
Evaluating L4S Framework Performance with
Programmable Data Plane Hardware

Leandro C. de Almeida1, Paulo Ditarso Maciel Jr.1, Fábio L. Verdi2
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Abstract. L4S, which stands for Low Latency, Low Loss, Scalable Throughput,
is an initiative within the Internet Engineering Task Force (IETF) dedicated to
enhancing the performance of real-time interactive applications across the In-
ternet, like online gaming, video conferencing, and virtual reality. Its core prin-
ciples revolve around implementing a novel variant of congestion control (CC)
algorithm on end hosts and deploying an Active Queue Management (AQM)
scheme on network nodes. Evaluating AQM algorithm adherence within the L4S
framework on conventional network devices is challenging due to limited access
to implementation details. However, the game changed with the introduction of
data plane programmability, which facilitates the incorporation of intelligence
during packet processing at the hardware’s most proximate level, without the
necessity for control plane intervention. In this context, this paper evaluates the
implementation of two key L4S-capable algorithms, iRED and PI2, using a real
hardware P4-capable switch (Tofino2). The evaluation aims to verify the adher-
ence of these algorithms to the L4S framework and observe their coexistence
with non-L4S flows. Through controlled variations in bandwidth and delay, we
assess the “goodput” metric to understand under what conditions iRED and
PI2 demonstrate enhanced fairness.

1. Introduction

Over the past thirty years, the topic of Internet congestion has received widespread
attention from the scientific community [Peterson et al. 2022]. Since the first paper
[Jacobson 1988] published, Internet congestion has been consistently characterized as
a “resource allocation” problem. In the context of this work, these “resources” can be
understood such as both link bandwidth and buffer space. Based on this understanding,
congestion control (CC) mechanisms were created to allocate resources fairly within the
shared network infrastructure.

To achieve greater fairness in the use of shared network resources, CC mecha-
nisms reduce the transmission of additional data packets within the network. However,
depending on the intensity and attributes of the network traffic, the CC mechanisms im-
plemented at the host level may prove insufficient in ensuring optimal network utiliza-
tion. Such limitations arise when network buffers are full, forcing the router to employ
a tail-drop mechanism to discard the most recently received packets. This approach



is considered suboptimal due to its propensity to induce “TCP global synchronization”
[Malangadan et al. 2023]. In this case, the CC process necessitates the integration of aux-
iliary mechanisms to mitigate network congestion, such as Active Queue Management
(AQM), a traditional mechanism employed in network device queues.

In summary, AQM is an active approach to mitigating congestion in computer
networks. Instead of simply storing packets in a queue until the router is ready to trans-
mit them, AQM actively monitors the queue and takes steps to prevent it from reach-
ing harmful congestion levels. This is done by discarding packets before the queue
reaches its maximum capacity, using algorithms such as RED (Random Early Detec-
tion) [Floyd and Jacobson 1993], to proactively identify packets and control the rate of
data entering the network. By doing so, the active management of queues helps ensure a
smooth traffic flow and improves overall network performance.

Recently, the IETF proposed a new framework that enables Internet applications
to achieve Low queuing Latency, Low congestion Loss, and Scalable throughput con-
trol (L4S) [Briscoe et al. 2023]. The L4S architecture introduces incremental changes to
both hosts and network nodes. On the host side, L4S incorporates a novel variant of a
“Scalable” CC algorithm, known as TCP Prague [Briscoe et al. 2018]. It adjusts its win-
dow reduction in proportion to the extent of recently observed congestion. This stands
in contrast to “classic” CC algorithms, which typically implement a worst-case scenario,
reducing by half upon detecting any congestion signal. At network nodes, L4S introduces
a dual-queue coupled mechanism [De Schepper et al. 2023], within AQM, wherein one
queue is designated for Classic Traffic and another for Scalable Traffic. This coupled
mechanism facilitates fair bandwidth utilization, ensuring harmonious coexistence be-
tween congestion control flavors. Assessing the adherence of AQM algorithms to the L4S
framework using standard network equipment presents a modern hurdle though, mainly
due to the limited access to implementation details typically confined to network hardware
manufacturers. Nevertheless, harnessing the programmable data plane, as highlighted in
[Barefoot/Intel 2021], offers a pathway to deploy these algorithms and delve into the nu-
ances of their operation more feasibly.

In this work, we evaluate the main L4S-capable algorithms currently implemented
in programmable data plane hardware, namely iRED [de Almeida et al. 2022] and PI2
[Gombos et al. 2022]. It is noteworthy that a hardware-programmable data plane offers
flexibility and support for rapid prototyping and iteration. This allows customization to
meet the specific needs of different applications and keep up with technological devel-
opments. Both algorithms were implemented in a local environment testbed, using a
P4-capable switch Tofino2. The proposed evaluation aims to confirm the adherence of
the two algorithms by the L4S framework, as well as the coexistence behavior between
L4S-compliant and non-L4S flows. To do that, we collect the “goodput” metric under dif-
ferent network conditions, by varying bandwidth and delay in a controlled manner. The
obtained results indicate in which circumstances iRED and PI2 exhibit greater fairness.

The rest of this paper is organised as follows. Section 2 presents related work. In
Section 3, we review the fundamental concepts about AQM and L4S. Section 4 describes
the AQM implementation in programmable data plane hardware. The proposed assess-
ment is presented in Section 5, by detailing the setup environment and obtained results.
Lastly, we present our concluding remarks and perspectives on future work in Section 6.



2. Related Work

It was challenging to find close related works, considering the novelty of evaluating AQM
solutions implemented in the data plane through an L4S framework. Therefore, we dis-
cuss the literature from three different perspectives, somewhat related to the proposed
work. Firstly, we highlight works that emphasize the importance of the addressed topic
[BoruOljira et al. 2020]. Then, we present solutions implemented in different areas, such
as cloud gaming [Ky et al. 2023] and INT [Nguyen et al. 2023]. We also include works
that propose an evaluation of L4S based on Linux or simulation [Srivastava et al. 2022,
Alli-Oke 2022]. Lastly, we describe the two proposals that will serve as the basis for the
evaluation intended in this work [De Schepper et al. 2016, de Almeida et al. 2022]. To
the best of our knowledge, this is the first work to evaluate the performance of the L4S
framework with programmable data plane hardware.

In [BoruOljira et al. 2020], the authors assess the behavior of dual queue coupled
AQM within the L4S architecture, stressing the importance of research reproducibility
and encouraging further investigation into L4S sharing behavior. They validate experi-
mental results on DCTCP and TCP Cubic flows using various AQM setups and explore
TCP Prague performance and per-flow pacing impact on bottleneck sharing. Experimen-
tal outcomes on the coexistence of DCTCP and TCP Cubic flows using PI2 SingleQ AQM
and DualPI2 DualQ AQM are presented. The network setup includes a bottleneck router
with DualPI2 AQM, 1 Gbps capacity for all links, and emulated RTTs using Netem.
Throughput observations reveal DCTCP flows achieving below fair share in dual queue
mode, while TCP Prague consistently reaches its fair share. TCP Prague with DualPI2
AQM meets L4S Internet service design goals without causing starvation for either flow.
However, L4S with DualPI2 AQM fails to provide window fairness between DCTCP and
TCP Cubic, showing sensitivity to packet bursts in L4S.

The research in [Ky et al. 2023] introduces a novel system for detecting cloud
gaming traffic in computer networks by combining P4 programmable hardware with un-
supervised machine learning (ML). Unlike traditional software-based ML methods, which
can be slow and less adaptable, this system leverages P4 hardware to accelerate parts of
the ML process while still maintaining accuracy with unsupervised ML techniques. A
new unsupervised ML model was developed to effectively identify cloud gaming traffic,
even when encountering new services. The model is also optimized for implementation
on P4 hardware. Results demonstrated that the system accurately and swiftly identifies
cloud gaming traffic, suggesting its suitability for use by internet service providers. The
experimental evaluation highlighted the efficacy of the P4 hardware switch for feature
extraction and the robustness of the ML model in classifying cloud gaming traffic accu-
rately.

In [Nguyen et al. 2023], the authors present a new monitoring approach for a P4-
based L4S implementation, utilizing In-band Network Telemetry (INT). This framework
offers real-time and fine-grained monitoring, enabling quick reaction times by delivering
precise network state information through various message buses like network sockets,
Kafka, or Redis. It identifies significant contributors by analyzing metrics such as times-
tamps and IP sources. The setup involves INT-capable P4-based L4S switches, client-
server pairs generating different traffic types, and a monitoring framework. Results indi-
cate low-overhead metric capture (e.g., queue delay, dropped packets) in real-time, align-



ing with previous studies and L4S switch expectations. Tests using TCP-Prague and TCP
Cubic congestion control algorithms demonstrate bandwidth sharing and the impact of
virtual environments on sending rates for both traffic patterns.

The work in [Srivastava et al. 2022] evaluates different strategies for managing
congestion in networks, focusing on the challenge of balancing effectiveness and low de-
lay in protocols that rely on delay-based CC alongside those that use loss-based CC. The
authors implemented these strategies in Linux and tested them in a controlled environ-
ment using Cloudlab. They assessed performance using metrics like throughput and RTT
across scenarios with varying numbers of delay-based and loss-based flows. Parameters
were adjusted based on queueing delay, smoothed RTT, and backoff probability. Results
underscore the difficulty of achieving effective coexistence while maintaining low delay
in delay-based CC protocols when sharing a link with loss-based protocols.

The authors of [Alli-Oke 2022] explore AQM in computer networks, focusing on
its performance through simulations and numerical tests. They clarify the mathemati-
cal foundations of AQM, drawing from feedback control theory, and dispel misconcep-
tions. Using software such as MATLAB-Simulink and NS-3, they simulate various AQM
schemes and compare results for accuracy. Additionally, they outline the implementation
of proportional-integral-derivative (PID) controllers, including the transformation of con-
tinuous controllers into discrete ones using bilinear transformation. The article highlights
considerations such as traffic balancing, variable selection, and proper packet discarding
in controller-based AQM simulations. Overall, it serves as a valuable resource for under-
standing and analyzing AQM algorithms based on control systems, providing simulation
files for further research.

Queue occupancy is crucial for AQM algorithms as it informs the probability of
packet drops. The PI2 algorithm [De Schepper et al. 2016] uses queue delay per packet
to determine dropping decisions in the egress pipeline. It’s a linearized AQM based
on the Proportional Integral (PI) algorithm, employing queue delay and PI gain factors
to trigger drop policies. For classic TCP, the output probability of the PI controller is
squared for drops, while for scalable TCP, it’s doubled. In contrast, the iRED algorithm
[de Almeida et al. 2022] operates in both ingress and egress pipelines, deciding packet
drops based on average queue size and dropping probability. If iRED decides to drop,
it clones the packet and sends it back to indicate congestion. The original packet is for-
warded. This prevents future queue increases. Both algorithms are examined for adher-
ence to the L4S framework.

3. Fundamental Concepts
The objective of this section is to present the conceptual foundations concerning AQM
and L4S. We aim to describe how L4S-capable AQM mechanisms could potentially be
integrated into programmable data plane hardware, offering insights into their implemen-
tation possibilities.

3.1. Active Queue Management
The main objective of an AQM algorithm is to effectively manage network congestion
and prevent queues from reaching their maximum buffer capacity. The primary methods
for conveying congestion conditions to senders include packet marking using Explicit
Congestion Notification (ECN) bits and selective packet dropping.



Utilizing ECN for packet marking plays a role in congestion control by explicitly
indicating to CC mechanisms that they should reduce their transmission rates. We can
observe that CC mechanisms take advantage of the ECN bit marking covering DCTCP
[Alizadeh et al. 2010] and, more recently, TCP Prague [Briscoe et al. 2018].

On the other hand, in the scenario of probabilistic packet discards by an AQM
mechanism, CC stands to gain from the process of fast retransmission. In this instance, the
sender detects the occurrence of duplicate acknowledgments (typically three) and initiates
the retransmission of the packet that had been deliberately discarded by the AQM as part
of its congestion mitigation strategy within the router’s queues [Peterson et al. 2022].

3.2. L4S - Low Latency, Low Loss, and Scalable throughput

As briefly mentioned previously, the L4S architecture shown in Figure 1 introduces incre-
mental changes to both the hosts’ CC algorithm and the AQM at the network nodes. The
modifications proposed by L4S were motivated by some requirements, such as: L4S-ECN
packet identification, accurate ECN feedback, fall-back to Reno-friendly on Loss, fall-
back to Reno-friendly on classic ECN bottleneck, reduce RTT dependence, scale down to
the fractional window, and detecting loss in units of time [Briscoe et al. 2018].
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Scalable 
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Classic AQM 
drop

L4S AQM 
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Priority 
scheduler

Coupling

Dual-Queue Coupled AQM 
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Figure 1. Dual-Queue AQM in L4S architecture. Adapted from
[De Schepper et al. 2023].

In this context, L4S introduces two distributed mechanisms that work together to
achieve the requirements listed above. The first of these reside in the scope of a host,
being the scalable CC algorithm, the TCP Prague1[Briscoe et al. 2018]. It is a modified
version of DCTCP [Alizadeh et al. 2010] for safe use over the Internet. As is well-known
by TCP researchers, DCTCP is suitable only for data centers, where the administrator can
arrange the network to work properly for frequent ECN-marking. However, this is not so
simple for the public Internet, as DCTCP flows would certainly starve classical flows. To
avoid this problem, TCP Prague incorporates minor adjustments from DCTCP.

The second mechanism resides in the network nodes as a Dual-Queue coupled
AQM [De Schepper et al. 2023], which is responsible for maintaining a harmonious co-
existence between both flavors of CC algorithms, Classic and Scalable. The Dual Queue
coupled AQM mechanism, specified in the RFC9332 [De Schepper et al. 2023], was de-
signed to solve the coexistence problem, accommodating flows into separated queues for
Classic (larger delay) and Scalable (small delay) CC flavors, as can be seen in Figure 1.

1The name is after an ad hoc meeting of IETF in Prague in July 2015.



Despite the use of distinct queues with varying depths (shallow and deeper), band-
width consumption remains uniform across flows. Achieving equitable resource alloca-
tion involves the interplay between the Classic and Scalable queues. This interaction en-
ables the Classic queue to perceive the square of congestion levels in the Scalable queue.
This squared level is then offset by the sending rate of the classic sender (rc) in response
to a congestion signal, characterized by rc ∝ 1/

√
pc, where pc denotes the loss level of

the Classic flow. On the other hand, the Scalable sender rate (rs) follows an inverse linear
approach, characterized by rs ∝ 1/ps, where ps denotes the loss level of the Scalable
flow. This linearity characterizes scalability in response to congestion.

4. AQM implemented in programmable data plane hardware

In this section, we offer a concise overview of the first L4S-capable AQM algorithms
currently implemented into programmable data plane hardware, namely iRED and PI2.

4.1. iRED - ingress Random Early Detection

iRED was designed under three fundamental premises: i) Performing probabilistic packet
dropping with minimal overhead; ii) Supporting and adhering to current Internet conges-
tion control mechanisms, such as the L4S framework; iii) Being fully implemented in
the data plane hardware. In the following paragraphs, we will describe the details and
challenges of implementing iRED on the Tofino2 programmable switch2.

Regarding the first premise, iRED discards packets as soon as possible to mini-
mize overhead on the switch, i.e. in the Ingress block. However, the data (queue metadata)
necessary to calculate the drop probability is available after the Traffic Manager, i.e. in
the Egress block. In this context, iRED divides this operation into two parts, making
it a disaggregated AQM. As can be seen in Figure 2, decisions are made at the Egress
Pipeline, while actions are performed at the Ingress Pipeline.
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Classic Queue

iRED Decision

Mark 
ECN
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iRED Action

forwarding
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Future Packet

Queue 
delay
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2p
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iRED - ingress Random Early Detection

Scalable Queue

Figure 2. iRED design: disaggregating the action of a drop decision reduces
wasted resources.

In alignment with the second premise, iRED provides support for the L4S frame-
work. Initially, the classification process is performed in the Ingress block, in which the
logic identifies the type of flow (L4S or non-L4S) and enqueues it to the corresponding
output queue. Furthermore, the coupling mechanism is implemented in the Egress block.

2The previous version of iRED [de Almeida et al. 2022] was deployed in a software switch environment.



In this scenario, iRED dynamically adjusts the drop probability or marking based on the
flow type (Classic or Scalable).

Finally, iRED is fully implemented in hardware, enhancing autonomy by per-
forming AQM functions solely within the data plane, thereby eliminating the need for a
control plane or external mechanisms to execute specific tasks. In this context, it is well-
established that AQM logic needs the utilization of complex mathematical operations,
including multiplications, divisions, and square roots. Furthermore, certain sections of
the logic require the implementation of more sophisticated functions, such as exponen-
tial moving averages or similar calculations. iRED overcomes these challenges imposed
by the architecture and implements the logic entirely in the data plane using available
resources, such as bitshift to represent mathematical operations and compute the Expo-
nentially Weighted Moving Average (EWMA).

At the Egress block, iRED computes the queue delay EWMA (or queue depth3) for
each packet, entirely within the data plane. The inherent absence of division and floating-
point operations poses challenges in calculating average values within the data plane. To
overcome this constraint, as applied in [Busse-Grawitz et al. 2019], iRED employs an
approximation method following the Eq. 1:

St = α · Yt + (1− α) · St−1, (1)

where St is the updated average queue delay, St−1 is the previous average queue delay, and
Yt is the current queue delay. The constant α ∈ [0, 1] determines how much the current
value influences the average. iRED uses α = 0.5, such multiplication can be replaced by
bit shifts operations. The output of the EWMA will represent the average queue delay over
time. If the value observed (average queue delay) is between a set of min-max thresholds
defined, iRED will compute the drop probability according to the RED approach. After
that, based on the coupling mechanism, it generates different congestion signal intensities
(drop or marking).

Once the iRED decision module (Egress) has detected that a packet must be
dropped (Classic), iRED must notify the action module (Ingress) to perform this action.
The first challenge in the programmable data plane context is to achieve communication
between the Ingress and Egress blocks with minimum overhead. Obviously, iRED will not
drop the packet that generated the discard decision, but a future packet [Chen et al. 2019].
Discarding future packets is one of the main features differentiating iRED from other
state-of-the-art AQMs. For the congestion notification to reach the Ingress block, iRED
creates a congestion notification packet (cloned packet with only 48 bytes) and sends it
through an internal recirculation port to reach the Ingress block.

The iRED action module, situated in the Ingress block, maintains the congestion
state table on a per-port/queue basis and activates the drop flag (ON) for the corresponding
port/queue. The current packet is forwarded to the next hop without introducing any
additional delay. Subsequently, future packets intended for the same output port/queue,
where the drop flag is set to ON, will be dropped (classic), and the drop flag will be
reset to OFF. This mechanism, facilitated by iRED, ensures that the Ingress pipeline can

3The programmer can choose whether to use iRED’s delay-based or depth-based approach.



proactively mitigate imminent queue congestion.

4.2. PI2

PI2 is a linearized AQM for both classic (TCP Cubic) and scalable (TCP Prague) flows,
based on the Proportional Integral (PI) controller [De Schepper et al. 2016]. The PI2 uses
queueing information (delay) per packet periodically (T interval) in conjunction with PI
gain factors (α and β) to trigger the packet drop policy, as described in Equation 2.

p = p+ β(τt−1 − τt) + α(τ0 − τ1) (2)

Any alteration in the queue, be it an increase or decrease, is promptly rectified
through the application of a proportional gain factor denoted as β. Meanwhile, any
persisting deviation from the target, referred to as residual error, is gradually attenu-
ated towards the target through the utilization of an integral gain factor, denoted as α
[Gombos et al. 2022]. The output probability of the basic PI controller is squared when
dropping classic TCP packets or doubled when marking scalable TCP traffic. PI2 AQM
proved that by simply squaring the output PI probability, the PIE auto-tuning and several
heuristics could be removed.

Parser

Ingress Pipeline

IPv4 Forwarding Deparser

Egress Pipeline

PI2 AQM

PI Controller
Control Plane

Data Plane

Figure 3. PI2 overview: the PI controller, positioned at the Control Plane, retrieves
the queue delay from the data plane to compute the drop probability.

PI2 for P4 is an implementation for TNA [Gombos et al. 2022]. It has part of the
logic implemented in a control plane, as detailed in Figure 3, to perform the required com-
plex arithmetic operations that can not be handled by the data plane due to the restricted
set of math operations in the programmable data plane architectures. The control plane
periodically retrieves the queuing delay from the data plane and uses it in the PI Controller
to determine the probability of drop (Classic) or mark (Scalable) [Briscoe et al. 2023].

The direct execution of complex mathematical operations within the pro-
grammable data plane remains a challenging task. As elucidated by the authors in
[Gombos et al. 2022], these inherent constraints necessitated the utilization of the control
plane for the implementation of the PI controller. Consequently, the principal limitation
of PI2 manifests itself in its reliance on the control plane, thereby incurring an additional
delay in the computation of the PI controller.

5. Evaluation
Environment description. Our testbed is based on a P4 programmable switch (Edgecore
DCS810 - Tofino2). The switch connects two Linux hosts, Sender and Receiver, having



25Gbps of link capacity, as shown in Figure 4. Seeking to analyze the coexistence and
fairness between different versions of TCP, each end-host sends TCP Cubic and TCP
Prague flows. We conducted our experiments over the different network conditions shown
in Table 1, varying bandwidth, RTT, and MTU. The bandwidth is emulated by the P4-
switch using the port shaping feature. The base RTT is emulated in the Receiver by the
tc netem tool, delaying the ACKs of TCP flows. The MTU is emulated in the end-hosts
(Sender and Receiver) by the ifconfig tool. The iperf tool is used to generate traffic.

Cubic

Prague

TMIngress Egress

Cubic

Prague

Sender Receiver
Tofino2

25Gbps 25Gbps

Figure 4. Evaluation setup: Cubic and Prague flows coexist in the same scenario,
sharing the programmable switch bandwidth.

Table 1. Configuration parameters.

Configuration Bandwidth(Mbps) RTT(ms) MTU(Bytes)

I 120 10 1500
II 120 50 1500
III 1000 10 1500
IV 1000 50 1500

Load description. The load applied to the experiment comprises 4 phases of 120
seconds each. New flows enter the system in each phase, starting from low to a high load
(bottleneck condition), as used in [Gombos et al. 2022]. The number of Cubic and Prague
flows are shown in Table 2.

Table 2. Load parameters.

Phase Relative time Cubic Flows Prague Flows

1 0 1 1
2 120 2 2
3 240 10 10
4 360 25 25

AQMs settings. We use a base TARGET DELAY of 20ms for all AQMs. For
iRED, we set the minimum and maximum thresholds for queue delay, configuring 20
(TARGET delay) and 40 ms respectively, following the rule of thumb to set the maximum
threshold as at least twice the minimum [Floyd and Jacobson 1993]. For PI2, we set the



TARGET delay (20ms), INTERVAL (15ms), α (0.3125) and β (3.125), following the
parameters used in [Gombos et al. 2022].

5.1. Results

In this particular experiment, our main goal is to evaluate the support and adherence to
the L4S framework. The solutions evaluated were iRED [de Almeida et al. 2022] and
PI2 [Gombos et al. 2022]. Additionally, we aim to evaluate the harmonious coexistence
between non-L4S flows, conventionally referred to as classic (Cubic); and L4S-compliant
flows, denoted as Scalable (Prague). We used the setup described in Figure 4.

In alignment with the methodology outlined by [Gombos et al. 2022], our experi-
mental configuration involved traffic intensity loads comprising four discrete phases, each
spanning a 120-second duration. Within each of these phases, we introduced new flows
with specific flow pairs (1-1, 2-2, 10-10, 25-25) into the system. This sequential intro-
duction of flows allowed us to initiate the load with lower intensity and progress toward a
high-load scenario.

In the results for a 10ms baseline RTT and a bandwidth of 120 Mbps, respectively
illustrated in Figure 5(a) and Figure 5(b), becomes evident that a more equitable coexis-
tence between flows is achieved with the implementation of the iRED. Conversely, flows
employing the PI2 exhibit a relative disadvantage, with improved fairness only becoming
apparent in the latter half of the experiment, specifically during phases 3 and 4.
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Figure 5. Coexistence evaluation of Cubic and Prague flows (RTT base 10ms).

When we examine the evaluation outcomes for a 1 Gbps bandwidth and a base
RTT of 10 ms in Figure 5(c), it remains evident that the equitable distribution of shared
bandwidth among flows persists across all phases of the experiment when utilizing iRED.
In the case of PI2, despite the initial appearance of fairness in the coexistence of flows
during the initial phase of the experiment shown in Figure 5(d), this equilibrium does not
endure into phase 2.



The overarching conclusion drawn from our analysis of the results in Figure 5
suggests that, in the case of PI2, the intensity (i.e. the probability of marking the ECN
bit) required to mark packets from the Prague flow is insufficient during the initial phases
of the experiment. This deficiency in marking intensity becomes apparent due to the TCP
Prague flow, as its bandwidth consumption characteristics tend to dominate and not facil-
itate a fair coexistence with the TCP Cubic flow. Moreover, we believe that employing
a single queue to handle both scalable and classical flows presents a challenge for PI2
in achieving fairness in bandwidth allocation across all experiment phases. Furthermore,
iRED’s practice of not immediately discarding the packet indicating congestion but rather
the subsequent packet results in a more efficient utilization of bandwidth by classical
flows.

Figure 6 presents the results from scenarios in which the baseline RTT is config-
ured to 50 ms, a value commonly encountered in long-distance networks. With a band-
width of 120 Mbps and an RTT of 50 ms, the observed outcomes closely parallel those
obtained with an RTT of 10 ms. Specifically, the iRED continues to exhibit superior fair-
ness in the coexistence of Cubic and Prague flows, as seen in Figure 6(a), while the PI2
attains fairness only in the later stages of the experiment, as can be seen in Figure 6(b).
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Figure 6. Coexistence evaluation of Cubic and Prague flows (RTT base 50ms).

However, in the case of 1 Gbps and an RTT of 50ms, the two approaches exhibited
a parallel pattern of behavior, as can be seen in Figure 6(c) and Figure 6(d). There was
a notable reduction in the performance of the Prague flow during the initial phase of the
experiment, followed by a more equitable coexistence between flows in the subsequent
three phases. In this particular scenario, we conjecture that the delayed feedback (ACK) to
the Prague TCP flow resulted in a slower initial ramp-up, as it is notably more dependent
on this metric [Briscoe et al. 2018]. This sensitivity likely contributed to the observed
behavior where Prague TCP experienced a significant drop in performance during the
initial phase of the experiment.



To comprehend the underlying factors behind the outcomes depicted in Figure 5
and Figure 6, we delved deeper into our assessment by examining the duration taken to
discard a packet. In the case of PI2, this time is defined by the queue delay computed for
each discarded packet. In other words, it means the time that a given packet stayed in the
output queue before being dropped. However, in TNA, there is no intrinsic metadata to
represent the queue delay. In this case, the traditional way [Gombos et al. 2022] to do it is
to compute the difference between egress global timestamp (egTstmp) and ingress global
timestamp (igTstmp). This difference represents the sum of the time spent in: Ingress
parser latency; Ingress processing latency; Ingress deparser latency; and Traffic Manager
latency. We create an internal bridge header to carry the igTstmp from Ingress to Egress,
and when the packet reaches the Egress block, we get the egTstmp to calculate the queue
delay. In the iRED case, the discarded packets are not sent to the output queue, so the
queue delay is always zero. However, the congestion notification needs to be carried to
the Ingress block, to which iRED uses recirculation. In this case, this time is defined by
the recirculation time for each notification packet sent from Egress to the Ingress.

Figure 7 depicts these time intervals on a millisecond scale through a boxplot
graph. It includes the quartiles q1, q2, and q3, as well as the lower (li) and upper (ls) limits.
Additionally, outliers are marked where applicable. Overall, it is noticeable that across all
scenarios analyzed in this study, the time taken to drop a packet was consistently shorter
in iRED compared to PI2. Such difference arises from iRED being a disaggregated AQM,
wherein the decision-making process is distinct from the action taken. This characteristic
ensures that dropped packets do not occupy bandwidth within the programmable switch.
Conversely, PI2 combines both decision-making and packet discarding exclusively in the
egress block, leading to bandwidth inefficiencies within the switch pipeline.
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Figure 7. Drop delay for each approach: recirculation time for iRED and queue
delay for PI2.

Table 3 outlines the average percentage disparity in bandwidth consumption be-
tween Prague and Cubic flows. Here, the smaller the difference, the fairer the bandwidth
division will be and, consequently, the coexistence of flows will be more harmonious. It’s
evident that iRED exhibits a variance between 0.03% (best case) - 6.47% (worst case),
underscoring fairness in bandwidth distribution. Conversely, PI2 exhibits a difference
between 2.06% (best case) - 25.0% (worst case), demonstrating a lack of fairness in the
division of bandwidth.

6. Conclusions
In this study we evaluate two main L4S-capable algorithms, iRED and PI2, implemented
in programmable data plane hardware, specifically utilizing a P4-capable switch Tofino2.
We highlight that the flexibility of hardware-programmable data planes allows for cus-
tomization to meet various application needs and adapt to technological advancements



Table 3. Average percentage difference for bandwidth consumption for Prague
and Cubic flows.

Configuration Algorithm Percentual Difference

I iRED 0.03%
I PI2 17.06%
II iRED 0.7%
II PI2 25.0%
III iRED 2.59%
III PI2 2.76%
IV iRED 6.47%
IV PI2 10.81%

quickly. The evaluation conducted in a local testbed environment aims to confirm the ad-
herence of these algorithms to the L4S framework and assess their coexistence with non-
L4S flows. It focuses on the “goodput” metric under varying network conditions, such
as bandwidth and delay. Results provide insights into the fairness exhibited by iRED
and PI2 under different circumstances. Our findings indicate that iRED demonstrates
superior fairness in bandwidth allocation between flows compared to PI2. Future work
may include investigating the performance of iRED and PI2 in larger-scale network en-
vironments with diverse traffic patterns. Additionally, exploring the adaptability of these
algorithms to evolving network technologies and optimizing them for specific application
requirements could be valuable. Further research could also examine their interaction
with other congestion control mechanisms beyond traditional L4S frameworks.
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