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Abstract. Advances in Internet of Things and smart cities approaches are
resulting in an unprecedented number of devices requiring connectivity. Due
to the ubiquitous presence of Wi-Fi networks, connectivity solutions obtained
from residential WLAN-sharing are becoming increasingly popular, although
they are still very restricted in scope, and offer a general connectivity service
for users seeking to surf the Internet. We argue that with a proper network
control plane and orchestration mechanisms like those provided by SDN, ISPs
would be able to leverage the available Wi-Fi infrastructure so that it can
offer network services that are tailored to the specific needs of mobile nodes
and users. In this paper a general framework is set up to achieve this goal. As
our approach explores low-cost commodity Wi-Fi access points and switches,
we also include a study of the effects of SDN on a local network built on this
class of equipment.

1. Introduction

The development of 5G networks [Andrews et al. 2014] is being driven by the
connectivity requirements of Internet of Things (IoT) [Tschofenig et al. 2015]
applications, and its categories include both massive machine-type communications
(mMTC) and ultra-reliable low-latency communications (URLLC). In mMTC, large
numbers of low-cost devices can be defined with high scalability requirements and
increased battery lifetime, whereas URLLC relates to mission-critical applications, in
which an uninterrupted and robust exchange of data is of the utmost importance. In
view of both aspects of high density and demand for network services with regard to
IoT applications, ubiquitous connectivity plays a major role. The research community
and industry are constantly searching for new solutions to suit these key requirements.
According to the latest Cisco Visual Networking Index (VNI) Report [Forecast 2016],
51% of the total amount of mobile data traffic was offloaded through IEEE 802.11-
based Wireless Local Area Network (WLAN) infrastructures in 2015, surpassing that of
cellular traffic for the first time. Thus, the concept of the global wireless community
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network is emerging as a highly promising asset among the available ubiquitous
connectivity services. The guiding principle behind this concept is to create a global Wi-
Fi ecosystem that can provide seamlessly, ubiquitous access to the Internet at millions
of global hotspots. The success of the concept of a global wireless community network
depends to a great extent on both the participation and support of Internet Service
Providers (ISPs) and their corresponding customers. On the one hand, ISPs must
provide carrier-grade tools to deliver a Wi-Fi service to millions of global hotspots, and
thus be able to provision seamless access ubiquitously. On the other hand, customers
must agree to share their own Wi-Fi WLAN with community members, thus turning a
simple home WLAN into a dual-access Wi-Fi-shared infrastructure, for private (i.e. the
owner) and public (i.e. community members) use. These features can make the WLAN-
shared concept economically viable, as well as establishing another carrier-grade
profitable service by reselling Internet connectivity [Biczok et al. 2011].

Traditionally, home WLANs embody commodity-based hardware networking
devices, which means standard-issue off the shelf multifunctional nodes (i.e. the
modem, switch, router and wireless access point functions in the same device); there are
no outstanding features embedded in them and they are widely available for purchase at
a low cost. However, these devices either lack appropriate tools or have inflexible
proprietary software with very limited network resource control capabilities. Moreover,
the customer must bear the cost of operating in-device tools, which are needed for
setup network control functions (e.g., bandwidth reservation, classifying policies and
queue disciplines). This is an easy task for a network professional but can be a complete
nightmare for a home user who mainly wants to surf on the Internet without any
concern about particular aspects of the system. For this reason, it makes sense for the
WLAN:-shared system to be under the carrier-grade control plane, which is likely to
have expertise in this subject.

With regard to the question of provisioning dynamic resource control in WLAN-
shared systems, the Software-defined Networking (SDN) [Boucadair and Jacquenet
2014] has emerged as an asset for ISPs. Through their approach to SDN network
programmability, central controllers have the capacity to initialize, control, change, and
manage the network behavior of the targeted networking devices dynamically, via open
interfaces. The WLAN-shared systems that adopt the network programmable approach
can be controlled by ensuring that the corresponding ISP installation embeds SDN
controllers that feature appropriate carrier-grade network control applications, whilst
home Wi-Fi routers must embed an open SDN control interface such as OpenFlow
[ONF 2013]. Through this ecosystem, a given ISP can deploy customized SDN
controllers featuring fine-grained resource control mechanisms that are tailored to its
WLAN:-shared community. In this way, it can obtain the capacity to provision optimal
resource allocation at the carrier-grade level.

This paper makes an advance on our previous work [Carmo et al. 2017] by
examining a real testbed that comprises a network topology of nine OpenFlow-capable
commodity-based networking devices of different hardware platforms (instead of a
single isolated router that was studied previously). The aim is to assess the suitability
and resulting performance when carrying out SDN network programmable functions on
commodity-based networking devices (beyond the domain of WLAN home devices),
but from the perspective of a holistic network with redundant communication
opportunities. In this kind of scenario, targeted devices run other networking services
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apart from Wi-Fi APs, e.g. dynamic routing in the presence of redundant paths, which
can provide a more accurate view of the SDN capabilities that can be exploited by
commodity-based routers, and are suitable for different use cases.

The remainder of this paper is structured as follows Section II provides an
overview of WLAN-shared Internet access. Section III introduces our SDN-based
framework, while the preliminary results obtained from an assessment of the WLAN
switches are discussed in section IV. Finally, the last section concludes the article.

2. Overview of WLAN-Shared Internet Access Solutions

The wide availability of home Wi-Fi networks has led to initiatives aimed at expanding
Wi-Fi coverage for a community of customers. Among these initiatives (e.g., Comcast
Xfinity' and WLAN to Go?), the most notable and successful WLAN-shared provider is
FON’. During the last 10 years, FON has built the world’s largest Wi-Fi network
community, which comprises millions of people who have agreed to share their WLAN
broadband connection with external users for seamless experience when accessing.
FON relies on the partnership of leading carriers and Wi-Fi providers around the globe,
and seeks to boost seamless connectivity service provisioning for member customers at
millions of hotspots worldwide. An OpenWrt customized version has been deployed
specifically for use in the FON Community to provide home customers with a FON
WLAN-shared service. Following the installation of this FON-tailored OpenWrt
version, the commodity-based Wi-Fi router becomes a “Fonera 2.0”, and thus allows
consumers to share their broadband connection and connect to other FON Spots around
the world. With the Fonera device, two different Wi-Fi signals are created, one for
private access and another for public access. In the former, the FON Spot owner has
exclusive access and is thus able to leverage encrypted traffic service. In the latter, only
registered FON users have the right to access an open (unencrypted) network system.

Although this system enhances opportunities for seamless connectivity, in our
view existing WLAN-shared infrastructures are far from ideal as a means of providing
an appropriate support for emerging scenarios like those involving IoT, smart cities,
and the ever- increasing demand for connectivity by mobile users. For instance, FON
only makes available one network per AP for public usage. We believe that to offer
appropriate network services that can cater for the individual demands of mobile (and
heterogeneous) nodes, it would be more appropriate to make multiple virtual networks
available, each tailored to meet specific needs, i.e., the different V-WLANSs could have
different bandwidth capabilities and deploy different network functions to cope with the
required behavior of the system, technical requirements and so on.

In addition, the one-size-fits-all public network made available by current
WLAN:-sharing systems, is designed for mobile users that want to surf the Internet.
There is no differentiation of services on the basis of applications or types of devices.
Moreover, there is no concern about optimizing the network resources at a global level
to efficiently serve a larger number of users/devices. For instance, a number of people

1 ..
https://www xfinity.com

2http://www.telekom .de/wlan-to-go
3https://fon.com
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spend most of the day at work, which means their WLAN infrastructure is probably left
with the minimum use. Thus, ISPs could set the private V-WLAN with minimum
bandwidth allocations, and leave the remainder of the resources for the Public V-
WLAN with the prospect of providing enhanced connectivity for the community
members. When the WLAN owner reports back to his network, the ISP can re-adapt the
bandwidth, and even use smart mechanisms to allocate the required resources in
advance. In addition, there is no support for mobility management in the current
systems, which can for instance, help devices to connect to the best public network
available at a particular moment. All these requirements call for a networking control
plane that is able to act on a globally perceived network topology to meet the diverse
needs of the mobile nodes.

3. SDN-Controlled WLAN-Shared Framework

As highlighted in Section I, the WLAN-shared software for resource control envisions
controlling the behavior of the corresponding networking devices to provision optimal
use by private and open community members. In our opinion deploying the control
plane at the carrier-grade level is the most appropriate manner to provide a fine-grained
approach that can enable the WLAN owner to keep "surfing" the net with an acceptable
quality of experience. Moreover, WLAN-shared residential infrastructures feature
commodity-based Wi-Fi access points that are generally performance-constrained and
low-cost to suit the needs of the end-user. Hence, the addition of the SDN approach to
these types of nodes will certainly provide the prospect of overcoming additional
performance issues, and ensuring suitability. Figure 1 illustrates our proposed carrier-
grade SDN-controlled WLAN-shared architecture.
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Figure 1. Carrier-grade SDN-Controlled WLAN-shared Ecosystem

The architecture depicted in Figure 1 shows the key systems of our proposed
Carrier-Grade SDN-Controlled WLAN-Shared ecosystem. The WLAN-shared system
is responsible for the provision of wireless connectivity, generally through Private
(customer owner) and Public (community-members) Wi-Fi networks that seek to
provide broadband communications to mobile and/or fixed nodes. Traditionally, ISPs
include a multifunctional device to manage the connectivity at the WAN link of varying
data rates (from 54Mb/s to 300 Mb/s). With regard to our SDN-controlled WLAN-
Shared system, on the customer side there is a multifunctional device provided by the
ISP, which is responsible for the provisioning of different Wi-Fi networks and “net-
programmable” capabilities. Our view of a targeted customer network infrastructure is
shown in Figure 2.
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Figure 2. SDN-controlled WLAN-shared system on the customer side,
interoperating with the carrier-grade SDN controller

The multifunctional device must support an SDN interface to comply with our
SDN-based WLAN-shared ecosystem, in this case, OpenFlow. There is a wide selection
of APs available in the market, with prices ranging from tens to even hundreds or
thousands of dollars. A number of low-cost commodity-based Wi-Fi router
manufacturers already supply proprietary embedded operating systems featuring
OpenFlow, mostly version 1.0. Alternatively, an open source environment can be
adopted through OpenWrt*, along with Open VSwitch (which offers support for all
versions of the OpenFlow protocol) [Pfaff ef al. 2015].

The last mile infrastructure mostly comprises broadband telecommunication
devices, which are responsible for carrying signals from the broad telecommunication
backbone to and from the home or business networks. As robust devices are used in
these types of systems (and have high-performance and networking capabilities), SDN
is not a problem, and thus their study is beyond the scope of this paper. Figure 3 depicts
the ISP-level Control system infrastructure.
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Figure 3. ISP-level control, key infrastructural systems and networking
management functions

The ISP system adopts an approach to a fully integrated Internet system
approach that allows it to provide a wide range of IP services and applications to a
limited amount of customers seeking personal and business access to the Internet. The
list of typical IP services includes the following: Internet access, domain name hosting,

4https ://lopenwrt.org
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network broadband access, Authentication Authorization and Accounting — AAA, web
hosting, emailing, transit, among other services. In attempting to cope with SDN, the
ISP infrastructure must integrate the SDN controller so that it can act in the network
control plane.

We believe that even though the ISP incurs extra costs because it requires
investing in additional infrastructure, it will be able to exploit the customer network
infrastructure and resell Wi-Fi Internet access. Apart from providing traditional
Internet-access for users, the Internet of Everything (IoE) [Evans 2012] application
scenario can benefit from this wireless networking opportunity. IoE is turbinated by
devices, ranging from connected coffee makers, cars, or sensors on cattle to connected
machines in a production plant, and can thus leverage broadband wireless/wired home
network systems. Network operators can exploit this scenario to apply opportunistic
Internet access, by sharing the bandwidth of WLANs with nearby devices. In addition
the network providers can handle the systems to maintain WLAN QoS, for example by
using NFV technology [Hawilo et al. 2014, Mijumbi et al. 2016] to virtualize different
wireless networks, and allocate resources to each of them by taking account of their
needs, contracts, and so on. Thus, network providers can offset the additional costs, and
earn more revenue at the same time.

4. Performance Assessment

We carried out a set of experiments to analyze whether it was feasible for ISP to
enable the SDN functions to be used with networking nodes that feature commodity-
based hardware capabilities, while taking into account the SDN-controlled WLAN-
shared scope. To the best of our knowledge, there are no studies in the literature that
make a performance evaluation of OpenFlow in a network topology comprising a set of
interconnected commodity-based networking devices. However, the literature has
authors who include a single device at the center of their targeted assessment. Examples
of initiatives taken in this area include [Gharakheili et al. 2015], where the authors
designed, implemented and evaluated an SDN-controlled system that allows a third-
party to define which subscribers can easily customize Internet sharing within their
household. The evaluations demonstrated the feasibility and utility of the proposal in the
real world, and included home router equipment featuring an OpenFlow protocol. In
[Lima et al. 2015], the authors evaluated the OpenFlow performance of a commodity-
based wireless router running Open vSwitch linked to different SDN controllers. The
evaluation was of a set of client hosts connected at the router, with the aim of sending
data traffic towards a sink server. The key networking metrics included: throughput,
delay, jitter, and packet loss. The outcome suggested that commodity-based wireless
routers should be used in smaller networks, such as homes and small -to -medium sized
organizations.

Although the dual-access WLAN-shared service is provisioned by a Wi-Fi home
AP, there are a number of environments featuring a Wi-Fi network composed of several
APs that form a bridge (such as restaurants, hotels, clubs, and the like). This has led us
to carry out studies in both suitability and performance, which involves having
commodity-based networking devices, interconnected with each other to form a wired
mesh topology that is used to deploy OpenFlow networking functions. With this goal in
mind, the methodology employed for the performance assessments defines a real testbed
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for allowing highly accurate benchmarking perspectives. The network topology of the
testbed is depicted in Figure 4.
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OpenFlow Controller

Data Source
~ TP:-Link Node
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Data Link
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Figure 4. The Testbed Topology adopted in the experiments

The testbed configuration set includes 9 commodity-based networking nodes
that are marketed throughout the world at a low cost. The network border embodies 4
TP-Link type nodes set at IEEE 802.11n access points, whilst the core network
infrastructure features 5 Mikrotik type nodes that target switching functions. The control
data communication takes place through dedicated links. We replaced the original
firmware devices with the OpenWrt operating system and installed the Open vSwitch to
implement OpenFlow capabilities. The configuration of the network elements is shown
in Table I.

Table I. Key Specifications of hardware

Hardware Capabilities
Manufacturer
Model CPU RAM
TP-LINK TL-WR1043ND v3 720 MHz 64 MB
Mikrotik 951G-2HnD 600 MHz 128 MB

The methodology employed for the performance evaluation entailed
incorporating a number of individual flow traffic data to obtain the specific load rates
(30, 60, 90, and 120% of the maximum network bandwidth capacity). In carrying this
out, the D-ITG tool [16] which was running on the client and server machines,
generated UDP data flows at a constant rate of 407 Kbps each, which amounted to a
total of 293 UDP flows per heavy workload (120%). A specific network application is
deployed in compliance with the Floodlight” SDN controller. All the new packets
arriving at the border switches were directed to the application, which in turn installed
a corresponding flow for each of the switches along the path between the client and
server machines. Two different sets of experiments are carried out to check the
networking behavior at both flow-level and level of video streaming quality.

*www.projectfloodlight.org/floodlight
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4.1. Flow-Level Networking Set of Experiments

The goal of the experiments was to evaluate how the OpenFlow software layer affects
the performance of the devices in terms of packet loss and throughput.

Figure 5 shows a comparison between the packet loss ratios in scenarios where
OpenFlow is enabled and disabled. In the case of any offered load, the network
experiences a higher packet loss when OpenFlow is running; this is mainly due to the
time needed for the controller to configure the switches along the path (the packets are
buffered at the ingress switch till the controller installs the flows at the appropriate
switches). Figure 6 depicts the corresponding bitrate. In an offered load of 60%, the OF-
enable scenario has a performance that is just 5% lower than when OF is disabled. The
difference increases to 13% for 90% of the offered load.
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Figure 5. Impact of the variations in the offered load on the behavior of the
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Figure 6. Impact of the variations in the offered load on the throughput
behavior

4.2. Video Streaming Quality Set of Experiments

We carried out a second set of experiments in the testbed to assess its
performance when a multimedia streaming session is connected along with the D-ITG
background data traffic. This set of experiments is run at the testbed where it is
configured with 120% of offered load, and seeks to allow subjective benchmarking in
heavy saturation networking conditions. The methodology employed involves scaling
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the testbed with a multimedia streaming service based on the VLC Media Player®, in
addition to D-ITG data flow traffic model. The “Source Node” of the testbed is set so
that it can stream a H.264 encoded real video file using RTP/UDP towards the
“Destination” node. No Quality of Service (QoS) control functions are included, since
this paper is only concerned with assessing the OpenFlow performance on the testbed.

The video streaming session is invoked by the "Destination" node during the 15
seconds of the running time for the experiment, and keeps running till the end of the
experiment (i.e., 33 seconds). With regard to the methodology employed for assessing
the impact caused by the over-saturation networking conditions during the video
streaming session, we observed degradation of the streaming-level quality caused by an
event occurrence during the workflow experiment. Moreover, we calculated the time
taken in both testbed configurations (i.e., OF-enabled and OF-disabled) for the VLC
client to setup the video streaming session with the VLC server and check the influence
of OpenFlow on the additional features of OpenFlow in the setup time of the session.
Table II shows three video samples obtained during both sets of experiments.

Table Il. Video samples during the workflow experiment

OF-enabled OF-disabled

Video Sample 1.1 Video Sample 2.1

ittpy) A9 2R 2885:50 301

Video Sample 1.2 Video Sample 2.2

Video Sample 1.3

With regard to the OF-enabled testbed configuration, a grey screen with no
viewable video motion (Video Sample 1.1 of Table II) appears after 6 seconds of the
request for the VLC client stream session, probably on account of the VLC
bufferization. The grey screen remains the same for about 4.2 seconds, and then starts
showing a low-quality video streaming (Video Sample 1.2 of Table II) for about 4.3
seconds. From this time on (14.9 seconds), the video starts streaming with good quality
(Video Sample 1.3 of Table II) until the end of the workflow experiment. As expected,
the over-saturation networking conditions caused degradation occurrences in the video
quality (e.g., frame loss), but these were very slight and short-term which meant that on
the whole, it was a very good streaming session.

6http://Videolan.org/vlc
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The same screen patterns experienced during the OF-disabled set of workflow
experiments also occurred in the OF-disabled one. The grey screen (Video Sample 2.1
of Table II) appears after 5.7 seconds of the VLC client request, and switches to a low-
quality video (Video Sample 2.2 of Table II) after 3.9 seconds. After 3.8 seconds
(making a total of 13.4 seconds for the streaming setup time), the video streams
maintain a good quality till the end of the workflow experiment with slight and short-
term quality degradation occurrences for the same reason i.e. networking over-
saturation.

The numerical results of the multimedia assessment reveal that there are slight
differences in performance in the video streaming on top of OpenFlow at both the OF-
enabled and OF-disabled testbed configurations. On the one hand, the session setup
time for the OF-enabled set of experiments was 6 seconds, whereas for the OF-disabled
set it was 5.7 seconds (5%). With regard to the video streaming session with good
quality, the OF-disabled set of experiments took around 19.1 seconds, whilst the OF-
enabled set averaged 20.5 seconds. Hence, video streaming on top of the OpenFlow
approach and in oversaturated networking conditions displays, slightly higher latency
(5% 1in session setup time, and 7% for VLC buffering when starting the video with good
quality) than when running in a conventional system (i.e., without OpenFlow). On the
other hand, the video streaming quality remains the same.

5. Conclusion and Suggestions for Future Work

In this study, a general framework was established that was based on SDN and aimed at
allowing ISPs to leverage the already existing WLAN infrastructure in urban centers.
The purpose of this was to offer tailored connectivity services to mobile nodes through
dynamic sharing of these networks between the owner and third parties. The framework
includes low-cost commodity hardware, switches and wireless routers. A set of
experiments was conducted to show that these devices were suitable for supporting the
framework, and the OpenFlow protocol was used to control a network that consists of
these devices. Although it has incurred some performance penalties, the SDN approach
is still a good choice in view of the benefits it can provide to WLAN sharing-based
Internet access.

The next steps of our work will focus on prototyping the carrier-grade SDN-
controlled WLAN-shared approach by means of a Wi-Fi router featuring commodity-
based hardware capabilities. Afterwards, we will assess the prototype to determine its
suitability and performance.
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