
Uma Nova Representação do Espaço de Soluções para
Arrefecimento Simulado em Problemas de Alocação de

Circuitos Virtuais

Fernando D. M. Silva1 e Luı́s Henrique M. K. Costa1

1GTA/Poli/COPPE – Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro – RJ – Brazil

{fernandodias,luish}@gta.ufrj.br

Abstract. The optimization of virtual circuits in networks is often solved by heu-
ristics, such as Simulated Annealing (SA), due to the complex topology and
demand patterns. To reduce SA’s execution time, other techniques have poor
representation of the solution space or complex operations. We propose a solu-
tion space for SA that finds paths and optimizes the result simultaneously. The
proposal represents the entire solution space, with a tradeoff of higher dimen-
sionality. We compare with other heuristics and observe that the proposal finds
viable solutions, although it requires more execution time. This representation
can be used in scenarios where solutions based solely on κ-shortest paths are
insufficient to achieve a near-optimal solution.

Resumo. A otimização de circuitos virtuais em redes é muitas vezes resolvidas
com heurı́sticas, como o Arrefecimento Simulado (AS), devido a topologia e de-
manda complexas. Para agilizar a execução do AS, muitas técnicas utilizam
representações insuficientes ou complexas. Esse trabalho define um espaço de
soluções para AS que faz a descoberta de caminhos e alocação dos fluxos si-
multaneamente. A proposta representa todo o espaço de soluções, ao custo de
uma dimensionalidade maior. Compara-se a proposta com outras heurı́sticas
e observa-se que a proposta é viável, ao custo de mais tempo para execução.
Essa representação tem potencial para cenários onde respostas somente com
κ-menores caminhos não são suficientes para atingir resultados quase ótimos.

1. Introdução

No planejamento de recursos de rede, a crescente demanda de clientes e necessida-
des de qualidade de serviço distintas faz com que provedores de acesso dependam de
técnicas de engenharia de tráfego para a alocação eficiente de circuitos virtuais. Di-
versas tecnologias para encaminhamento de tráfego como Software Defined Networ-
king (SDN) [Agarwal et al. 2013], Multilayer Protocol Switching with Traffic Engine-
ering (MPLS-TE) e Segmented Routing (SR) [Šeremet e Čaušević 2020] são usados
para encaminhamento de fluxo na rede através de caminhos predefinidos. Provedo-
ras de acesso fazem uso dessa tecnologia para firmar contratos de comunicação entre
dois pontos de sua rede, muitas vezes entre unidades corporativas, e necessitam que
alocação prévia e a reserva de recursos tenha o menor impacto na rede. Problemas
de alocação de recursos mais complexos ou não lineares, como no caso de atraso de

fila M/M/1 [Bertsekas e Gallager 1992], não podem ser resolvidos com o uso direto de
programação linear. Para isso, são necessárias heurı́sticas para encontrar uma solução.

Diversos trabalhos otimizam métricas através de heurı́sticas próprias, que redu-
zem o espaço de busca ao fazer suposições sobre o problema, que podem não conter a
solução ótima. Essas heurı́sticas utilizam representações que servem apenas a um con-
junto limitado de funções objetivo em problemas de rede. O Arrefecimento Simulado
(AS, ou Simulated Annealing) é uma meta-heurı́stica que pode representar todo o espaço
de soluções e pode ser utilizado na solução de diversas funções objetivo com uma mesma
representação. Diversos trabalhos utilizam o AS para solução de problemas de otimização
não-linear em redes, porém estes fazem o uso de representações menores que reduzem a
dimensionalidade do problema e o tornam mais rápidos na execução, a custo de soluções
piores.

Este artigo propõe uma definição completa do espaço de soluções do Arrefeci-
mento Simulado para resolver problemas de alocação de fluxos em uma rede. Essa
definição é capaz de realizar simultaneamente a descoberta de caminhos e a alocação
de recursos entre caminhos descobertos, o que reduz a complexidade das operações. A
proposta faz uso das definições lineares de conservação de fluxo e não define a função
objetivo, o que permite que esse método possa ser utilizados em diversos problemas
de otimização. O objetivo é avaliar a eficácia da solução proposta. Para isso, é feita a
implementação de duas funções objetivo, minimização de custo e minimização de atraso
de fila, e a proposta será comparada com o problema de programação linear, um algo-
ritmo guloso para descoberta de respostas e uma segunda representação de espaços para
Arrefecimento Simulado baseada em κ menores caminhos. Viu-se que a representação
proposta encontra respostas viáveis para o problema e encontra resultados melhores em
alguns dos casos avaliados, mas necessita de um maior número de iterações para alcançar
melhores resultados.

Este trabalho está organizado da seguinte forma: A Seção 2 aborda os trabalhos
relacionados. A seção 3 define o escopo do problema a ser resolvido. A Seção 4 apresenta
a proposta de definição do espaço de soluções e sua aplicação prática. A Seção 5 apresenta
os experimentos para validação da proposta. A Seção 6 discute os resultados obtidos e
finalmente a Seção 7 conclui o trabalho.

2. Trabalhos Relacionados
O arrefecimento simulado, assim como algoritmos genéticos, já foi utilizado na literatura
para solução de problemas envolvendo engenharia de tráfego e projeto de redes. Ambos
os tipos de problemas são relevantes, já que ambos necessitam de uma representação de
espaço de soluções. Para trabalhos com algoritmos genéticos, a etapa de mutação pode
ser utilizada como a pertubação do arrefecimento simulado, o que será destacado adiante.

O trabalho de [Farrugia et al. 2023] resolve a maximização de fluxos com o uso
de algoritmos genéticos. A representação de espaço consiste no cálculo prévio dos κ me-
nores caminhos entre fonte e destino para cada par e a atribuição de um valor de fluxo
para cada um desses caminhos, o que limita a exploração de soluções que precisem de ca-
minhos ainda maiores. Em [Pióro e Medhi 2008] os autores apresentam a mesma técnica
para resolução de diversos problemas de otimização em redes. Essa técnica será utilizada
como comparação nesse trabalho.

O trabalho de [Riedl 2002] utiliza algoritmos genéticos com busca local para mi-
nimizar a maior utilização de enlaces da rede. Nesse trabalho, métricas do protocolo
EIGRP da cisco são utilizadas como referência, e o resultado consiste na definição dessas
métricas por enlace ao invés da definição individual dos caminhos por demanda. Essa
representação é utilizada devido a facilidade de integração em redes cuja tecnologia já é
utilizada, mas tem a desvantagem de não poder controlar o caminho individual de cada
fluxo na rede.

Já [Yaghini et al. 2012] utiliza um hı́brido de arrefecimento simulado e
programação linear para fazer projeto de redes, onde o espaço de soluções apenas in-
dica se um enlace é utilizado ou não. O calculo de custo é feito a partir da solução do
problema de menor custo de múltiplos fluxos através de programação linear, com base nos
enlaces selecionados pela resposta atual. Nesse caso, cada iteração do algoritmo necessita
solucionar um problema de programação linear, o que pode contribuir para um tempo de
execução elevado se comparado com soluções que envolvem apenas uma multiplicação
de matrizes.

O trabalho de [La-Roque et al. 2020] resolve o problema de alocação de compri-
mento de ondas em redes óticas com algoritmos genéticos. Esse trabalho representa a
solução com a lista de nós intermediários entre origem e destino, que é calculada com o
uso de uma função de descoberta de caminhos. As recombinações são feitas com base
nos nós comuns entre indivı́duos e a mutação consiste no sorteio de um novo caminho a
partir de um ponto intermediário do caminho original sorteado pelo algoritmo. Essa abor-
dagem implementa uma realização completa do espaço de soluções, ao custo de etapas
de cálculo com alto poder computacional. Além disso, o corte e sorteio de caminhos não
garante vizinhança e pequenas pertubações, o que atrapalharia o processo de exploração
no caso do arrefecimento simulado.

O trabalho de [Eren e Ersoy 2002] representa o espaço como uma lista que contém
os nós intermediários entre uma origem e um destino. O caminho é formado pela união
dos menores caminhos entre a fonte e o primeiro elemento da lista, o primeiro e o segundo,
e assim por diante até o último elemento e o destino. Essa abordagem necessita a execução
de um algoritmo de descoberta de menor caminho múltiplas vezes por iteração. Essa
abordagem exige o uso de algoritmos com alto custo computacional.

Este trabalho apresenta uma novo espaço de soluções para uso com Arrefecimento
Simulado em problemas de otimização de alocação de circuitos virtuais ou fluxos. Essa
representação difere da literatura ao realizar a descoberta de caminhos e a otimização de
forma simultânea, o que não restringe a solução a respostas que contenham caminhos não
convencionais (como por exemplo os κ menores caminhos). A contrapartida é o aumento
de dimensionalidade, que deve ser compensado com um maior tempo de processamento
para respostas viáveis em comparação com as outras soluções.

3. Definição do Problema
Este trabalho restringe-se a problemas de planejamento de recursos de circuitos virtuais
em redes, obtidos através de relações contratuais entre clientes e provedores de acesso.
Estas relações contratuais mudam com frequência relativamente baixa, portanto são com-
patı́veis com algoritmos que exigem um tempo de computação maior. Assim, as deman-
das que são definidas para serem otimizadas permanecem as mesmas durante alguns dias,

enquanto a topologia da rede se mantém a mesma durante o processo de alocação de
novos recursos.

As variáveis e restrições podem ser modeladas como um problema de fluxos multi-
produtos convencional, na qual diversos fluxos f = (s,t,d), na qual f ∈ F , são definidos
com uma demanda d entre uma fonte s e um destino t. Todos esses fluxos devem ser
roteados através da rede, e todos os fluxos devem respeitar a capacidade cij de cada enlace.
Define-se a rede como um grafo direcionado G = (V ,E) definido por um grupo de vértices
V e enlaces E , na qual há apenas um enlace que define a conexão entre qualquer par de
vértices i e j, ou seja, não existem dois enlaces (i,j) e (j,i) definidos no mesmo grafo.
Pode-se definir o problema como:

min
xf
ij

J(xf
ij) (1a)

s.t.
∑
j∈(i,j)

xf
ij −

∑
j∈(i,j)

xf
ji =


0, se i ̸ {s,t}
+d, se i = s

−d, se i = t

∀i ∈ V ,f ∈ F (1b)

∑
f

xf
ij ≤ cij∀(i,j) ∈ E (1c)

xf
ij ∈ Z (1d)

A variável xf
ij é a quantidade de banda alocada ao enlace que liga o nó i ao nó j para

definir o caminho do fluxo f , que é definida como um valor inteiro em (1d) para compor-
tar configurações realı́sticas. Valores negativos de fluxo alocado representam fluxos no
sentido contrário ao da direção do enlace. As restrições fundamentais, que sempre estão
presentes independente do objetivo, do problema consistem na conservação de fluxos na
rede, definido no termo (1b), e o limite de capacidade máxima de um enlace, definido no
termo (1c) como o somatório de todos os fluxos que passam em um enlace ser menor ou
igual a capacidade cij de cada enlace (i,j).

No problema observado, o termo J(xf
ij) da função objetivo (1a) é o custo em

função do fluxo resultante dos enlaces. Para o Arrefecimento Simulado, não há restrições
quanto à definição dessa função, que pode ser não linear ou até mesmo não analı́tica,
contanto que resulte em um valor numérico que deve ser minimizado. Duas funções serão
avaliadas nesse trabalho: Minimização de custo e a minimização de atraso de fila. A
minimização de custo consiste no problema clássico que consiste em associar um valor
de custo yij [1/Mbps] para cada unidade de banda alocada para um enlace e somar o custo
para todos os fluxos da rede. A função de custo resultante é definida como:

J(xij) =
∑
f

∑
(i,j)∈E

yij|xf
ij|, (2)

onde xij é medido em (mas não limitado a) Mbps. O somatório
∑

(i,j)∈E representa o
somatório para todos os enlaces (i,j), já

∑
f é o somatório para todos os fluxos. Já a

equação de minimização de atraso de fila, baseada no modelo de filas M/M/1, consiste no
cálculo do peso dos enlaces em função da fluxo alocado (em pps) e no atraso por enlace
resultante da equação

yij =
1

cij −
∑

f |x
f
ij|
, (3)

Figura 1. Diagrama de execução do algoritmo de arrefecimento simulado.

que após esse cálculo contabiliza o custo total da rede com a mesma Equação (2). A
definição desse modelo é dada com mais detalhes em [Pióro e Medhi 2008].

3.1. Arrefecimento simulado

O arrefecimento simulado é uma técnica de otimização probabilı́stica inspirada na natu-
reza que se simula o processo de tempera de metais. Esse método é baseado no algoritmo
de [Metropolis et al. 1953] e foi desenvolvido em [Kirkpatrick et al. 1983] para resolução
de problemas de otimização.

Para execução do algoritmo, é necessário definir um espaço de solução A, uma
função de custo J(x) : A → R+, que recebe uma ou mais entradas x ∈ A e retornar
um número real, e uma função de perturbação P (x,ϵ) = x′ : A → A que retorna um
elemento x′ que está na vizinhança de x, e cujo alcance dessa vizinhança pode ser ajustado
em função de um parâmetro ϵ. Através de múltiplas execuções da função de pertubação,
deve ser possı́vel alcançar todos os elementos em A.

A execução do algoritmo está descrita na Figura 1. Antes de iniciar, é necessário
definir o número de execuções do algoritmo de Metropolis N , o número de etapas de
redução de temperatura K, a temperatura inicial T0 e o ajuste da perturbação ϵ. Para cada
iteração de K, a temperatura atual t(k) é calculada a partir da equação:

t(k) =
T0

ln(1 + k)
, (4)

derivada em [Geman e Geman 1984]. Já para cada etapa de execução do algoritmo de
Metropolis, a perturbação é aplicada ao estado atual x, resultando em um novo estado
potencial x′. Calcula-se a probabilidade de aceitar o novo estado potencial com base no
estado atual segundo a equação baseada na distribuição de Boltzmann-Gibbs:

e−
J(x′)−J(x)

t(k) > u ∼ Π(0,1), (5)

onde u é uma amostra de uma distribuição uniforme entre 0 e 1. Assim, se J(x′) <
J(x), o valor de x sempre é atualizado com o candidato. Caso contrário, ele dependerá
do resultado da Equação (5). Esse processo se repete até que ocorram K reduções de
temperatura, e cada redução ocorre após N iterações do algoritmo de Metropolis. Ao
longo de todo o algoritmo, o resultado x[min] com o menor J(x) é sempre salvo.

F =

1 2 3 4 5
1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1


A
B
C
D

(a) Matriz F resultante. (b) Rede de teste.

Figura 2. Exemplo de formação da matriz F .

4. Definição do Espaço de Soluções
A definição do espaço de solução é feita a partir das equações de conservação de fluxos
definidas na Equação (1b). Considere que xf é o vetor com valor de vazão resultante de
cada enlace para uma única demanda f . A restrição de conservação de fluxos pode ser
reescrita como o sistema linear:

Fxf = df , (6)

no qual F ∈ {−1,0,1}n×m é a matriz de conservação de fluxos e df ∈ Zn é o vetor de
demanda. Cada elemento de df representa um nó no grafo e ele codifica a informação
de demanda no nó fonte como +df e no nó destino como −df , onde df é o valor de
demanda solicitado. Assim, cada equação representa a conservação de fluxos resultante
de um nó, e qualquer valor xf proposto que seja uma resposta dessa equação respeitará
a conservação de fluxos em toda a rede. Cada linha da matriz F representa um vértice
da rede analisada e cada coluna da matriz F é um vetor que indica a origem e o destino
de cada enlace. Podemos comparar a construção de uma matriz F com uma topologia de
exemplo na Figura 2.

Para cada demanda, a solução xf pode ser separada em uma solução particular xf
p

e uma solução xf
0 no espaço nulo de F , representado pela matriz NF ∈ Zk×m. Assim,

podemos encontrar uma solução para xf a partir da equação:

xf = xf
p +NFy, (7)

onde y ∈ Zk são as variáveis livres que serão utilizadas no algoritmo. A matriz NF

depende unicamente da topologia da rede, portanto o cálculo de NF é realizado apenas
uma vez para todos os fluxos.

Existem diferentes técnicas para obtenção de xp e NF . A técnica utilizada nesse
trabalho para a obtenção dos valores de xp e NF consiste na obtenção da forma escalonada
reduzida de F , que separa as variáveis independentes de x (que se tornam as variáveis de
y) e as transformações necessárias para a transformação em um resultado x, já com a
adição dos termos independentes que fazem parte da solução particular xp. O processo de
eliminação pode ser feito com a matriz aumentada

[
F |I

]
para obter uma matriz elementar

M resultante da decomposição. O uso dessa matriz elementar permite que as operações

Figura 3. Exemplos de tráfego “fantasma”: soluções que respeitam a
conservação de fluxo mas contêm tráfegos impossı́veis (em vermelho).

feitas em F possam ser replicadas em qualquer vetor de demanda, o que resulta nos termos
independentes sem a necessidade de repetir o processo de decomposição. Assim, esse
método tem a vantagem de só precisar recalcular NF se houver mudanças da topologia da
rede.

4.1. Soluções viáveis e tráfego fantasma

Segundo o Teorema 6.4 de [Lima 2020], pode-se concluir que a representação em (7)
inclui todas as possı́veis respostas que satisfaçam a Equação (6), o que inclui todas as
possı́veis combinações de caminhos que levem a demanda entre fonte e destino, incluindo
o valor ótimo para qualquer problema de otimização solucionável. Essa representação é
completa, porém possui um espaço mais amplo do que o necessário, com respostas que
não fazem sentido. O exemplo da Figura 3 ilustra essa situação: Ciclos fechados que
respeitam a conservação de fluxos são respostas válidas, mesmo que esse tráfego tenha
origem ou destino incompatı́veis com a demanda avaliada. Esse tipo de tráfego aumenta
o valor de custo e pode fazer com que uma resposta pareça violar as restrições quando
não está.

O tráfego fantasma é reduzido ao longo do algoritmo se a função de custo for
construı́da de modo que esse tráfego x† seja aditivo às soluções válidas x, ou seja, J(x+
x†) > J(x). Sob essa condição, espera-se que essas anomalias sejam minimizadas ao
longo da execução do algoritmo, já que o AS prioriza respostas com menor J(x). Porém,
isso não impede que esses tráfegos ainda apareçam na resposta final, que mesmo assim
pode ser válida. É preciso realizar um pós processamento para exclusão desses tráfegos.

4.2. Definições de restrição e perturbação

Para implementar o Arrefecimento Simulado no espaço proposto, é necessário definir a
função de pertubação e a implementação de restrições. A primeira define a função P (x,ϵ)
que leva a resposta atual a uma resposta na vizinhança e a segunda permite implemen-
tar restrições ao problema que ainda não foram implementadas, tal como a restrição de
capacidade.

A função de perturbação consiste em sortear ϵ elementos da solução completa
Y ∈ Z|E|×|F| e, com igual probabilidade, somar um ou subtrair um do valor atual
desse elemento. Esse método não possui um viés e, com suscetivas repetições dessa
perturbação, é possı́vel explorar todo o espaço de soluções. A escolha da função de

perturbação é arbitrária, já que o efeito dessa função na execução do algoritmo não pode
ser previsto antecipadamente.

A definição da restrição de capacidade é feita através do acréscimo de uma
penalização por violação na função objetivo. A função objetivo efetiva é escrita como

J ′(X) = (J(X))p +M ||r||22, (8)

em que o termo M ||r||22 acrescenta uma penalização M proporcional a magnitude do vetor
r ∈ Z|E|, definido como o excedente de demanda além da capacidade em cada enlace, ou
seja: rij := max(

∑
f |x

f
ij| − cij,0). O termo M grande aumenta a magnitude do termo

de penalização e faz com que a convergência seja para soluções viáveis que, uma vez
encontradas, a probabilidade de retornar à região inviável segundo a Equação (5) é baixa.
O termo ||r||22 pode ser acompanhado ao longo da execução do algoritmo para determinar
se a solução encontrada é viável ou não. Finalmente, a função objetivo é elevada a um
fator p para aumentar ou reduzir a magnitude das variações causadas pela mudança nas
respostas, o que impacta no grau de aceitação de novas respostas candidatas.

5. Experimentos
Os experimentos realizados observam o comportamento do arrefecimento simulado na
solução de problemas com a representação de espaço proposta. Os dois problemas apre-
sentados na Seção 3 serão analisados: Minimização de custo e o atraso de fila. Para cada
problema, duas quantidades de demandas são utilizadas em três topologias distintas para
avaliar quatro algoritmos: Programação Linear, um algoritmo guloso, o Arrefecimento
Simulado com o uso de κ menores caminhos e o Arrefecimento Simulado com a solução
proposta. A Programação Linear é utilizada somente no problema de minimização de
custo, como forma de obter o valor ótimo e comparar com os resultados do algoritmo
guloso e do Arrefecimento Simulado. Já no problema atraso de fila, são comparados os
resultados apenas do algoritmo guloso e do Arrefecimento Simulado.

Os hiperparâmetros para o Arrefecimento Simulado foram obtidos através de
otimização Bayesiana [Frazier 2018]. A otimização Bayesiana explora o espaço de hi-
perparâmetros de modo que os próximos pontos são escolhidos através das regiões de
maior incerteza após a consideração dos valores dos pontos anteriores. O algoritmo aceita
apenas valores reais como hiperparâmetros de ajuste, portanto a seguinte modificação foi
necessária: Os parâmetros do AS são definidos como T = 10τ , ϵ = 10e, K = ⌈10k⌉
e N = ⌈C/10k⌉. C é definido como um valor constante para que todas as execuções
tenham aproximadamente o mesmo número de passos. Finalmente, temos que C = 106,
τ ∈ [0,3], e ∈ [0,3], e k ∈ [1,3]. O valor de C foi escolhido de modo que o problema mais
lento de se executar demorasse em média 30 minutos.

Para avaliar os resultados dos algoritmos, compara-se o valor encontrado por cada
uma das soluções através do método de otimização mencionado. Os menores valores
encontrados durante a otimização Bayesiana são utilizados para comparar os resultados
com o algoritmo guloso e o de programação linear.

Devido à natureza probabilı́stica do Arrefecimento Simulado, uma resposta viável
não é garantida em todas as execuções. Portanto, para avaliar a eficácia em obter soluções
viáveis, executa-se repetidas vezes o algoritmo com os parâmetros encontrados e verifica-
se a razão de execuções para encontro de soluções viáveis, o tempo médio para encontrar

uma solução viável e o tempo médio de melhora da solução. O tempo para a solução
viável é medido a partir do inı́cio da execução do algoritmo até o momento que ||r||22 = 0,
como visto na Equação (8). O tempo médio de melhoria mede, a partir do momento que
||r||22 = 0, o tempo médio para que a solução atual seja substituı́da por uma solução me-
lhor. Para isso, conta-se quantas melhorias foram obtidas entre a descoberta da primeira
solução viável até o fim da execução do algoritmo.

O código que implementa o algoritmo do arrefecimento simulado foi escrito
em Python3, com o uso das bibliotecas Numpy [Harris et al. 2020] para computação
matricial e Matplotlib [Hunter 2007] para visualização dos gráficos. A biblioteca
Networkx [Hagberg et al. 2008] define classes e diversos atributos para manipulação
de grafos em código, e é utilizada para interpretar os grafos salvos em arquivos, calcu-
lar os κ menores caminhos e gerar as matrizes necessárias a partir das informações do
grafo. O processo de decomposição descrito na Seção 4 foi feito com o uso da biblioteca
Sympy [Meurer et al. 2017] que faz a decomposição com computação simbólica. Todo o
código com os experimentos estão no repositório do Github1.

5.1. Topologias de redes utilizadas

São utilizados 3 grafos nesse trabalho: A topologia da Rede Nacional de Ensino e Pes-
quisa (RNP)2, da Gigabit European Academic Network (GEANT)3 e uma terceira gerada
aleatoriamente. Para cada uma das topologias apresentadas, são sorteados 100 e 500 flu-
xos distintos, com demanda d = 1, para serem roteados através da rede. Para as redes da
RNP e da GÉANT, os pesos dos enlaces são proporcionais ao atraso de propagação, já
para a terceira topologia é aleatório.

A rede aleatória é assim construı́da: 60 nós são inicialmente conectados usando
60 enlaces de modo a formar um único anel com todos os nós. Após isso, 40 pares de nós
são sorteados aleatoriamente para adicionar enlaces que conectem entre si. Esse processo
de formação garante que todos os nós são alcançáveis por todos os outros nós.

Para comparar as redes, é feita uma análise preliminar na Tabela 1. Nessa tabela
pode-se comparar o número de vértices, enlaces, a razão entre eles, o tamanho médio dos
caminhos, a conectividade média dos nós, a quantidade de variáveis livres encontradas
segundo o espaço de soluções proposto, e as caracterı́sticas do problema de menor custo,
assim como o valor ótimo. A escolha da razão de nó e de enlaces na rede aleatória manteve
a mesma proporção observada nas redes reais, o que também aproximou o tamanho médio
dos menores caminhos. A magnitude das respostas ótimas evidencia a necessidade da
compensação p vista na Equação (8) para que o resultado da Equação (5) não resulte em
um overflow. Em cenários reais onde o valor ótimo é desconhecido, esse valor pode ser
ajustado posteriormente, se forem observadas falhas nas execuções prévias do algoritmo.

O número de variáveis livres de y encontrado na Tabela 1 mostra um comporta-
mento esperado de crescimento proporcional ao tamanho da rede. Esse é o número de
variáveis necessárias para representar todos os possı́veis caminhos que a demanda pode
percorrer. Assim, aumentar o número dos κ caminhos para um valor além desse limite faz

1https://github.com/Fdms-3741/sa-mcfp
2Detalhes da rede disponı́veis no site: https://www.rnp.br/sistema-rnp/infraestrutura-para-

pesquisa/evolucao-da-rede-ipe/.
3Detalhes da rede GÉANT disponı́veis no site: https://network.geant.org/gn4-3n/.

Tabela 1. Caracterização das redes de teste.

Topologia de Rede

Métrica RNP GÉANT Aleatório

|V| 27 42 60
|E| 33 68 100
|V|/|E| 1,22 1,61 1,66
Tamanho médio menor caminho 3,80 3,29 3,54
Conectividade dos nós média 1,77 1,70 2,64
Variáveis livres (dim(y)) 7 27 41

Faixa de custo (141, 2567) (55, 3614) (1, 9)
Faixa de capacidade 100 fixo 100 fixo (100, 900)
Resultado ótimo PL (100 contratos) 247536 211316 1614
Resultado ótimo PL (500 contratos) 1392561 1015078 7683

com que o número de operações por iteração seja maior do que o número com a solução
proposta.

5.2. Heurı́sticas de comparação

Duas heurı́sticas são utilizadas nesse trabalho: Um algoritmo guloso e a representação de
Arrefecimento Simulado com base nos κ menores caminhos.

A representação por κ-caminhos, como descrito em [Pióro e Medhi 2008], con-
siste no cálculo prévio de κ caminhos entre fonte e destino, por demanda. Para cada
demanda, um vetor u = (u1, u2, u3, . . . , uκ) representa a solução atual, que consiste na
quantidade de fluxo que passa por cada caminho. Uma matriz auxiliar e binária δedp ma-
peia, para cada demanda d e para cada caminho p, os enlaces e contidos nos caminhos
para obtenção dos valores de fluxo xf

ij com base nos valores de ui para cada caminho
pré-calculado.

O algoritmo guloso executa da seguinte forma: O algoritmo inicializa com o vetor
u zerado para todos os contratos. Para cada contrato, cuja ordem de preenchimento é
aleatória, ele acrescenta uma unidade de demanda em cada caminho e avalia o aumento de
custo. Por último, algoritmo escolhe o caminho que menor acresce ao valor de custo atual
e não viola nenhuma restrição. O processo é repetido até que u = d ou seja impossı́vel
de continuar devido a restrições. Já o arrefecimento simulado com κ menores caminhos
simplesmente utiliza como entrada o vetor u de todos os contratos como entrada, e realiza
como função de pertubação o mesmo processo descrito na Seção 4.2.

6. Resultados
Os valores de custo total, resultante da equação (2) com custos yij arbitrários, para cada al-
goritmo no problema de minimização de custo podem ser vistos na Tabela 2. Nessa tabela,
a comparação percentual é feita em função do resultado obtido através de programação
linear para uma rede e um conjunto de demandas, como apresentado na Tabela 1. A Ta-
bela 2 mostra que o algoritmo guloso, mesmo com sua simplicidade, é capaz de obter
respostas melhores do que ambas as alternativas de execução do Arrefecimento Simu-
lado, porém falha em obter uma resposta viável em um dos casos. Observa-se também

Tabela 2. Resultados encontrados para o problema de minimização de
custo. A variação percentual é comparada com o valor ótimo obtido por
programação linear (PL). Os resultados com ’-’ não obtiveram soluções
viáveis.

Algoritmo
Demanda Rede Guloso AS κ-caminhos AS proposto

100 RNP 249354(+0,7%) 271608(+9,7%) 272915 (+10,2%)
GÉANT 217538(+2,94%) 46948 (+22,21%) 712665 (+237,25%)
Aleatório 1668 (+3,34%) 1842 (+14,12%) 26630 (+1549,9%)

500 RNP - 2170819 (+55,88%) 2048097 (+47,07%)
GÉANT 1036857 (+2,14%) 1691061 (+66,59%) -
Aleatório 7889 (+2,68%) 11327 (+47,42%) -

Tabela 3. Resultados encontrados para o problema de atraso de fila. Os valo-
res são comparados com o algoritmo guloso. Os resultados com ’-’ não
obtiveram soluções viáveis.

Algoritmo
Demanda Rede Guloso AS κ-caminhos AS proposto

100 GÉANT 259,71 305,44 (+17,6%) 153,93 (-40,73%)
500 GÉANT 1908,90 - -
100 Aleatório 119,57 148,47 (+24,16%) 270,26 (+126,02%)
500 Aleatório 616,28 871,21 (+41,36%) -
100 RNP 146,36 225,63 (+54,16%) 49,04 (-66,49%)
500 RNP 3575,05 - 187,52 (-94,7%)

que a variação percentual em relação ao valor ótimo varia fortemente entre redes avali-
adas, com uma tendência de aumento proporcional a complexidade do problema. Isso
pode ser associado a um tempo de execução insuficiente para a resolução de problemas
mais complexos.

Já a Tabela 3 mostra os resultados para minimização do atraso de fila, que utiliza
como custo dos enlaces a equação (3), onde os valores percentuais comparam os resul-
tados com o algoritmo guloso. Nesse caso, o Arrefecimento Simulado com o método
proposto foi capaz de encontrar respostas melhores do que o Algoritmo Guloso em três
dos seis problemas avaliados. O uso de AS com κ-caminhos obteve vantagem em apenas
dois dos cenários: Um onde obteve uma resposta melhor que o AS proposto mas pior que
o algoritmo guloso e outro onde esse foi o único que encontrou respostas viáveis. Esse re-
sultado apresentou uma vantagem do Arrefecimento Simulado para solução de problemas
não-lineares, e o método proposto obteve vantagem na busca de novos resultados.

Na Tabela 4, vemos a razão do número de execuções que encontraram valores
viáveis sobre o número total de execuções, representado na coluna de repetições. Essa
tabela apresenta a razão entre todas as execuções que encontraram uma solução viável
sobre todas as execuções realizadas para um determinado método e grafo, independente
dos parâmetros escolhidos. Como esses problemas não representam nenhum congestio-
namento severo ou sobrecarga de rede, todas as execuções do AS para κ-caminhos en-
contraram respostas viáveis nas redes apresentadas. O método proposto não encontrou

Tabela 4. Taxa de encontro de soluções viáveis para o AS proposto.

Nº contratos Rede Taxa Repetições

100 RNP 89,1% 1479
GÉANT 52,3% 822
Aleatório 44,1% 396

500 RNP 1,3% 501
GÉANT 0% 183
Aleatório 0% 92

Tabela 5. Tempo médio para encontrar a solução viável para o método proposto.

Guloso AS proposto

Nº de contratos Rede Tempo para resposta (s) Tempo para viável (s) Tempo de melhoria (s)

100 RNP 0,16± 0,04 18,11± 1,10 1,38± 0,10

GÉANT 0,24± 0,09 107,83± 11,44 2,04± 0,24
Aleatório 0,09± 0,03 102,54± 3,58 0,19± 0,05

500 RNP 3,95± 3,95 356,99± 37,37 1,91± 1,46

soluções viáveis em todas as execuções, e a razão de respostas diminui a medida que o
número de variáveis do problema aumenta. Essa condição novamente indica a necessi-
dade de um aumento no número de iterações, além apontar a necessidade de uma busca
por hiperparâmetros mais extensa.

Finalmente, os tempos para encontro da solução viável e de melhoria podem ser
vistos na Tabela 5. Os resultados apresentados são apenas para o algoritmo guloso e
o AS proposto, já que o AS por κ-caminhos encontra uma solução viável na primeira
execução. Essa tabela mostra uma das desvantagens pela escolha do método: O tempo
de execução é maior que o tempo para a execução das heurı́sticas. Também pode-se ver
que o tempo aumenta consideravelmente com o aumento no número de variáveis, exceto
entre os problemas da rede GÉANT e da rede aleatória. Porém, esse fenômeno não pode
ser observado com a mesma intensidade no tempo médio para melhoria, que manteve
todos os resultados próximos a 2 segundos. Esse tempo de melhoria rápido implica que,
durante essa parte final da execução do algoritmo, o algoritmo ainda estava encontrando
respostas melhores e ainda não atingiu um “congelamento”, onde novos estados não são
mais encontrados ou a resposta não melhora mais. Isso é mais um indı́cio que o tempo de
execução do problema escolhido é insuficiente.

7. Conclusões

Esse trabalho apresenta uma representação do espaço de soluções que pode ser utilizada
no algoritmo de arrefecimento simulado para solução de alocação de circuitos virtuais
em redes. A representação consiste no uso das variáveis livres da base do espaço nulo
do sistema de conservação de fluxos para encontrar soluções para os fluxos de cada en-
lace. Essa representação faz a descoberta de caminhos e alocação de recursos de forma
simultânea, de modo que todo o espaço de soluções possa ser explorado em um processo
que requer poucas iterações.

Esse artigo mostra que a solução atual possui uma representação ampla do espaço
de soluções, uma consequência da descoberta de caminho e da otimização conjunta, e
como penalidade acaba exigindo um número de iterações de execução do algoritmo bem
maior quando comparado ao algoritmo guloso e ao método de κ-menores caminhos. Os
métodos de Arrefecimento Simulado obtiveram uma vantagem maior nos problemas não
lineares, onde o algoritmo guloso foi insuficiente. Devido as caracterı́sticas de execução,
esse algoritmo está condicionado a problemas que não exigem respostas em tempos muito
curtos e podem aproveitar do método para obter resultados melhores. Esse algoritmo
possui a vantagem de poder explorar soluções que as representações mais enxutas não
são capazes de explorar, e chega a encontrar resultados melhores que o κ caminhos em
alguns dos cenários avaliados.

Como próximos passos, novas funções de pertubação e de custo podem ser ex-
ploradas para validar o método. Variações do arrefecimento simulado, como algorit-
mos genéticos e aprendizado por reforço também podem ser exploradas com o uso desse
espaço para observar seu comportamento. Finalmente, utilizar esse método em conjunto
com heurı́sticas em simulações de comportamento da rede podem ajudar a compreender
os benefı́cios das soluções mais eficientes em implementações reais.

8. Agradecimentos
O presente trabalho foi realizado com o apoio do CNPq, da Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES), código de financia-
mento 001, da FAPERJ (E-26/204.122/2024), da FAPESP (2023/00811-0 e 2023/00673-
7) e da Fundação de Desenvolvimento da Pesquisa - Fundep - Rota 2030.

Ao professor Rodrigo de Souza Couto por providenciar o código com as topolo-
gias das redes GÉANT e RNP.

Referências
Agarwal, S., Kodialam, M., e Lakshman, T. V. (2013). Traffic engineering in software

defined networks. Em 2013 Proceedings IEEE INFOCOM, páginas 2211–2219.

Bertsekas, D. P. e Gallager, R. G. (1992). Data Networks. Prentice-Hall International
Editions. Prentice-Hall International, Englewood Cliffs, NJ, 2. ed edition.

Eren, M. e Ersoy, C. (2002). Optimal Virtual Path Routing Using a Parallel Annealed
Genetic Algorithm.

Farrugia, N., Briffa, J. A., e Buttigieg, V. (2023). Solving the multicommodity flow
problem using an evolutionary routing algorithm in a computer network environment.
PLOS ONE, 18(4):e0278317.

Frazier, P. I. (2018). A Tutorial on Bayesian Optimization. arXiv:1807.02811 [stat].

Geman, S. e Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-6(6):721–741.

Hagberg, A. A., Schult, D. A., e Swart, P. J. (2008). Exploring network structure, dy-
namics, and function using networkx. Em Varoquaux, G., Vaught, T., e Millman, J.,
editors, Proceedings of the 7th Python in Science Conference, páginas 11 – 15, Pasa-
dena, CA USA.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,
van Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P.,
Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
e Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825):357–
362.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95.

Kirkpatrick, S., Gelatt, C. D., e Vecchi, M. P. (1983). Optimization by Simulated Annea-
ling. Science, 220(4598):671–680.

La-Roque, E., Batista, C., e Araújo, J. (2020). A Parallel Strategy for a Genetic Algorithm
in Routing Wavelength Assignment Problem Using GPU with CUDA. Em Encontro
Nacional de Inteligência Artificial e Computacional (ENIAC), páginas 740–751. SBC.

Lima, E. L. (2020). Álgebra Linear. Coleção Matemática Universitária. Associação
Instituto Nacional de Matemática Pura e Aplicada, Rio de janeiro, RJ, 10 edition.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., e Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics, 21(6):1087–1092.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev, S. B., Rocklin, M., Kumar,
A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J.,
Terrel, A. R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., e Scopatz,
A. (2017). Sympy: symbolic computing in python. PeerJ Computer Science, 3:e103.

Pióro, M. e Medhi, D. (2008). Routing, Flow, and Capacity Design in Communication and
Computer Networks. The Morgan Kaufmann Series in Networking. Elsevier/Morgan
Kaufmann, Amsterdam, nachdr. edition.

Riedl, A. (2002). A hybrid genetic algorithm for routing optimization in IP networks
utilizing bandwidth and delay metrics. Em IEEE Workshop on IP Operations and
Management, páginas 166–170.

Šeremet, I. e Čaušević, S. (2020). Advancing Multiprotocol Label Switching Traffic
Engineering with Segment Routing in Software Defined Network environment. Em
2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH), páginas 1–6.

Yaghini, M., Momeni, M., e Sarmadi, M. (2012). A Simplex-based simulated annea-
ling algorithm for node-arc capacitated multicommodity network design. Applied Soft
Computing, 12(9):2997–3003.

