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Abstract. The optimization of virtual circuits in networks is often solved by heu-
ristics, such as Simulated Annealing (SA), due to the complex topology and
demand patterns. To reduce SA’s execution time, other techniques have poor
representation of the solution space or complex operations. We propose a solu-
tion space for SA that finds paths and optimizes the result simultaneously. The
proposal represents the entire solution space, with a tradeoff of higher dimen-
sionality. We compare with other heuristics and observe that the proposal finds
viable solutions, although it requires more execution time. This representation
can be used in scenarios where solutions based solely on k-shortest paths are
insufficient to achieve a near-optimal solution.

Resumo. A otimizagdo de circuitos virtuais em redes é muitas vezes resolvidas
com heuristicas, como o Arrefecimento Simulado (AS), devido a topologia e de-
manda complexas. Para agilizar a execucdo do AS, muitas técnicas utilizam
representagoes insuficientes ou complexas. Esse trabalho define um espaco de
solucoes para AS que faz a descoberta de caminhos e alocacdo dos fluxos si-
multaneamente. A proposta representa todo o espago de solucées, ao custo de
uma dimensionalidade maior. Compara-se a proposta com outras heuristicas
e observa-se que a proposta é vidvel, ao custo de mais tempo para execugdo.
Essa representagcdo tem potencial para cendrios onde respostas somente com
k-menores caminhos ndo sdo suficientes para atingir resultados quase otimos.

1. Introducao

No planejamento de recursos de rede, a crescente demanda de clientes e necessida-
des de qualidade de servigo distintas faz com que provedores de acesso dependam de
técnicas de engenharia de trifego para a alocagado eficiente de circuitos virtuais. Di-
versas tecnologias para encaminhamento de trdfego como Software Defined Networ-
king (SDN) [Agarwal et al. 2013], Multilayer Protocol Switching with Traffic Engine-
ering (MPLS-TE) e Segmented Routing (SR) [Seremete Causevié 2020] sao usados
para encaminhamento de fluxo na rede através de caminhos predefinidos. Provedo-
ras de acesso fazem uso dessa tecnologia para firmar contratos de comunicacdo entre
dois pontos de sua rede, muitas vezes entre unidades corporativas, e necessitam que
alocacdo prévia e a reserva de recursos tenha o menor impacto na rede. Problemas
de alocacdo de recursos mais complexos ou ndo lineares, como no caso de atraso de



fila M/M/1 [Bertsekas e Gallager 1992], ndo podem ser resolvidos com o uso direto de
programacao linear. Para isso, sdo necessarias heuristicas para encontrar uma solugao.

Diversos trabalhos otimizam métricas através de heuristicas proprias, que redu-
zem o espaco de busca ao fazer suposi¢cdes sobre o problema, que podem nao conter a
solucdo 6tima. Essas heuristicas utilizam representacdes que servem apenas a um con-
junto limitado de funcdes objetivo em problemas de rede. O Arrefecimento Simulado
(AS, ou Simulated Annealing) € uma meta-heuristica que pode representar todo o espaco
de solucdes e pode ser utilizado na solug¢ao de diversas fungdes objetivo com uma mesma
representacdo. Diversos trabalhos utilizam o AS para solucdo de problemas de otimizacao
nao-linear em redes, porém estes fazem o uso de representacdes menores que reduzem a
dimensionalidade do problema e o tornam mais rapidos na execucao, a custo de solucdes
piores.

Este artigo propde uma definicdo completa do espaco de solu¢des do Arrefeci-
mento Simulado para resolver problemas de alocacdo de fluxos em uma rede. Essa
definicdo € capaz de realizar simultaneamente a descoberta de caminhos e a alocagdo
de recursos entre caminhos descobertos, o que reduz a complexidade das operagdes. A
proposta faz uso das definicdes lineares de conservacdo de fluxo e nao define a funcdo
objetivo, o que permite que esse método possa ser utilizados em diversos problemas
de otimizag@o. O objetivo € avaliar a eficacia da solugdo proposta. Para isso, € feita a
implementa¢do de duas fungdes objetivo, minimizagdo de custo € minimizagdo de atraso
de fila, e a proposta serd comparada com o problema de programacao linear, um algo-
ritmo guloso para descoberta de respostas e uma segunda representacao de espagos para
Arrefecimento Simulado baseada em x menores caminhos. Viu-se que a representacao
proposta encontra respostas vidveis para o problema e encontra resultados melhores em
alguns dos casos avaliados, mas necessita de um maior nimero de iteracdes para alcangar
melhores resultados.

Este trabalho estd organizado da seguinte forma: A Sec¢do 2 aborda os trabalhos
relacionados. A secdo 3 define o escopo do problema a ser resolvido. A Se¢do 4 apresenta
a proposta de definicao do espago de solucdes e sua aplicacdo pratica. A Secao 5 apresenta
os experimentos para validacdo da proposta. A Secdo 6 discute os resultados obtidos e
finalmente a Secdo 7 conclui o trabalho.

2. Trabalhos Relacionados

O arrefecimento simulado, assim como algoritmos genéticos, ja foi utilizado na literatura
para solucdo de problemas envolvendo engenharia de trafego e projeto de redes. Ambos
os tipos de problemas sdo relevantes, ja4 que ambos necessitam de uma representacao de
espaco de solucdes. Para trabalhos com algoritmos genéticos, a etapa de mutacdo pode
ser utilizada como a pertubacdo do arrefecimento simulado, o que serd destacado adiante.

O trabalho de [Farrugia et al. 2023] resolve a maximizagdo de fluxos com o uso
de algoritmos genéticos. A representacdo de espago consiste no calculo prévio dos x me-
nores caminhos entre fonte e destino para cada par e a atribui¢do de um valor de fluxo
para cada um desses caminhos, o que limita a explorag¢ao de solu¢des que precisem de ca-
minhos ainda maiores. Em [Pi6ro e Medhi 2008] os autores apresentam a mesma técnica
para resolucao de diversos problemas de otimizagdo em redes. Essa técnica serd utilizada
como comparacao nesse trabalho.



O trabalho de [Riedl 2002] utiliza algoritmos genéticos com busca local para mi-
nimizar a maior utilizacdo de enlaces da rede. Nesse trabalho, métricas do protocolo
EIGRP da cisco sao utilizadas como referéncia, e o resultado consiste na defini¢do dessas
métricas por enlace ao invés da definicao individual dos caminhos por demanda. Essa
representacdo ¢é utilizada devido a facilidade de integracdo em redes cuja tecnologia ja é
utilizada, mas tem a desvantagem de ndo poder controlar o caminho individual de cada
fluxo na rede.

Ja [Yaghini et al. 2012] utiliza um hibrido de arrefecimento simulado e
programacdo linear para fazer projeto de redes, onde o espago de solucdes apenas in-
dica se um enlace € utilizado ou ndo. O calculo de custo é feito a partir da solu¢do do
problema de menor custo de multiplos fluxos através de programacao linear, com base nos
enlaces selecionados pela resposta atual. Nesse caso, cada iteragdo do algoritmo necessita
solucionar um problema de programacao linear, o que pode contribuir para um tempo de
execucdo elevado se comparado com solu¢des que envolvem apenas uma multiplicagao
de matrizes.

O trabalho de [La-Roque et al. 2020] resolve o problema de alocacao de compri-
mento de ondas em redes Gticas com algoritmos genéticos. Esse trabalho representa a
solucdo com a lista de n6s intermedidrios entre origem e destino, que é calculada com o
uso de uma fun¢do de descoberta de caminhos. As recombinagdes sdo feitas com base
nos nés comuns entre individuos e a mutacdo consiste no sorteio de um novo caminho a
partir de um ponto intermedidrio do caminho original sorteado pelo algoritmo. Essa abor-
dagem implementa uma realizacdo completa do espaco de solucgdes, ao custo de etapas
de cdlculo com alto poder computacional. Além disso, o corte e sorteio de caminhos nao
garante vizinhanga e pequenas pertubagdes, o que atrapalharia o processo de exploragao
no caso do arrefecimento simulado.

O trabalho de [Eren e Ersoy 2002] representa o espaco como uma lista que contém
os nos intermedidrios entre uma origem e um destino. O caminho € formado pela unido
dos menores caminhos entre a fonte e o primeiro elemento da lista, o primeiro e o segundo,
e assim por diante até o ultimo elemento e o destino. Essa abordagem necessita a execugao
de um algoritmo de descoberta de menor caminho multiplas vezes por iteragdo. Essa
abordagem exige o uso de algoritmos com alto custo computacional.

Este trabalho apresenta uma novo espaco de solu¢des para uso com Arrefecimento
Simulado em problemas de otimizacdo de alocagdo de circuitos virtuais ou fluxos. Essa
representacdo difere da literatura ao realizar a descoberta de caminhos e a otimizacao de
forma simultanea, o que nao restringe a solug¢do a respostas que contenham caminhos nao
convencionais (como por exemplo os x menores caminhos). A contrapartida € o aumento
de dimensionalidade, que deve ser compensado com um maior tempo de processamento
para respostas vidveis em comparac¢ao com as outras solugoes.

3. Definicao do Problema

Este trabalho restringe-se a problemas de planejamento de recursos de circuitos virtuais
em redes, obtidos através de relagdes contratuais entre clientes e provedores de acesso.
Estas relagdes contratuais mudam com frequéncia relativamente baixa, portanto sdo com-
pativeis com algoritmos que exigem um tempo de computacao maior. Assim, as deman-
das que sdo definidas para serem otimizadas permanecem as mesmas durante alguns dias,



enquanto a topologia da rede se mantém a mesma durante o processo de alocacdo de
NOVOS recursos.

As variaveis e restricoes podem ser modeladas como um problema de fluxos multi-
produtos convencional, na qual diversos fluxos f = (s,t,d), na qual f € F, sdo definidos
com uma demanda d entre uma fonte s e um destino ¢. Todos esses fluxos devem ser
roteados através da rede, e todos os fluxos devem respeitar a capacidade c;; de cada enlace.
Define-se a rede como um grafo direcionado G = (V,£) definido por um grupo de vértices
V e enlaces £, na qual ha apenas um enlace que define a conexao entre qualquer par de
vértices i e j, ou seja, ndo existem dois enlaces (7,5) e (j,) definidos no mesmo grafo.
Pode-se definir o problema como:
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A varidvel xf] ¢ a quantidade de banda alocada ao enlace que liga 0 né ¢ ao né j para
definir o caminho do fluxo f, que é definida como um valor inteiro em (1d) para compor-
tar configuragdes realisticas. Valores negativos de fluxo alocado representam fluxos no
sentido contrdrio ao da dire¢ao do enlace. As restricoes fundamentais, que sempre estao
presentes independente do objetivo, do problema consistem na conservagao de fluxos na
rede, definido no termo (1b), e o limite de capacidade méxima de um enlace, definido no
termo (1c) como o somatdrio de todos os fluxos que passam em um enlace ser menor ou
igual a capacidade c;; de cada enlace (4,7).

No problema observado, o termo J (:cf]) da funcdo objetivo (1a) é o custo em
funcao do fluxo resultante dos enlaces. Para o Arrefecimento Simulado, ndo ha restrigdes
quanto a definicdo dessa fun¢do, que pode ser ndo linear ou até mesmo ndo analitica,
contanto que resulte em um valor numérico que deve ser minimizado. Duas funcdes serdo
avaliadas nesse trabalho: Minimizagao de custo e a minimizacdo de atraso de fila. A
minimizacdo de custo consiste no problema cldssico que consiste em associar um valor
de custo y;; [1/Mbps| para cada unidade de banda alocada para um enlace e somar o custo
para todos os fluxos da rede. A func¢do de custo resultante € definida como:

T(xig) =Y > wilall. )
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onde z;; € medido em (mas ndo limitado a) Mbps. O somatorio Z(z} j)ec Tepresenta o
somatorio para todos os enlaces (7,5), ja > € 0 somatorio para todos os fluxos. Ja a
equac¢do de minimizagao de atraso de fila, baseada no modelo de filas M/M/1, consiste no
calculo do peso dos enlaces em funcdo da fluxo alocado (em pps) e no atraso por enlace
resultante da equagado
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Figura 1. Diagrama de execug¢ao do algoritmo de arrefecimento simulado.

que apOs esse calculo contabiliza o custo total da rede com a mesma Equacgdo (2). A
defini¢do desse modelo € dada com mais detalhes em [Piéro e Medhi 2008].

3.1. Arrefecimento simulado

O arrefecimento simulado é uma técnica de otimizacao probabilistica inspirada na natu-
reza que se simula o processo de tempera de metais. Esse método € baseado no algoritmo
de [Metropolis et al. 1953] e foi desenvolvido em [Kirkpatrick et al. 1983] para resolugdo
de problemas de otimizagao.

Para execucdo do algoritmo, é necessario definir um espago de solugdo .4, uma
fungdo de custo J(x) : A — R, que recebe uma ou mais entradas x € A e retornar
um ndmero real, e uma fungdo de perturbacdo P(x,e) = x' : A — A que retorna um
elemento x’ que estd na vizinhanga de x, e cujo alcance dessa vizinhanga pode ser ajustado
em funcdo de um parametro e. Através de multiplas execucdes da funcdo de pertubagio,
deve ser possivel alcangar todos os elementos em A.

A execugdo do algoritmo esta descrita na Figura 1. Antes de iniciar, € necessario
definir o nimero de execugdes do algoritmo de Metropolis /V, o nimero de etapas de
reducdo de temperatura /K, a temperatura inicial 7 e o ajuste da perturbacao €. Para cada
iteracdo de K, a temperatura atual ¢(k) € calculada a partir da equagao:
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derivada em [Geman e Geman 1984]. J4 para cada etapa de execucao do algoritmo de
Metropolis, a perturbacdo é aplicada ao estado atual x, resultando em um novo estado
potencial x’. Calcula-se a probabilidade de aceitar o novo estado potencial com base no
estado atual segundo a equagdo baseada na distribui¢do de Boltzmann-Gibbs:

_JIEN=J(x)
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onde v é uma amostra de uma distribui¢ao uniforme entre 0 e 1. Assim, se J(x') <
J(x), o valor de x sempre é atualizado com o candidato. Caso contrario, ele dependera
do resultado da Equacdo (5). Esse processo se repete até que ocorram K redugdes de
temperatura, e cada reducdo ocorre apds N iteragdes do algoritmo de Metropolis. Ao
longo de todo o algoritmo, o resultado x™" com o menor .J(x) é sempre salvo.
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Figura 2. Exemplo de formacao da matriz F.

4. Definicao do Espaco de Solucoes

A defini¢do do espaco de solugdo € feita a partir das equacdes de conservacao de fluxos
definidas na Equagdo (1b). Considere que x/ é o vetor com valor de vazdo resultante de
cada enlace para uma dnica demanda f. A restricdo de conservagdo de fluxos pode ser
reescrita como o sistema linear:

Fx! =d/, (6)

no qual F € {—1,0,1}"*™ é a matriz de conservacdo de fluxos e d/ € Z" é o vetor de
demanda. Cada elemento de d’ representa um né no grafo e ele codifica a informagio
de demanda no n6 fonte como +dy e no né destino como —dy, onde dy € o valor de
demanda solicitado. Assim, cada equagdo representa a conservagao de fluxos resultante
de um né, e qualquer valor x/ proposto que seja uma resposta dessa equagio respeitard
a conservagdo de fluxos em toda a rede. Cada linha da matriz I’ representa um vértice
da rede analisada e cada coluna da matriz F' € um vetor que indica a origem e o destino
de cada enlace. Podemos comparar a construcao de uma matriz /' com uma topologia de
exemplo na Figura 2.

Para cada demanda, a solucdo x/ pode ser separada em uma solucdo particular xg

e uma solugao Xg no espaco nulo de F, representado pela matriz N € Z**™. Assim,

podemos encontrar uma solucio para x/ a partir da equacio:
x/ = Xg + Nry, (7)

onde y € ZF sdo as varidveis livres que serdo utilizadas no algoritmo. A matriz Np
depende unicamente da topologia da rede, portanto o cdlculo de Ny € realizado apenas
uma vez para todos os fluxos.

Existem diferentes técnicas para obtencdo de x, ¢ Np. A técnica utilizada nesse
trabalho para a obtengao dos valores de x, € Ny consiste na obten¢ao da forma escalonada
reduzida de F', que separa as variaveis independentes de x (que se tornam as varidveis de
y) e as transformacdes necessdrias para a transformacdo em um resultado x, ji com a
adicdo dos termos independentes que fazem parte da solugdo particular x,. O processo de
eliminacao pode ser feito com a matriz aumentada [F |1 } para obter uma matriz elementar
M resultante da decomposi¢do. O uso dessa matriz elementar permite que as operagoes
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Figura 3. Exemplos de trafego “fantasma”: solucdes que respeitam a
conservacao de fluxo mas contém trafegos impossiveis (em vermelho).

feitas em F' possam ser replicadas em qualquer vetor de demanda, o que resulta nos termos
independentes sem a necessidade de repetir o processo de decomposi¢do. Assim, esse
método tem a vantagem de s6 precisar recalcular N se houver mudancgas da topologia da
rede.

4.1. Solucoes viaveis e trafego fantasma

Segundo o Teorema 6.4 de [Lima 2020], pode-se concluir que a representacdo em (7)
inclui todas as possiveis respostas que satisfacam a Equacdo (6), o que inclui todas as
possiveis combinacdes de caminhos que levem a demanda entre fonte e destino, incluindo
o valor 6timo para qualquer problema de otimizagdo soluciondvel. Essa representagdo €
completa, porém possui um espago mais amplo do que o necessario, com respostas que
ndo fazem sentido. O exemplo da Figura 3 ilustra essa situagdo: Ciclos fechados que
respeitam a conservacdo de fluxos s@o respostas validas, mesmo que esse trafego tenha
origem ou destino incompativeis com a demanda avaliada. Esse tipo de trafego aumenta
o valor de custo e pode fazer com que uma resposta parega violar as restricoes quando
ndo esta.

O trafego fantasma € reduzido ao longo do algoritmo se a fun¢do de custo for
construida de modo que esse trafego x' seja aditivo as solugdes vélidas x, ou seja, .J(x +
x') > J(x). Sob essa condigdo, espera-se que essas anomalias sejam minimizadas ao
longo da execug@o do algoritmo, ja que o AS prioriza respostas com menor J(x). Porém,
isso ndo impede que esses trafegos ainda aparecam na resposta final, que mesmo assim
pode ser vilida. E preciso realizar um pés processamento para exclusdo desses trafegos.

4.2. Definicoes de restricao e perturbacao

Para implementar o Arrefecimento Simulado no espaco proposto, é necessario definir a
fun¢do de pertubagdo e a implementagdo de restricdes. A primeira define a fungio P(x,¢)
que leva a resposta atual a uma resposta na vizinhanga e a segunda permite implemen-
tar restricoes ao problema que ainda ndo foram implementadas, tal como a restri¢do de
capacidade.

A funcdo de perturbacdo consiste em sortear € elementos da solucdo completa
Y € ZFIX1 e com igual probabilidade, somar um ou subtrair um do valor atual
desse elemento. Esse método ndo possui um viés e, com suscetivas repeticoes dessa
perturbacdo, é possivel explorar todo o espaco de solucdes. A escolha da funcao de



perturbacao ¢ arbitraria, ja que o efeito dessa funcdo na execugdo do algoritmo nao pode
ser previsto antecipadamente.

A defini¢do da restricdo de capacidade € feita através do acréscimo de uma
penalizacdo por violacdo na funcdo objetivo. A fungdo objetivo efetiva € escrita como

J(X) = (J(X)P + M[x]]5, ®)

em que o termo M ||r||3 acrescenta uma penalizagdo M proporcional a magnitude do vetor
r € Z/¢l, definido como o excedente de demanda além da capacidade em cada enlace, ou
seja: 1y = max()_; |xfc]| — ¢;,0). O termo M grande aumenta a magnitude do termo
de penalizacdo e faz com que a convergéncia seja para solucdes vidveis que, uma vez
encontradas, a probabilidade de retornar a regido invidvel segundo a Equacao (5) € baixa.
O termo ||r||3 pode ser acompanhado ao longo da execugdo do algoritmo para determinar
se a solucdo encontrada € vidvel ou ndo. Finalmente, a funcdo objetivo € elevada a um
fator p para aumentar ou reduzir a magnitude das variacOes causadas pela mudanca nas
respostas, o que impacta no grau de aceitacao de novas respostas candidatas.

5. Experimentos

Os experimentos realizados observam o comportamento do arrefecimento simulado na
solucdo de problemas com a representacdo de espaco proposta. Os dois problemas apre-
sentados na Sec¢ao 3 serdo analisados: Minimizacao de custo e o atraso de fila. Para cada
problema, duas quantidades de demandas sao utilizadas em trés topologias distintas para
avaliar quatro algoritmos: Programacgdo Linear, um algoritmo guloso, o Arrefecimento
Simulado com o uso de x menores caminhos e o Arrefecimento Simulado com a solugdo
proposta. A Programacdo Linear € utilizada somente no problema de minimizagdo de
custo, como forma de obter o valor 6timo e comparar com os resultados do algoritmo
guloso e do Arrefecimento Simulado. Ja no problema atraso de fila, sdo comparados os
resultados apenas do algoritmo guloso e do Arrefecimento Simulado.

Os hiperparametros para o Arrefecimento Simulado foram obtidos através de
otimizacdo Bayesiana [Frazier 2018]. A otimizacdo Bayesiana explora o espaco de hi-
perparametros de modo que os proximos pontos sdo escolhidos através das regides de
maior incerteza ap0ds a considera¢do dos valores dos pontos anteriores. O algoritmo aceita
apenas valores reais como hiperparametros de ajuste, portanto a seguinte modificacdo foi
necessaria: Os parametros do AS sao definidos como 7" = 107, ¢ = 10°, K = (10’“}
e N = [C/10*]. C € definido como um valor constante para que todas as execugdes
tenham aproximadamente o mesmo niimero de passos. Finalmente, temos que C' = 10°,
T € [0,3],e € [0,3],e k € [1,3]. O valor de C foi escolhido de modo que o problema mais
lento de se executar demorasse em média 30 minutos.

Para avaliar os resultados dos algoritmos, compara-se o valor encontrado por cada
uma das solucdes através do método de otimizacdo mencionado. Os menores valores
encontrados durante a otimizacdo Bayesiana sdo utilizados para comparar os resultados
com o algoritmo guloso e o de programacao linear.

Devido a natureza probabilistica do Arrefecimento Simulado, uma resposta vidvel
nao € garantida em todas as execugdes. Portanto, para avaliar a eficicia em obter solugdes
viaveis, executa-se repetidas vezes o algoritmo com os parametros encontrados e verifica-
se a razao de execucdes para encontro de solugdes vidveis, o tempo médio para encontrar



uma solugdo vidvel e o tempo médio de melhora da solucdo. O tempo para a solucio
vidvel € medido a partir do inicio da execugdo do algoritmo até o momento que ||r|| = 0,
como visto na Equacao (8). O tempo médio de melhoria mede, a partir do momento que
l|7||3 = 0, o tempo médio para que a solugdo atual seja substituida por uma solugdo me-
lhor. Para isso, conta-se quantas melhorias foram obtidas entre a descoberta da primeira
solugdo vidvel até o fim da execucdo do algoritmo.

O cddigo que implementa o algoritmo do arrefecimento simulado foi escrito
em Python3, com o uso das bibliotecas Numpy [Harris et al. 2020] para computacao
matricial e Matplotlib [Hunter 2007] para visualizacdo dos gréficos. A biblioteca
Networkx [Hagberg et al. 2008] define classes e diversos atributos para manipulagdo
de grafos em cddigo, e € utilizada para interpretar os grafos salvos em arquivos, calcu-
lar os K menores caminhos e gerar as matrizes necessarias a partir das informacdes do
grafo. O processo de decomposicao descrito na Secao 4 foi feito com o uso da biblioteca
Sympy [Meurer et al. 2017] que faz a decomposi¢do com computacao simbdlica. Todo o
c6digo com os experimentos estdo no repositério do Github!.

5.1. Topologias de redes utilizadas

Sao utilizados 3 grafos nesse trabalho: A topologia da Rede Nacional de Ensino e Pes-
quisa (RNP)?, da Gigabit European Academic Network (GEANT)? e uma terceira gerada
aleatoriamente. Para cada uma das topologias apresentadas, sdo sorteados 100 e 500 flu-
xos distintos, com demanda d = 1, para serem roteados através da rede. Para as redes da
RNP e da GEANT, os pesos dos enlaces sdo proporcionais ao atraso de propagacio, ji
para a terceira topologia € aleatdrio.

A rede aleatdria € assim construida: 60 nds sdo inicialmente conectados usando
60 enlaces de modo a formar um tnico anel com todos os nés. Apés isso, 40 pares de nds
sdo sorteados aleatoriamente para adicionar enlaces que conectem entre si. Esse processo
de formacgdo garante que todos 0s nds sdo alcangéveis por todos os outros nos.

Para comparar as redes, € feita uma anélise preliminar na Tabela 1. Nessa tabela
pode-se comparar o nimero de vértices, enlaces, a razao entre eles, o tamanho médio dos
caminhos, a conectividade média dos nds, a quantidade de varidveis livres encontradas
segundo o espaco de solugdes proposto, e as caracteristicas do problema de menor custo,
assim como o valor 6timo. A escolha darazdo de n6 e de enlaces na rede aleatéria manteve
a mesma proporc¢ao observada nas redes reais, o que também aproximou o tamanho médio
dos menores caminhos. A magnitude das respostas 6timas evidencia a necessidade da
compensacdo p vista na Equacdo (8) para que o resultado da Equacao (5) ndo resulte em
um overflow. Em cendrios reais onde o valor 6timo € desconhecido, esse valor pode ser
ajustado posteriormente, se forem observadas falhas nas execugdes prévias do algoritmo.

O numero de varidveis livres de y encontrado na Tabela 1 mostra um comporta-
mento esperado de crescimento proporcional ao tamanho da rede. Esse é o numero de
varidveis necessdrias para representar todos os possiveis caminhos que a demanda pode
percorrer. Assim, aumentar o nimero dos x caminhos para um valor além desse limite faz

Thttps://github.com/Fdms-3741/sa-mcfp

’Detalhes da rede disponiveis no site: https://www.rnp.br/sistema-rnp/infraestrutura-para-
pesquisa/evolucao-da-rede-ipe/.

3Detalhes da rede GEANT disponiveis no site: https://network.geant.org/gn4-3n/.



Tabela 1. Caracterizacao das redes de teste.

Topologia de Rede
Meétrica RNP  GEANT  Aleatério
V| 27 42 60
€] 33 68 100
V|/IE] 1,22 1,61 1,66
Tamanho médio menor caminho 3,80 3,29 3,54
Conectividade dos nds média 1,77 1,70 2,64
Varidveis livres (dim(y)) 7 27 41
Faixa de custo (141, 2567) (55, 3614) (1,9
Faixa de capacidade 100 fixo 100 fixo (100, 900)
Resultado 6timo PL (100 contratos) 247536 211316 1614
Resultado 6timo PL (500 contratos) 1392561 1015078 7683

com que o numero de operagdes por iteracdo seja maior do que o nimero com a solucao
proposta.

5.2. Heuristicas de comparacao

Duas heuristicas sao utilizadas nesse trabalho: Um algoritmo guloso e a representacdo de
Arrefecimento Simulado com base nos x menores caminhos.

A representac¢do por k-caminhos, como descrito em [Pi6ro e Medhi 2008], con-
siste no cdlculo prévio de x caminhos entre fonte e destino, por demanda. Para cada
demanda, um vetor u = (uy, us, us, . . ., u,) representa a solugdo atual, que consiste na
quantidade de fluxo que passa por cada caminho. Uma matriz auxiliar e bindria d.4, ma-
peia, para cada demanda d e para cada caminho p, os enlaces e contidos nos caminhos
para obtencdo dos valores de fluxo xf] com base nos valores de u; para cada caminho
pré-calculado.

O algoritmo guloso executa da seguinte forma: O algoritmo inicializa com o vetor
u zerado para todos os contratos. Para cada contrato, cuja ordem de preenchimento €
aleatoria, ele acrescenta uma unidade de demanda em cada caminho e avalia o aumento de
custo. Por ultimo, algoritmo escolhe o caminho que menor acresce ao valor de custo atual
e ndo viola nenhuma restricdo. O processo € repetido até que u = d ou seja impossivel
de continuar devido a restrigoes. Ja o arrefecimento simulado com x menores caminhos
simplesmente utiliza como entrada o vetor u de todos os contratos como entrada, e realiza
como funcdo de pertubacdo o mesmo processo descrito na Secao 4.2.

6. Resultados

Os valores de custo total, resultante da equagio (2) com custos y;; arbitrdrios, para cada al-
goritmo no problema de minimizacao de custo podem ser vistos na Tabela 2. Nessa tabela,
a comparagao percentual € feita em fungdo do resultado obtido através de programagao
linear para uma rede e um conjunto de demandas, como apresentado na Tabela 1. A Ta-
bela 2 mostra que o algoritmo guloso, mesmo com sua simplicidade, € capaz de obter
respostas melhores do que ambas as alternativas de execucdo do Arrefecimento Simu-
lado, porém falha em obter uma resposta vidvel em um dos casos. Observa-se também



Tabela 2. Resultados encontrados para o problema de minimizacao de
custo. A variacao percentual é comparada com o valor 6timo obtido por
programacao linear (PL). Os resultados com ’-’ nao obtiveram solugoes

viaveis.
Algoritmo
Demanda Rede Guloso AS k-caminhos AS proposto
100 RNP 249354(+0,7%) 271608(+9,7%) 272915 (+10,2%)
GEANT 217538(+2,94%) 46948 (+22,21%) 712665 (+237,25%)
Aleatério 1668 (+3,34%) 1842 (+14,12%) 26630 (+1549,9%)
500 RNP - 2170819 (+55,88%) 2048097 (+47,07%)
GEANT 1036857 (+2,14%) 1691061 (+66,59%) -
Aleatério 7889 (+2,68%) 11327 (+47,42%) -

Tabela 3. Resultados encontrados para o problema de atraso de fila. Os valo-
res sao comparados com o algoritmo guloso. Os resultados com ’-’ nao
obtiveram solugoes viaveis.

Algoritmo
Demanda Rede  Guloso AS k-caminhos AS proposto
100 GEANT 259,71 305,44 (+17,6%) 153,93 (-40,73%)
500 GEANT  1908,90 - -
100 Aleatério 119,57 148,47 (+24,16%) 270,26 (+126,02%)
500 Aleatério 616,28 871,21 (+41,36%) -
100 RNP 146,36 225,63 (+54,16%) 49,04 (-66,49%)
500 RNP  3575,05 - 187,52 (-94,7%)

que a variacdo percentual em relacdo ao valor 6timo varia fortemente entre redes avali-
adas, com uma tendéncia de aumento proporcional a complexidade do problema. Isso
pode ser associado a um tempo de execuc¢do insuficiente para a resolu¢do de problemas
mais complexos.

Ja a Tabela 3 mostra os resultados para minimizacao do atraso de fila, que utiliza
como custo dos enlaces a equagdo (3), onde os valores percentuais comparam os resul-
tados com o algoritmo guloso. Nesse caso, o Arrefecimento Simulado com o método
proposto foi capaz de encontrar respostas melhores do que o Algoritmo Guloso em trés
dos seis problemas avaliados. O uso de AS com k-caminhos obteve vantagem em apenas
dois dos cendrios: Um onde obteve uma resposta melhor que o AS proposto mas pior que
o algoritmo guloso e outro onde esse foi o tnico que encontrou respostas viaveis. Esse re-
sultado apresentou uma vantagem do Arrefecimento Simulado para solu¢io de problemas
nao-lineares, e o método proposto obteve vantagem na busca de novos resultados.

Na Tabela 4, vemos a razdo do nimero de execucdes que encontraram valores
vidveis sobre o numero total de execugdes, representado na coluna de repeti¢des. Essa
tabela apresenta a razao entre todas as execucdes que encontraram uma solugdo vidvel
sobre todas as execugdes realizadas para um determinado método e grafo, independente
dos parametros escolhidos. Como esses problemas nio representam nenhum congestio-
namento severo ou sobrecarga de rede, todas as execugdes do AS para k-caminhos en-
contraram respostas vidveis nas redes apresentadas. O método proposto ndo encontrou



Tabela 4. Taxa de encontro de solugoes viaveis para o AS proposto.

N° contratos Rede Taxa Repeticoes
100 RNP 89,1% 1479
GEANT  52,3% 822
Aleatério  44,1% 396
500 RNP 1,3% 501
GEANT 0% 183
Aleatério 0% 92

Tabela 5. Tempo médio para encontrar a solucao viavel para o método proposto.

Guloso AS proposto
N° de contratos Rede Tempo para resposta (s) Tempo para vidvel (s) Tempo de melhoria (s)
100 RNP 0,16 £ 0,04 18,11 £ 1,10 1,38 £ 0,10
GEANT 0,24 £+ 0,09 107,83 + 11,44 2,04 £0,24
Aleatdrio 0,09 £ 0,03 102,54 + 3,58 0,19 + 0,05
500 RNP 3,95 + 3,95 356,99 £ 37,37 1,91 £1,46

solucdes vidveis em todas as execucdes, € a razdo de respostas diminui a medida que o
ndmero de varidveis do problema aumenta. Essa condicdo novamente indica a necessi-
dade de um aumento no nimero de iteracdes, além apontar a necessidade de uma busca
por hiperpardmetros mais extensa.

Finalmente, os tempos para encontro da solucdo vidvel e de melhoria podem ser
vistos na Tabela 5. Os resultados apresentados sdo apenas para o algoritmo guloso e
o AS proposto, ja que o AS por k-caminhos encontra uma solu¢do vidvel na primeira
execugdo. Essa tabela mostra uma das desvantagens pela escolha do método: O tempo
de execucao € maior que o tempo para a execu¢do das heuristicas. Também pode-se ver
que o tempo aumenta consideravelmente com o aumento no nimero de variaveis, exceto
entre os problemas da rede GEANT e da rede aleatéria. Porém, esse fendmeno nio pode
ser observado com a mesma intensidade no tempo médio para melhoria, que manteve
todos os resultados proximos a 2 segundos. Esse tempo de melhoria rapido implica que,
durante essa parte final da execucdo do algoritmo, o algoritmo ainda estava encontrando
respostas melhores e ainda ndo atingiu um ‘“congelamento”, onde novos estados nao sao
mais encontrados ou a resposta ndo melhora mais. Isso é mais um indicio que o tempo de
execugdo do problema escolhido € insuficiente.

7. Conclusoes

Esse trabalho apresenta uma representacao do espaco de solugdes que pode ser utilizada
no algoritmo de arrefecimento simulado para solu¢cdo de alocagdo de circuitos virtuais
em redes. A representacdo consiste no uso das varidveis livres da base do espaco nulo
do sistema de conservacao de fluxos para encontrar solu¢des para os fluxos de cada en-
lace. Essa representacdo faz a descoberta de caminhos e alocac@o de recursos de forma
simultanea, de modo que todo o espaco de solucdes possa ser explorado em um processo
que requer poucas iteragoes.



Esse artigo mostra que a solugdo atual possui uma representacao ampla do espaco
de solucdes, uma consequéncia da descoberta de caminho e da otimizag¢do conjunta, e
como penalidade acaba exigindo um nimero de iteragdes de execucdo do algoritmo bem
maior quando comparado ao algoritmo guloso e ao método de xk-menores caminhos. Os
métodos de Arrefecimento Simulado obtiveram uma vantagem maior nos problemas nao
lineares, onde o algoritmo guloso foi insuficiente. Devido as caracteristicas de execugao,
esse algoritmo esta condicionado a problemas que ndo exigem respostas em tempos muito
curtos e podem aproveitar do método para obter resultados melhores. Esse algoritmo
possui a vantagem de poder explorar solucdes que as representacdes mais enxutas nao
sdo capazes de explorar, e chega a encontrar resultados melhores que o x caminhos em
alguns dos cendrios avaliados.

Como proximos passos, novas funcdes de pertubacido e de custo podem ser ex-
ploradas para validar o método. Variagdes do arrefecimento simulado, como algorit-
mos genéticos e aprendizado por refor¢co também podem ser exploradas com o uso desse
espaco para observar seu comportamento. Finalmente, utilizar esse método em conjunto
com heuristicas em simulagdes de comportamento da rede podem ajudar a compreender
os beneficios das solu¢des mais eficientes em implementacoes reais.

8. Agradecimentos

O presente trabalho foi realizado com o apoio do CNPq, da Coordenagdao de
Aperfeicoamento de Pessoal de Nivel Superior — Brasil (CAPES), cédigo de financia-
mento 001, da FAPERJ (E-26/204.122/2024), da FAPESP (2023/00811-0 e 2023/00673-
7) e da Fundagdo de Desenvolvimento da Pesquisa - Fundep - Rota 2030.

Ao professor Rodrigo de Souza Couto por providenciar o cédigo com as topolo-
gias das redes GEANT e RNP.

Referéncias

Agarwal, S., Kodialam, M., e Lakshman, T. V. (2013). Traffic engineering in software
defined networks. Em 2013 Proceedings IEEE INFOCOM, péginas 2211-2219.

Bertsekas, D. P. e Gallager, R. G. (1992). Data Networks. Prentice-Hall International
Editions. Prentice-Hall International, Englewood Cliffs, NJ, 2. ed edition.

Eren, M. e Ersoy, C. (2002). Optimal Virtual Path Routing Using a Parallel Annealed
Genetic Algorithm.

Farrugia, N., Briffa, J. A., e Buttigieg, V. (2023). Solving the multicommodity flow
problem using an evolutionary routing algorithm in a computer network environment.
PLOS ONE, 18(4):¢0278317.

Frazier, P. I. (2018). A Tutorial on Bayesian Optimization. arXiv:1807.02811 [stat].

Geman, S. e Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-6(6):721-741.

Hagberg, A. A., Schult, D. A., e Swart, P. J. (2008). Exploring network structure, dy-
namics, and function using networkx. Em Varoquaux, G., Vaught, T., e Millman, J.,
editors, Proceedings of the 7th Python in Science Conference, paginas 11 — 15, Pasa-
dena, CA USA.



Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
van Kerkwijk, M. H., Brett, M., Haldane, A., del Rio, J. F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
e Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357-
362.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90-95.

Kirkpatrick, S., Gelatt, C. D., e Vecchi, M. P. (1983). Optimization by Simulated Annea-
ling. Science, 220(4598):671-680.

La-Roque, E., Batista, C., e Aratjo, J. (2020). A Parallel Strategy for a Genetic Algorithm
in Routing Wavelength Assignment Problem Using GPU with CUDA. Em Encontro
Nacional de Inteligéncia Artificial e Computacional (ENIAC), paginas 740-751. SBC.

Lima, E. L. (2020). Algebra Linear. Cole¢io Matemitica Universitaria. Associacdo
Instituto Nacional de Matemadtica Pura e Aplicada, Rio de janeiro, RJ, 10 edition.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., e Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics, 21(6):1087-1092.

Meurer, A., Smith, C. P., Paprocki, M., Cvfertfk, O., Kirpicheyv, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P, Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,
Terrel, A. R., Roucka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., e Scopatz,
A. (2017). Sympy: symbolic computing in python. PeerJ Computer Science, 3:¢103.

Pi6ro, M. e Medhi, D. (2008). Routing, Flow, and Capacity Design in Communication and
Computer Networks. The Morgan Kaufmann Series in Networking. Elsevier/Morgan
Kaufmann, Amsterdam, nachdr. edition.

Riedl, A. (2002). A hybrid genetic algorithm for routing optimization in IP networks
utilizing bandwidth and delay metrics. Em IEEE Workshop on IP Operations and
Management, paginas 166—170.

Seremet, I. e Causevié, S. (2020). Advancing Multiprotocol Label Switching Traffic
Engineering with Segment Routing in Software Defined Network environment. Em
2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH), paginas 1-6.

Yaghini, M., Momeni, M., e Sarmadi, M. (2012). A Simplex-based simulated annea-
ling algorithm for node-arc capacitated multicommodity network design. Applied Soft
Computing, 12(9):2997-3003.



