arrive simultaneously. Our solution reduced the allocation time by
around 25% on average and achieved better load distribution among hosts.

1. Introduction
Cloud computing [Taleb et al. 2017] is an on-demand Internet-based computing service.
It shares computing resources among the users via the Internet based on the pay-for-use
model. This paradigm offers computing resources (e.g., servers, storage, networks, and
applications) as a service to the user. The cloud organizes the computing resources at one
place called cloud data center and manages these data centers by an organization called
cloud service providers (CSPs) [Rimal et al. 2009]. Each data center contains thousands
of physical machines (PM) and resides in a different geographic point for performance en-
hancement and reliability while connected to other data centers with high-speed telecom-
munication links. Companies share their data centers’ PMs with cloud technology as a
virtualized resource pool, known as Virtual Machines (VMs). Cloud providers can create
multiple VM instances on physical machines to improve resource utilization.

Even though virtualization technology offers a potential platform to improve re-
source utilization, some issues still obstruct the maximum hardware utilization. One of
these issues is the deployment of VMs in a virtualized data center. Having a data cen-
ter with an enormous number of PMs, the primary challenge is mapping each created
VM to the most suitable PM, achieving the maximum resource utilization for each one.



This problem is known as Virtual Machine Placement (VMP) [Usmani and Singh 2016,
Silva Filho et al. 2018, Talebian et al. 2020]. Proposals allow providers to control the us-
age of their resources to reduce the number of unused PMs while meeting specific objec-
tives defined in the Service Level Agreement (SLA).

The placement of VMs over physical hosts plays a critical role in cloud environ-
ments because they determine how resources are allocated to VMs within the infrastruc-
ture. The proper placement of VMs can significantly impact the performance, availability,
and cost-effectiveness of cloud services. When the cloud provider allocates resources to
VMs, one possible objective is to maximize resource utilization by placing VMs over a
minimal set of physical hosts [Masdari et al. 2016]. The importance of virtual machine
placement algorithms in cloud environments lies in their ability to optimize resource uti-
lization, improve performance, ensure high availability, and reduce costs. Given a data
center composed of a set of PMs and a corresponding queue of client requests for VM
instantiation, the VMP problem is determining a PM to instantiate each VM in the queue.
A VMP solution may focus on traffic [Omer et al. 2021], energy [Feng et al. 2021], ap-
plication [Alboaneen et al. 2021], network topology [Sridharan and Domnic 2021], re-
source [Gupta et al. 2018], or a combination of them.

Developing effective algorithms to optimize the placement of virtual machines
is essential for maximizing the benefits of cloud computing. Effective placement can
improve the efficiency, cost-effectiveness, scalability, and quality of service of a cloud
system. Consequently, the importance of solving the Virtual Machine Placement problem
cannot be overstated.

The aim of this paper is to assess how well the Virtual Machine Placement (VMP)
algorithm performs in maximizing the utilization of resources in cloud systems. The
research will examine the VMP algorithm’s capacity to optimize the allocation of virtual
resources in cloud-based environments, reducing the wastage of resources and enhancing
the overall performance of the system. Additionally, the paper will investigate how the
VMP algorithm affects resource utilization.

We propose the Rank-Heuristic Virtual Machine Placement (RHVMP) algorithm
that determines the physical machine to host the received task using a ranking-heuristic
strategy. RHVMP prioritizes scarce resources by globally analyzing them during the
allocation process. In comparison to two techniques presented by [Son et al. 2019], Least
Full First (LFF) and Most Full First (MFF), we analyzed RHVMP’s host’s task allocation
waiting time, the number of tasks, and resources allocated in each host. Our proposal
outperformed both techniques, especially in high-stress scenarios, where there is a burst
of tasks to be managed.

Regarding the evaluation process, we consider two different scenarios: i) Realistic
scenario to evaluate the techniques considering that each task has its arrival time, duration,
and resource requirements similar to the real world (known further as Random Arrival).
ii) Highly dense scenario to reproduce worst-case situations. Thus, we consider that all
tasks have the exact arrival time, i.e., all tasks already arrived when the system started
running (known further as Equal Arrival). Using this configuration, we evaluate how the
techniques deal with a burst of tasks at certain times. Considering these scenarios, we
evaluate the techniques regarding their average task waiting time, percentage of allocated



tasks by hosts, and percentage of used resources by hosts. Through time, our solution
could allocate tasks much faster than the other techniques (on average 25%).

We organize the remaining of the paper as follows. Section 2 reviews existing
algorithms in the literature. Section 3 presents the details of the proposed algorithm. Sec-
tion 4 shows performance evaluation with a detailed description of the performance met-
rics, experimental setup, and simulation results. Section 5 gives the concluding remarks
of the research work.

2. Related Work
There are different approaches to the VMP problem in the literature, including solutions
based on machine learning algorithms and multi-objective optimization.

[Fatima et al. 2018] present an enhanced levy-based particle swarm optimization
algorithm with variable-sized bin packing known as Particle Swarm Optimization Algo-
rithm with Variable Sized Bin Packing PSOLBP for solving the VM-placement problem.
They compared their solution with a simple particle swarm optimization (PSO) and a hy-
brid levy flight and particle swarm optimization (LFPSO) one. The proposed algorithm
efficiently minimized the number of running PMs.

[Duong-Ba et al. 2018] study the problem of optimal VMP and migration to min-
imize resource usage and power consumption in a data center. They also formulate the
optimization problem as joint multiple objective functions and solve it by leveraging a
convex optimization framework. Their proposal is known as Multi-level Join VMP and
Migration (MJPM), and it is based on the relaxed convex optimization framework to ap-
proximate the optimal solution. The theoretical analysis demonstrates the effectiveness
of their proposed algorithms that substantially increase data center efficiency in energy
consumption.

[Jiang and Chen 2018] propose the Self-Adaptive Resource Allocation algorithm
(SARA). It is an online resource allocation algorithm that uses VM consolidation to
achieve energy efficiency and reduce service-level agreement violations of data centers.
It considers the power usage of servers, the number of migrations, and the path length of
migrations in data center networks. The authors used both synthetic and real data traces
to evaluate their proposal. Compared to two state-of-the-art mechanisms, the proposed
algorithm successfully reduces the power consumption, the number, and the path length
of migrations for a dynamic cloud service.

[Qin et al. 2020] show a VMP algorithm based on multi-objective reinforcement
learning known as VMP Algorithm Based on Multi-Objective Reinforcement Learning
(VMPMORL). The main objective is to find a Pareto approximate set to simultaneously
minimize energy consumption and resource wastage. For simplification, authors only
consider CPU and memory resources. Compared with other multi-objective RL algo-
rithms in VMP, VMPMORL uses the concept of the Pareto set and solves the weight
selection problem. The experimental results show that VMPMORL outperforms these
existing methods in most cases. The authors were able to show that VMPMORL is scal-
able for large-size VM requests.

[Chen et al. 2018] implement a correlation-aware VMP scheme. According to
the historical resource utilization data, the authors used Neural Networks and the fac-



tor model concept to forecast the resource utilization trend. Then, they designed three
correlation-aware placement algorithms to enhance resource utilization while meeting the
user-defined service level agreement. To evaluate their proposal, they used synthetic data,
and the results of simulations showed that the efficiency of their VMP scheme outper-
forms the previous work by about 15%-30%.

[Son et al. 2019] propose a framework for simulating Network Function Virtual-
ization (NFV) functionalities in both edge and cloud computing environments. Addition-
ally, the authors show two different techniques for task allocation, namely, Least Full
First (LFF) and Most Full First (MFF). LFF is a technique that searches the data center
to find available physical machines with less allocated resources. The main idea of this
technique is to disperse VMs across the data center since a PM hosting a VM has less
priority than a machine without any hosted VM. MFF is a technique that selects the most
allocated machine with enough capacity to host the VM. The selected physical machine
still has enough resources for the VM, but other VMs, compared to the other candidate
machines, have more resources allocated. The MFF technique makes it possible to have
unused hosts in the data center since it tries to fulfill the hosts before activating the others.

In contrast to the literature, RHVMP uses the concept of resource scarcity to de-
termine which host is more suitable for VM allocation. This ensures that we can obtain a
better allocation solution for tasks by prioritizing resources that are less abundant in the
datacenter. Table 1 summarizes the presented related works and compares them with our
proposal.

Table 1. Related Work Comparison

Work Objectives Approach Resources Dataset

[Son et al. 2019] VMP Heuristic Generic Synthetic

[Fatima et al. 2018] VMP
Particle swarm

with Variable Sized
Bin Packing

Generic Not informed

[Duong-Ba et al. 2018]
Minimize energy
consumption and
resource wastage

Multi-objective optimization Generic Synthetic

[Jiang and Chen 2018]
Energy

efficiency Heuristic Generic
Synthetic
and real
traces

[Qin et al. 2020]
Minimize energy
consumption and
resource wastage

Multi-objective
Reinforcement

Learning

CPU
and RAM Synthetic

[Chen et al. 2018] VMP
Neural Network

model and Heuristic Generic Synthetic

RHVMP
Resource usage
maximization Heuristic

CPU
and RAM Real traces

3. Rank-Heuristic Virtual Machine Placement

This section presents an overview of the problem and its formulation. It also shows the
proposed techniques for the virtual machine placement problem.

3.1. Problem Definition and Formulation

Proper placement of virtual machines can significantly impact the overall performance of
a cloud system. Inefficient VM placement can result in the underutilization of resources,



leading to wastage of energy, increased costs, and reduced system scalability. Therefore,
the Virtual Machine Placement problem is a critical area of research in cloud comput-
ing. Some variables must be considered as the set of hosts, how the tasks arrive in the
datacenter and the type of resources.

We consider a model with N hosts in the datacenter in this work. The tasks are
distributed in a host set to maximize the number of tasks allocated. Tasks can arrive in
the datacenter in two different ways: batches or streams. When they arrive in streams,
the datacenter deals with them as soon as they arrive. In a case where they arrive in
batches, it is necessary to wait for the formation of a batch accumulating the arrived tasks
for a period of time. For a more realistic evaluation, we considered that tasks arrived in
streams. In the real world, when a request arrives, it is expected that it be executed as
soon as possible.

The host dimensions in the VMP problem are related to the type of resources
considered in the process. Some solutions consider only one dimension (i.e., a generic
resource). Meanwhile, others consider multiple dimensions (CPU, memory, disk, band-
width). Considering just one dimension, on the one hand, creates more simple solutions,
but on the other hand, the solutions are not precise since it misses many variables. This
work considers a model with two dimensions (CPU and memory).

The VMP problem is an NP-hard problem [Bobroff et al. 2007]. We have adapted
a version of the bin packing problem in our solution. For our case, we adapted the problem
to a multiple multidimensional 0-1 knapsack problem [Song et al. 2008] to VMP.

Considering:

• H = {h1, h2, h3, ..., hm} the set of available hosts in the datacenter;
• τk is the arrival time of the task k;
• T = {t1, t2, t3, ..., tn} the sequence of tasks, such as if p < q, so τp ≤ τq;
• D = {d1, d2, d3, ..., dg} the set of the dimensions;
• xi,j ∈ {0, 1}, i = {1, 2, 3, ..., n} and j = {1, 2, 3, ...,m}

– xi,j = 1 ⇔ host hj allocates task ti
– xi,k = 0 ∀ k ̸= j

• wi,g is the value of the dimension g for task ti;
• cm,g is the capacity of host m for the dimension g;
• Fm,g(τn) is the free capacity of dimension g in host m in the instant of arrival of
tn

Maximize:
n∑

i=1

m∑
j=1

xi,j

Subjected to:
n∑

i=1

m∑
j=1

g∑
k=1

xi,j × wi,k ≤ cj,k

As presented, the main objective of our solution is to maximize the number of
tasks allocated.



3.2. A Heuristic for the Virtual Machine Placement Problem

We propose the Rank-Heuristic Virtual Machine Placement (RHVMP) algorithm, which
employs a ranking strategy based on global resource scarcity. During the allocation pro-
cess, we consider all the information contained in the datacenter hosts. In our proposal,
each host h has an associated score (S(h)), which is calculated based on the scarcity of
a particular resource. For example, if there is a shortage of memory in the datacenter,
memory will be prioritized over CPU. The score is known beforehand and recalculated
whenever there is a change in the host, such as task allocation, deallocation, or resizing.
Figure 1 summarizes the execution process.

Task(s) 
arrived

Check

executing


tasks Wait for tasks
Sort hosts  by 

 in
descending order

Find a host 
 for task 

YES

NO

Was
allocated?
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queue 

NO
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tasks to 

finish?

Wait for tasks
Sort hosts  by 

 in
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Find a host 
 for task 

Deallocate task 
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Figure 1. Execution flowchart of RHVMP

The score S(h) is calculated following five steps:

1. Considering the knowledge regarding the arrived tasks and the set of hosts, we
need to calculate the weights. For this, we sum each dimension of all tasks and
then we do the same for all hosts;

2. For each dimension, we divide the obtained sum of the tasks by the value obtained
by the hosts. This way, we found the dimension weight. In other words, the scarcer
a resource, the greater its weight;

3. Now, it is necessary to calculate the offer relation of each host dimension. We
divide the free capacity of each dimension of the host by the corresponding values
of the task we want to allocate;

4. Lastly, for each host dimension, we need to calculate the weighted offer relation.
This value is obtained by multiplying the respective offer relations (step 3) with
the weights (step 2). Then, for each host, we sum all of its dimensions and sort
them according to these results;

5. Tries to allocate task t in host h ∈ H sequentially.

To evaluate our solution, we compared it with two different literature tech-
niques [Son et al. 2019], classified as Immediate Dynamic Non-preemptive. We selected
both Least Full First (LFF) and Most Full First (MFF) solutions since they are the two
most commonly used for comparison in the literature. As mentioned, both LFF and MFF
are immediate techniques. When LFF receives a task, it searches for the host with the
least available resources that can accommodate the task. The algorithm performs a lin-
ear search to find the candidate host. Then, LFF submits the task to the selected host to
execute it. In contrast, MFF searches for the host with the most available resources to
perform the allocation process.



4. Results and Evaluation

Our evaluation uses a unique data center composed of H identical hosts serving as many
VMs as needed (one-to-many relationships). Each task is only associated with only one
VM. We create the VMs in execution time, and according to the requirements provided
by the tasks, i.e., the VMs have the exact configuration of PE and RAM required by the
allocated task.

We use the Google Cluster Dataset 2011.2 [Wilkes 2011]. It represents a collec-
tion of 30 days of data center monitoring. The dataset is composed of the description of
both tasks and hosts. A task t and a host h have two arguments: the number of processing
elements (PE) and RAM. The values of PE and RAM for both the Hosts and the Tasks
are relative. So, we use the range [0, 1] to mask the real values, where 1 represents the
physical machine with the most amount of the respective resource. The best PM in the
data center would have a configuration as pe = 1 and ram = 1. Meanwhile, a PM with
the following configuration pe = 0.5 and ram = 0.5 has half of the resources of the best
one.

In our simulations, we use 200k tasks and only 126 PMs representing 1% of the
total tasks presented in the dataset. The idea of using one percent of all PMs in the dataset
is to create more disputes among the PMs. If we use all PMs, the system will have more
available resources than needed because the machines are much more potent than the
required configuration by the tasks.

All techniques were implemented using the Java programming language. For the
evaluation process, all PMs were homogeneous, meaning they had the same configuration:
pe = 0.5 and ram = 0.25. We obtained these values by considering an average PM in the
dataset. Additionally, all tasks were heterogeneous, comprising PE, RAM, and Duration,
with Duration representing how long the task would run on a host. We defined an average
task with pe ≈ 0.04, ram ≈ 0.03, and duration ≈ 5000.

We evaluate three different characteristics: i) Task Waiting Time (Figures 2 and 3):
to represent the allocation waiting time of a task in a PM. We evaluate the task waiting
time in the queue before its allocation to an available host; ii) Tasks by Time (Figure 4): to
represent the number of allocated tasks in the data center in a certain moment. We evaluate
the number of tasks allocated in the system through time; iii) Tasks distribution by Host
(Figure 5): to represent the distribution of tasks in each host in a time snapshot. We
evaluate the load balancing of each task in the system. All results present an asymptotic
confidence interval of 95%.

In Figure 2, the X-axis represents the evaluated techniques, and the Y-axis repre-
sents the execution time. We calculated the waiting time from when the task arrived in the
data center until we allocated the task to a PM. We considered two scenarios: equal (EA)
and random (RA) task arrival time. The Equal Arrival scenario assumed that all tasks ar-
rived at the same time, while the Random Arrival scenario was more realistic, with tasks
arriving at different times. In the equal task arrival time scenario, our solution had a better
waiting time than the others because we processed all tasks as a single block and priori-
tized resources that were scarce. In the random scenario, all techniques had statistically
similar results. This occurs due to the different arrival times of the tasks, which do not
cause stress on the hosts. As a result, there is no competition between which tasks will be



allocated and which ones will be queued waiting for their turn.
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Figure 2. Tasks’ average waiting time

Figure 3 displays a density plot illustrating the distribution of average waiting
times for tasks. The X-axis represents the waiting time, while the Y-axis represents its
frequency. In a similar task arrival scenario, our proposed technique, RHVMP, has the
majority of waiting time values at zero, while the other methods have more spread-out
values. This observation aligns with the results presented in Figure 2. In some cases, LFF
and MFF performed poorly by allocating a machine that could have been used for different
tasks, leading to a longer waiting time. Therefore, we will only analyze scenarios with
the equal arrival time property, considering that the three techniques yielded statistically
similar results in the random arrival scenario. In this scenario, RHVMP outperformed the
other two techniques.

The following evaluation concerns the distribution of tasks and resource utiliza-
tion among hosts at different time snapshots. Our analysis is performed at two distinct
moments: (i) when 25% of the tasks are allocated and (ii) when 100% of the tasks are
allocated. Figure 4 represents the tasks allocated through time and helps to explain how
those snapshots affect the obtained results. The X-axis represents the percentage of allo-
cated tasks, and the Y-axis represents the time to allocate the task to a host. Both LFF and
MFF have the same behavior since they sequentially execute the tasks. They take a sim-
ilar time to allocate all tasks to the available hosts. In contrast, our solution can allocate
tasks much faster than the other two solutions. In some cases, RHVMP spent three times
less time than the other two solutions to allocate the same number of tasks. As pointed
out before, these results are directly impacted by how we occupy the hosts. For example,
if larger tasks arrive and the most powerful host is not accessible, they could have to wait
to be allocated since we allocate fewer hosts.

Figure 5 shows the distribution of allocated tasks among hosts. The X-axis repre-
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Figure 3. Density plot for average waiting time

sents the techniques, and the Y-axis represents the percentage of tasks allocated to each
host. The left side presents the allocation distribution with 25% of the tasks, and the right
side shows the distribution with 100% of the tasks. In both scenarios, it is evident that our
technique presents a better way of distributing tasks throughout the data center compared
to the other two techniques, which have a more heterogeneous form of task allocation. In
other words, in MFF and LFF, some hosts are more heavily occupied than others, while
RHVMP tries to minimize this variation. MFF obtained the worst results since it first
tries to fill the hosts with fewer available resources. Moreover, in both LFF and MFF,
there is a wider range in the values, indicating that the variation of resource usage is more
significant compared to RHVMP. Our solution obtained similar results with minimum
difference among hosts in both time snapshots.

5. Final Considerations
We presented the Rank-Heuristic Virtual Machine Placement (RHVMP) algorithm used
for the VMP problem. The Virtual Machine Placement consequence will directly lead
the efficient resource utilization. Likewise, as VMs run on physical servers, energy con-
sumption decreases. However, the cloud will consume more energy by maintaining and
managing the nodes. In other words, a good VMP algorithm decreases the financial cost
for both the infrastructure provider and the user since we will optimally use the resources.
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We compared our proposal with two different procedures (LFF and MFF) regard-
ing average tasks’ waiting time, percentage of tasks allocated through, and percentage of
tasks assigned in hosts. In all three evaluations, our solution overperformed the other two
procedures in highly dense scenarios. Considering the distribution of the tasks, RHVMP
demonstrated to have a better load distribution. We also showed that RHVMP could al-
locate more tasks in less time when compared with the other solutions. Corroborated by
the results, we can apply the RHVMP technique in scenarios where a more significant
burst of tasks arrive simultaneously. As future work, we aim to include auto-scaling and
migration procedures into our solution.
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