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Abstract. O-RAN is an architecture that promotes interoperability and open-
ness in 5G Radio Access Networks (RAN) using scheduling, disaggregation, and
virtualization. RICs (RAN Intelligence Controllers) offer solutions such as Ma-
chine Learning (ML), traffic steering, anomaly detection, and QoS (Quality of
Service) support. Novel intelligent handover strategies are critical to the suc-
cess of 5G or even 6G O-RAN-based networks. This paper proposes and evalu-
ates an intelligent handover algorithm for O-RAN environments. It leverages an
LTE testbed featuring O-RAN architecture to assess downlink and uplink per-
formance across various User Equipment (UE) scenarios. The proposed scheme
was implemented and tested using ns-O-RAN, an O-RAN system integrated with
the NS-3 simulator. Our simulator results demonstrate a throughput and delay
enhancement compared to traditional handover methods across various scenar-
ios involving 50 to 100 UEs.

1. Introduction
Traditional Radio Access Networks (RANs) typically consist of closed, monolithic units
that integrate all network functions, encompassing the layers of the 4G/5G protocol stack
and network interfaces [Lacava et al. 2023b, de Oliveira et al. 2023]. Traditional RANs
face challenges, including vendor lock-in, limited configuration options, increased unit
prices, coordination difficulties, closed interfaces, and scalability concerns [Linsalata
et al. 2024]. The open-RAN (O-RAN) Alliance [O-RAN Alliance 2021] has played a
vital role in developing the O-RAN vision by extending the capabilities of 3rd Generation
Partnership Project (3GPP) by offering an open and interoperable ecosystem, transform-
ing the telecommunication ecosystem. O-RAN aims to provide greater flexibility, cus-
tomization, and innovation for network operators, addressing the limitations of traditional
RAN architectures [Alavirad et al. 2023]. For instance, O-RAN introduces virtualiza-
tion and disaggregation of RAN technologies, dividing network functions into white-box
software and hardware components connected via open interfaces, allowing network vir-
tualization and programmability [Musa et al. 2023].

The RAN intelligent controller (RIC) optimizes RAN components, serving as a
centralized abstraction that analyzes data collected from RAN functions, applies con-
trol actions, and enables algorithmic control [Bonati et al. 2021]. In this way, RIC en-
hances Radio Resource Management (RRM) with data-driven approaches utilizing real-
time telemetry from the RAN, processed by ML algorithms for optimization and control
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of the RAN [Zangooei et al. 2023]. The ML-based RIC control functions aim to solve
existing hard-to-solve issues in the RAN domain, such as mobility, scheduling, admis-
sion control, and others [Brik et al. 2023] Hence, O-RAN plays an essential role for 5th
generation (5G) networks and beyond by enabling the deployment of multi-vendor, inter-
operable components and programmatically optimized through a centralized abstraction
layer [Garcia-Saavedra and Costa-Perez 2021].

Traditional RAN encounter significant challenges because of their inflexible archi-
tectural designs. These fundamental issues frequently lead to operational inefficiencies,
manifesting as suboptimal network performance, increased latency, and reduced capacity
to handle high traffic volumes. O-RAN improved network efficiency and support for a
broader range of suppliers and solutions that translate into more efficient network config-
urations, enabling networks to adapt dynamically to load and environmental changes, thus
ensuring seamless handovers. In this way, the O-RAN environment has been an ongoing
focus of research and development since it opened new avenues for network operators to
explore greater flexibility, customization, and innovation in their operations [Bonati et al.
2022]. For instance, near-real-time (Near-RT RIC) RIC hosts multiple applications to
define control actions applied to the RAN model, called extensible applications (xApps).
Specifically, a xApp runs on a microservice that receives real-time data from the RAN
through the E2 interface (e.g., user, cell, application, and other measurements) and (if
necessary) computes and sends back control actions (e.g., handover, load balancing, and
others) [Polese et al. 2023].

Numerous papers have extensively investigated the handover topic, with some of
the fundamental traditional network applications highlighted [Costa et al. 2020]. Within
the O-RAN context, RICs open opportunities to optimize handovers using 3GPP-defined
measurement report parameters to better performance [Riccio et al. 2023]. For instance,
the xApp collects contextual measurements from the user and network, which feed an
ML to act in this scenario [Hamdan et al. 2023]. For instance, using an ML algorithm for
user position prediction is possible. Therefore, the O-RAN model could rely on QoS and
network metrics to see how this approach can improve the network performance [Bon-
ati et al. 2022]. O-RAN enhances handover management by linking session transfers
between cell base stations. Offering improvement for network operations that respond
dynamically to changing conditions and user demands [Wang et al. 2021]. ML enables
predictive analysis, allowing networks to anticipate handover events. Resource allocation
and network traffic management can be optimized. This approach improves the user expe-
rience by minimizing interruptions during handovers. Advanced ML schemes in O-RAN
systems enable fast and data-driven handover decisions. That approach reduces call drops
and improves the user experience [Sun et al. 2020].

This paper proposes an intelligent handover approach for improving mobility sup-
port with Quality of Service (QoS) in O-RAN-based networks. Our methodology en-
riches handover processes by utilizing ML to optimize User Equipment (UE) transition
with diverse mobility patterns between network nodes. Our method evaluates critical per-
formance indicators: throughput, Packet Delivery Ratio (PDR), delay, and jitter. These
metrics are critical in determining the effectiveness of our ML-driven handover decisions.
We aim to identify the optimal eNB connections for UEs in a simulated dynamic network
environment. Our approach aims to bolster the network stability of gNBs and enhance
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the QoS for UEs, leading to a more reliable environment. Simulator results show that our
intelligent approach outperforms a traditional O-RAN handover scheme.

The remainder of this paper is structured as follows. Section 2 presents the
overview of works that deal with RIC and their main drawbacks; thus, papers that use
other O-RAN approaches and handover methods with ML. Section 3 introduces the ML
prediction for handover in the O-RAN approach, which will set the parameters to select
the best scenario fit. Section 4 discusses the evaluation of the ML approach and obtained
results in the throughput, PDR, delay, and jitter. Finally, Section 5 describes this paper’s
conclusion and presents some future work directions.

2. Related Works

Most existing O-RAN works deal with RIC implementation for QoS improvement using
different types of communications. For instance, [Bonati et al. 2022] highlighted Open-
RAN Gym, an open toolbox for developing O-RAN-compatible ML solutions. The paper
demonstrates how two xApps designed with OpenRAN Gym can control a large-scale
RAN, enabling ML for the management network to improve QoS. Based on experiments,
the O-RAN ns-3 module facilitates modeling a network architecture that complies with
O-RAN specifications. It incorporates essential classes such as RIC, mirroring O-RAN’s
RIC, and ML Near-RT. This work shows that communication between reporting modules
that establish connections with reporting nodes simulates, serving as communication ter-
minals with the O-RAN RIC, similar to the E2 Terminators in the O-RAN. Motivated
by these limitations, we introduce an ML approach with more UEs in RIC and Near-RT.
In this way, we use an SQLite database to store coordinates and packets lost of cells,
improving the handover scenario for eNB/gNB towers.

[Baldesi et al. 2022] introduced a Channel-Aware Reactive Mechanism
(ChARM), a data-driven O-RAN-compliant 5G-and-beyond networks framework.
ChARM operates within O-RAN specifications without requiring modifications to exist-
ing 3GPP standards. The paper demonstrates ChARM’s performance in spectrum-sharing
scenarios, specifically between LTE and Wi-Fi in unlicensed bands. This paper proposes
to use the O-RAN in a 5G scenario, which also has its networking methods. Therefore,
the O-RAN follows some metrics to use our ML to predict loss packets and mobility
prediction (distance of UEs to eNB) provided by the OPEN-RAN Central Unit (O-CU).
However, this approach is not oriented towards using ML, with intelligent solutions in
handovers, using an SQLite database of the best positions of the UEs, where it can be
whenever necessary to reuse the best positions in which the UEs are in the O-RAN.

[Lacava et al. 2023b] The handover management framework enhances the op-
timization of O-RAN TS (Traffic Steering) based on Q-Learning and a system-level ap-
proach. This approach affects the network performance and QoS. The TS scheme can
improve overall network performance when traffic preferences are considered. Efficient
data flow management is crucial in 5G networks to meet diverse service requirements. To
this end, this study utilizes network slicing (NS) and multi-connectivity (MC) technolo-
gies to improve data rates for Enhanced Mobile Broadband (eMBB) services and reduce
latency for Ultra-reliable Low Latency Communications (uRLLC) services. The traffic
steering xApp and discuss the algorithm design to determine the optimal target cells for
mobile user handover. In this paper, we use the xApps in our ML application and develop
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a data-driven mobile user-based traffic steering/handover optimization. The simulation
is also based on the eMBB to represent our results accurately with mobile traffic in an
O-RAN system.

[Lacava et al. 2023a] presented a portable 5G Non-Stand Alone (NSA) architec-
ture using NS3 for platform flexibility and functional throughput tests with different chan-
nel coding and modulation schemes. Some performance tests are shown for 5G use cases
but using the 4G network. The authors present performance results regarding throughput
for Internet browsing, voice transmission, and streaming for different distances between
transmitter and receiver. The code developed for this paper uses the handover Manage-
ment capability for the TS use case of O-RAN through the handover Management mes-
sage, allowing the xApp to send an RIC control message with the RAN ID function. The
RIC in our code uses their functions to manage and send the handover Management mes-
sage after the ML in O-RAN results in the best fit of a client with their features. In this
way, our simulation aims to use similar to perform conventional handover and ML with a
scenario with more UEs.

[Sahbafard et al. 2023] delved into 5G, the latest cellular technology designed
to improve data rates and accommodate a range of new applications. We emphasize the
necessity for experimental deployments to thoroughly evaluate the performance of 5G,
particularly in the context of specific use cases. The authors used a testbed approach to
look at the function of Software Defined Network (SDN) management in a minor place.
However, we must use our approach with more access points and mobile users to look for
a realistic mobile user scenario.

[Gavrilovska et al. 2020] described how to operate an O-RAN and an edge cloud
computing. In this way, they mention how improving this in the network management
is called C-RAN. This work demonstrates the concepts of an SDN use of scalability.
However, in their scenario, the number of users in the simulation was small. Their pa-
per concludes by highlighting metrics such as latency, link capacity of the BBUs, and
throughput. Inspired by this metric’s uses, our scenario improves and performs a more
extensive simulation with more mobile users and more eNBs.

In summary, our handover algorithm with an intelligent approach considers using
the O-RAN architecture to improve LTE 4G/5G networks, which is assisted by xAPP’s
management through multiple UEs acting between the eNBs/gNBs. It considers the pres-
ence of mobile UEs, each running applications with different performance requirements.
Furthermore, it extends the use of messages in the O-RAN control plane, namely the per-
formance field, allowing a more accurate representation of the network and communica-
tion conditions of each UE and the different services running. Furthermore, we introduce
a more innovative approach to managing handover messages that significantly reduces the
control layer overhead without compromising the UEs’ implementation and the accuracy
of the intelligent algorithm, nor the performance of xApp running the ML optimization
algorithm with O-RAN.

3. O-RAN Smart Prediction for Handover Management
A handover approach requires linking the eNB and the UE based on signal quality to
ensure seamless connectivity and optimal network performance as users move through
different coverage areas. Therefore, this section presents an O-RAN approach based on
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the network’s behaviors for smartness handover. To this end, we introduce the modules
and the implementation details for obtaining this behavior by evaluating an ML handover
approach.

3.1. O-RAN Overview

The O-RAN architecture breaks the classical approach by adopting the principles of dis-
aggregation, openness, virtualization, and programmability, enabling data exposure and
analysis and data-driven optimization, closed-loop control, and automation. In this con-
text, handover algorithms could take advantage of the O-RAN architecture since RIC pro-
vides the deployment of network controllers and applications for managing, configuring,
monitoring, and maintaining radio unit operations. Specifically, near-RT RIC hosts xApps
applications, a software application that runs network management services, such as QoS
monitoring, resource allocation, connection management, and frequency scanning [Brik
et al. 2023]. In this sense, xApps are vital applications operating on the near-RT RIC,
comprising multiple micro-services that receive input data from RIC-RAN interfaces and
leverage ML for near-RT control. The xApps are integral components facilitating intelli-
gent and automated RAN control, and the development of xApps is technology-agnostic,
depending on an O-RAN-defined interface.

Traditional handover processes in mobile networks involve transferring an ongo-
ing call or data session from one cell base station to another as a user moves through the
network. This process typically relies on predefined thresholds for signal strength and
quality [Lacava et al. 2023b]. Intelligent handovers use ML to analyze information from
the UE and eNB to decide who eNB the UE intends to link with, such as user behavior
patterns and network conditions.

The xApp receives QoS metrics and position coordinates via the E2 interface, pro-
viding additional functionality as output to RAN operations based on ML algorithms. For
instance, QoS metrics are crucial indicators for network operators, application developers,
and users to assess network performance [Lacava et al. 2023b]. In addition, the position
coordinates can be used by ML algorithms for mobility prediction, which could feed the
handover algorithm.

Figure 1 shows the O-RAN architecture for orchestrating mobility prediction,
which integrates various components that interact to facilitate dynamic network optimiza-
tion. The O-RAN Cloud is at the core of the architecture, hosting the Near-RT RIC that
hosts xApps to leverage ML algorithms for predictive analytics. It also shows the flow of
the collected data, starting with collecting client position and network metrics data, which
feeds into the orchestration process. These metrics are processed by the Near-RT RIC,
enabling it to make informed decisions for mobility management [Lacava et al. 2023a].
The O-RAN Cloud communicates with the eNB, an evolved Node B or base station, fa-
cilitating the necessary adjustments to optimize the user or UE experience.

The xApp for mobility prediction has the following steps: data acquisition, pre-
processing, feature extraction, and classification. In the data acquisition step, an xApp
receives input from the UEs with various network parameters, such as mobility patterns,
distance to each tower (km), mean packet loss, and cell load, providing information re-
lated to the UE’s patterns of network behavior [Hamdan et al. 2023]. This data goes
through a pre-processing step, where outliers are removed.
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Figure 1. O-RAN approach for Orchestration mobility prediction

After pre-processing the data, extracting relevant features from the raw data is
necessary. Based on this information, it is possible to identify the network patterns. This
information provides an overview of how or when it is necessary to determine the best
eNB client and who is best to link with to provide network access. Improvement occurs
when comparing each UE with smartphones, VR equipment, or any device capable of
receiving packets using a streaming approach.

In the XApp for handover, a set of features is checked against the patterns stored in
the database so that it can predict the best fit for whom eNB links each UE. The handover
process responds if the UE worsens QoS, while the other eNB can improve the network
parameters to link the UE [Riccio et al. 2023].

3.2. Prediction Overview

We start the handover prediction by extracting data to train the ML algorithm with some
network values. Specifically, the ML algorithm needs historical datasets paired with their
handover outcomes to train the estimates of who eNBs to link with each UE. These pa-
rameters will be used to train and predict who the best-fit eNB based on the distance
to each eNB (km), mean packet loss, and cell load. This way, we use the validation
and testing data to appraise the model’s predictive prowess and generalizability. Itera-
tive refinement based on performance metrics ensures the model’s continuous evolution
towards optimal accuracy. Upon satisfactory validation, the ML model is deployed into
the O-RAN ecosystem, where real-time decision-making happens, leveraging live data
to orchestrate network resources dynamically. The mobility prediction collects network
parameters from UEs, including mobility patterns, distance to towers, packet loss, and
cell load. After preprocessing to remove outliers, this data informs the prediction process,
enhancing handover accuracy and overall network performance.

Figure 2 provides a schematic representation of the data extraction process tailored
for an O-RAN approach using ML algorithm for handover management. The process be-
gins with the aggregation of raw data (1), which comprises various UE metrics such as
mobility patterns, distances to cell towers (km), mean packet loss, and cell load. These
raw data points are then systematically labeled (2), assigning contextual information to
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each data point, which is essential for identifying their response of who eNB the UE
needs to link. In phase (3), the process actively formats the labeled data into a structure
that facilitates feature analysis. At that point, the user extraction data contains refined
information on the features necessary for the ML handover decision process. The follow-
ing phase (4) entails a restructuring of data frequency to ensure uniformity and coherence
across all data points. This step critically synchronizes data inputs for the subsequent
training of the ML model, allowing it to accurately predict handover events based on
temporal patterns and network dynamics. Finally, the process reaches the feature extrac-
tion phase (5), extracting features such as mobility patterns, proximity to network towers,
packet loss rates, and network traffic load. At that point, the process filters the data from
the raw dataset. These features are essential to make an ML model that can accurately
predict when a handover should occur, optimizing network efficiency and improving user
experience. Hence, this extraction and feature processing pipeline enables the creation
of a predictive model for network handovers, which is crucial for maintaining seamless
connectivity and service quality in mobile networks as part of the O-RAN.

2 3

45

Data label User Extraction
Data

ResamplingFeature
extraction

Raw data

1

Figure 2. Data extraction

In developing our ML, the essential approach is a method that can be generated
and progressively trained during its use. For this purpose, we must considered a multi-
class Neural Network classification. Specifically, the input layer that receives network
features as inputs. Sequential hidden layers incorporate linear functions by applying a
transformation that maps inputs to a desirable feature space. This linear function is y =
xAT + b, where x is the input, A is the weight matrix, b is the bias vector, and y is
the output. After each linear transformation, a ReLU activation function introduces non-
linearity to the model, allowing it to capture more complex relationships in the data.

The model output layer transforms the processed features into a probability dis-
tribution of the classes using a softmax function. The model is trained end-to-end using
cross-entropy loss, which will help the model be adept at multi-class classification in each
training epoch. In that way, each training epoch improves the model by minimizing this
loss function. Each epoch will set an iterative optimization of weights. Adjusting the
weights and biases of the linear transformation helps improve the model’s accuracy. The
model learns to choose the most suitable NB to link each UE connection by training using
the network parameters, such as the distance to each eNB (km), mean packet loss, and cell
load. They are collecting these data from the network using the RIC to do a data process
for training the ML model with specific data measurements.

The ML train uses a database using the traditional rules of handover manager com-
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munications, which provides a complex way of simulating to collect data on the network
behavior. The Handover Manager communicates its ML decision regarding the relative
loss packet parameters of an UE to both the serving and target radio base stations, indicat-
ing the mobile node for transfer. It facilitates the exchange of control messages between
the radio base stations, conveying node-specific details. After that, the system triggers
the handover process, transitioning the communication path of the mobile node from the
serving radio base station to the target radio base station.

4. Evaluation
This section explores the experimental evaluation of our intelligent handover scheme for
O-RAN scenarios. Our simulation supports the O-RAN module within the NS3 Frame-
work, while the PyTorch library powers our ML component. This pre-trained ML model
facilitates transfer decisions based on location and packet loss data. It is worth mentioning
that our entire project is open-source and accessible on GitHub1.

4.1. Simulation

NS-O-RAN is an open-source simulation platform that combines a functional 4G/5G pro-
tocol stack on NS-3 with an O-RAN-compatible E2 interface. This platform complements
WIoT’s OpenRAN Gym with a simulator that can enhance data collection and xApp test-
ing, which is a critical step toward enabling efficient generic AI and ML solutions for
OpenRAN and 5G/6G systems. NS-O-RAN is designed and implemented to enable the
integration of O-RAN software, such as the Near-RT RIC from the O-RAN Software
Community, with large-scale 5G simulations based on 3GPP channel models and detailed
network modeling. Complete 3GPP RAN protocol stack. This makes it possible to collect
key RAN performance metrics (KPMs) in different simulated scenarios and with different
applications, such as, multimedia streaming, web browsing, wireless virtual reality, and
holograms.

Table 1 outlines the main parameters for orchestrating a dynamic 5G network en-
vironment under the ns-O-RAN framework in our simulation. We employ a Random Walk
mobility model distributed across a sophisticated network architecture featuring seven NR
gNB towers. At the heart of this setup is a central tower, an amalgamation of LTE eNB
and NR gNB technologies. The network operates on a 3.5 GHz center frequency and
has a 20 MHz bandwidth allocation, reflecting anticipated conditions in a real-world 5G
scenario. We evaluate network performance under varying loads by testing with 100, 75,
and 50 mobile users. We conducted 33 simulation runs with different randomly generated
seeds, and the results include a 95% confidence interval.

NS-O-RAN employs a traditional handover algorithm described in Lacava’s 2023
work and incorporated into the NS-3 LTE module [Lacava et al. 2023b]. The method
used for the transfer is known as the “traditional power budget algorithm”, which reg-
ularly monitors the received reference signal Power (RSRP) of a UE’s serving cell and
neighboring cells so that once the RSRP of a neighboring cell is greater than that of the
serving cell, the UE is handed over to that neighboring cell. On the other hand, our in-
telligent handover algorithm makes use of the ML-like O-RAN reports approach, such as
introduced in Section 3. Our approach considers a ML algorithm that uses the reported

1https://github.com/KleberVilhena/LTE-NS3
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Table 1. Simulation Parameters

Characteristics Description Value

The Central Tower Macrocell One LTE eNB + NR gNB

Remaining Towers Macrocell Six towers

Center Frequency Frequency at which a signal
or communication channel

Using 3.5 GHz

Bandwidth Capacity of a communication
channel or network to trans-
mit data

Using 20 MHz

ISD(m) Distance between two or
more sites in a network

≈ 600 meters

Mobile UE Number of mobile users 100, 75 and 50

Mobility model Mobility used by UEs Random Walk

locations to calculate the distance between each UE and eNodeB and then performs a
handover to a UE if its distance to the neighboring cell is less than that of the serving cell.

We evaluate our algorithm using widely used metrics including delay, jitter, Packet
Delivery Ratio (PDR), and throughput. Specifically, jitter and delay are key indicators
of network performance. Delay represents the overall time taken by a packet to travel
through the network, while jitter pertains to the variability in packet arrival times. Factors
such as propagation time, processing time at network devices, and queuing time con-
tribute to delay, which is essential for ensuring efficient and dependable communication,
particularly for applications requiring minimal latency [Gavrilovska et al. 2020]. On
the other hand, PDR measures the success rate of packet receipt relative to the number
sent, highlighting the effectiveness of traffic management in congested networks. Finally,
throughput quantifies the volume of data, a network can successfully transmit over time,
factors like bandwidth, signal quality, and network congestion play significant roles in a
5G network’s data transfer capacity [Zhang et al. 2022, Riyanto et al. 2023]

4.2. Results
Figure 3 shows our PDR evaluation, which compares the traditional O-RAN with the
O-RAN AI-based, which will show how the AI-based can deliver more packets until the
networks are still more stable. The figure uses the number of users to evaluate the scenario
with different quantities of clients and the number of packets transmitted simultaneously.
We see a similar design in the first 50 clients. However, the traditional design shows a
third quartile with low values for which the AI base does not fit, reaching the traditional
approach reaching around 67%, while the O-RAN AI-based reach values around 97,5%,
which means an approach with average values. The boxplot of 75 and 100 UEs also shows
a constant improvement of PDF on our simulated network in the traditional UE, reaching
values of around 91,5% and 86%, while the AI-based reaches around 93% and 87%. In
that way, the evaluation demonstrates more unstable results in traditional methods with
larger third quartiles and standard deviation.

Figure 4 provides a comparative analysis of throughput in Mbps across two Open
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Figure 3. PDR results for different number of mobile users

RAN configurations as the number of UEs scales up. The AI-based O-RAN consistently
outperforms the Traditional O-RAN, maintaining higher throughput as evidenced by the
boxplot medians. With 50 UEs, the AI-based system shows a minor advantage, with
throughput values tightly clustered around the 1.40 Mbps mark, while the Traditional
system lingers slightly lower. At 75 UEs, the AI-based system’s throughput remains above
1.35 Mbps, whereas the Traditional system begins to show a wider spread, indicating
less consistency. This trend continues as we reach 100 UEs; the Traditional O-RAN’s
throughput shows increased variability and a lower median, with the spread below the
1.30 Mbps threshold, highlighting a noticeable decline in performance. In contrast, the
AI-based system’s throughput demonstrates resilience, with its lower quartile not dipping
significantly, suggesting that even with increased load, the AI-based approach sustains
superior throughput performance.
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Figure 4. Throughput results for different number of mobile users

Our evaluation of delay in the network scenario highlights a comparison between
the two approaches based on the number of users as presented in Figure 5. Our O-RAN
AI-based approach generally shows a more stable scenario and minor average values. The
boxplot evaluation shows how stable and dynamic a scenario with more clients would be
than the traditional scenario, having a variety of around 12,6 and 17,4 ms with 75 users,
while the AI-based has only 12,4 ms and 15,5 ms on average. That means a quality of
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signal with a more dynamic application that needs faster delivery of packages. Therefore,
the results with 100 users are the same as those with 75 users. However, AI-based delay
shows a larger third quartile to low values, which means this approach probably has a ratio
of a minimal delay reaching 17,5 ms. In comparison, the traditional approach deviation
reaches around 18,80 ms.
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Figure 5. Delay results for different number of mobile users

Figure 6 compares jitter, measured in milliseconds, across traditional and AI-
based O-RAN systems as the number of UEs increases. The AI-based approach consis-
tently demonstrates lower jitter, with averages of approximately 12.4 ms for 75 users and
a maximum jitter value of around 15.5 ms, signifying a stable and reliable network perfor-
mance. In contrast, the traditional O-RAN exhibits more significant variability, with jitter
ranging up to 18.8 ms for the same number of users. This difference is even more pro-
nounced with 100 UEs, where the AI-based system’s third quartile suggests a preferable
delay profile, rarely exceeding 17.5 ms, compared to its traditional counterpart. These
discrete values clearly illustrate the superior capability of the AI-based O-RAN in main-
taining lower jitter and, consequently, a higher quality of service in network scenarios
with a dense user base.
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Figure 6. Jitter results for different number of mobile users

Figure 7 shows the handover frequency within traditional O-RAN and AI-based
O-RAN by the simulation time. In the AI-based O-RAN, the number of handovers re-
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mains comparatively lower and more consistent, ranging from approximately 6 to 9 han-
dovers. This consistency underscores a stable network performance, likely due to the AI’s
predictive capabilities in optimizing handover events. Conversely, the traditional O-RAN
shows a broader fluctuation in handover frequency, with numbers spiking to as high as 14
handovers and a noticeable variability at different time stamps.
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Figure 7. Number of handovers results by the time of simulation

5. Conclusion and Future Works

This paper evaluates the performance of O-RAN in a handover scenario involving up to
one hundred users when the system is configured with both traditional and ML-based
handover schemes. Otherwise, with a traditional handover method, our approach offers
greater personalization to each xApp within the O-RAN framework, which is enabled by
the near real-time RAN Intelligent Controller (RIC). The results reveal a noticeable en-
hancement in utilizing the O-RAN environment to establish a predictive model for UE
positioning. Consequently, the relative improvement in PDR ratio means a better align-
ment with the client’s location across each eNB.

The xApp brings with it considerable computational and programmable functions
on RIC. However, the moment when the code calls the ML xApp also shows some issues
with the behavior of the network signals. That means some problems for whom UE the
eNB will link. The ML does not choose all the links between the UEs and eNBs simul-
taneously. That demonstrates the complexity of the behavior of the network resources
during each handover.

In future works, we will explore innovative ML implementation strategies to en-
hance throughput and minimize delay. It includes integrating time series and other ML
models renowned for their precision, such as Renet or Inception. Thus, enhancing the
system could involve scaling up the distance range with simulation metrics that closely
resemble real-world conditions, surpassing the constraints found in the literature [Lacava
et al. 2023b]. Other approaches include a seamless handover protocol and a selection
algorithm optimized with deep reinforcement learning. That can improve the average
downlink data rate [Wang et al. 2021]. It entails incorporating more clients and eNBs
and extending the distance range. Such enhancements refine the scenario and advance
our efforts to provide better QoS support for mobile users in O-RAN environments.
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