
Policy-Driven Network Traffic Rerouting Through
Intent-Based Control Loops

Nathan F. Saraiva de Sousa1, Nazrul Islam1, Danny Alex Lachos Perez1,
Christian Esteve Rothenberg1

1Department of Computer Engineering and Industrial Automation
School of Electrical and Computer Engineering

University of Campinas (UNICAMP)
Campinas, SP, Brazil

{nsaraiva,nazrulis,dlachosper,chesteve}@dca.fee.unicamp.br

Abstract. Year after year, the growth of video traffic over the Internet keeps
increasing. Video streaming over best-effort networks is considered inefficient
and inappropriate to meet the expected Quality of Experience (QoE) of the new
generation of multimedia services. Over the past few years, a number of tech-
nologies have emerged to improve the state of the art of video delivery, including
HTTP Adaptive Streaming (HAS) that adapts the bitrate according to network
conditions. At the crossroads, Software Defined Networking (SDN) offers op-
tions to meet Quality of Service (QoS) objectives for improved video quality
by exploiting end-to-end programmability of network behavior. However, tradi-
tional SDN approaches require dealing with low-level details from the underly-
ing infrastructure, interfering in the automation and agility of service deploy-
ments. To alleviate these issues and overall provide a simpler approach, Intent-
Based Networking (IBN) is being proposed to abstract low-level configurations
through high-level policy interfaces. In this paper, we explore such an approach
by implementing intent-based control loops for video service assurance. The
proposed methods dynamically reconfigure the network for service-specific re-
quirements using IBN to define high-level behavior. We experimentally evaluate
a use case where video traffic is rerouted based on network conditions to im-
prove the QoS. The Proof-of-Concept results point to the potential of enhancing
video content delivery through QoS-aware Intent-based approaches.

1. Introduction
User demands for Internet video services keep increasing year after year. According to
Cisco’s Visual Networking Index, 80% of the world’s, mobile data traffic will be video by
2019 [Marshall]. As stated in [Cisco 2017], by 2021, 90% of the global consumer traffic
and 78% of mobile traffic will be filled with various forms of video. This growth is the
main base for the evolution of new multimedia solutions over the networks. An example
is HTTP Adaptive Streaming (HAS), widely used around the globe to provide better video
quality. While HTTP streaming presents many advantages to deliver improved QoE, man-
aging over the top video streaming applications possess multiple challenges to network
designers and service providers [Singh et al. 2012].

Intent-Based networking (IBN) [Clemm et al. 2018] is an emerging concept in the
networking community towards practical ways to interface network management and con-

trol systems through high-level policies untangled from underlying infrastructure speci-
ficities. A Network Intent refers to the high level of abstraction where the application logic
is expressed in terms what should be done through high-level semantics and not how it
should be done. One example of Northbound Interface supporting Intents is the ONOS
controller [Linux Foundation 2018], which uses compilation process for translating the
Intents to low-level flow rules.

In addition to use high-level abstractions, network operators seek to automate their
management and monitoring processes to reduce the Operational Expenditure (OpEx) and
to enhance the network performance. The behavior of Control Loops (CL) can be con-
trolled using a policy-based system which automates the process workflows. Through CL,
it is possible to improve service efficiency, providing self-healing and service assurance,
reducing OpEx, and increasing revenue through shorter time to market [ETSI 2017]. Rel-
evant open source projects such as ONAP 1 and OSM 2 feature CL mechanisms to manage
network services lifecycles.

This paper focuses on applying intent-based control loops to improve QoS of
video streaming service. Following policy-driven network management (monitor, an-
alyze, and execute) approach, we automate and abstract the details of the underlying
network through and effectively a combination of closed control loop and intent-based
networking principles. We present a smart control loop mechanism responsible for man-
aging a set of orchestrated actions on the network elements towards assuring the quality
of network services. For validation purposes, we developed a proof of concept proto-
type leveraging best of breed open source tools capable of rerouting video network traffic
based on network conditions, high-level policies, and IBN interfaces. Our approach also
introduces an abstraction of the network topology through a graph-based database. Tar-
geting an end-to-end video streaming use case, our experimental evaluation presents the
obtained network QoS and video QoE metrics (e.g., PSNR and SSIM).

The remainder paper is organized as follows. Section II describes the background
and related work in the areas of SDN, closed control loop and IBN. Section III presents
the proposed approach for QoS-aware Intent-based Control Loop. Prototype implemen-
tation and experimental platform are shown in details in Section IV. Results and Analysis
are discussed in Section V. Finally, Section VI concludes the paper with future work di-
rections.

2. Background and Related Work

2.1. Software-Defined Networking and Closed Control Loops

Software-Defined Networking (SDN) allows operators a flexible and efficient utilization
of their infrastructures by a software-centric service paradigm [Kreutz et al. 2015]. How-
ever, to realize the standard, operators are required to model the end-to-end service. The
operator should have the ability to abstract and automates the control of virtual as well as
physical resources to deliver the service. The coordinated set of activities behind such pro-
cess is commonly referred to as orchestration. Network Service Orchestration (NSO) pro-
vides multiple network technology [de Sousa et al. 2018] with a common understanding

1https://www.onap.org/
2https://osm.etsi.org/

and similar alignment. Traditionally, the leading solutions for video service optimizing
have focused on the endpoints by adapting the video, source code (and hence throughput)
to the varying network conditions [Wu et al. 2001]. SDN is enabled end-to-end network
programmability and allows video service delivery with the new approaches based on
active participation of the network.

Consequently, network automation through closed control loops is essential for
end-to-end service assurance. Four critical phases are necessary to create a simple closed
control loop. Indivisibly, each of these steps takes decisions. The four steps are se-
quenced, collect=>analysis=>decide=>execute [Stein 2018]. This approach is assis-
tance in making decisions to reconfigure the network for service-specific requirement
dynamically. The network is adjusted with service and resources as well as a new service
offering. Policies are used to manage the services and resources to achieve the desired
target [ETSI 2017]. For instance, policies can be controlling the new state of the action
and overall action is managed by the closed control loop. In a closed control loop, the
Machine Learning (ML) and Artificial Intelligence (AI) techniques are used to control
and re-configures the network to improve the maintenance and their applications. Big
data and machine learning approach require intelligence to handle a large and varying
volume of video traffic [Cui et al. 2016]. In turn, inside of the control loop, an adequate
policy will trigger a set of orchestrated actions on endpoints to assure the performance of
video service concerning QoS. Thus, how to achieve high video streaming performance
is a vital issue in the research and development of NSO solutions.

2.2. Intent-based Networking (IBN)
Intent and Intent-Based Networking are emerging trends [Clemm et al. 2018] closely re-
lated to Policy, a well-known concept in networking. The key idea around the IBN is to
interface the network by means of an “Intent”, i.e., no network implementation is spec-
ified, the network itself needs to implement all the necessary actions to fulfill the Intent
[Noction 2018]. An Intent specifies the “need” rather than the “how”. Intent statements
can be descriptive or prescriptive [Kiran et al. 2018]. A descriptive (or declarative) Intent
uses high-level statements to specify the problem context, for example, “allow traffic be-
tween X and Y”. Instead, a more network specific information is considered a prescriptive
Intent, for example, “from X:10.0.0.1 to Y:10.0.0.2 set rule=allow”.

There are different efforts related to building Intent-based systems solutions.
ONOS Intent Framework [Linux Foundation b], ODL Network Intent Composition
(NIC) [Linux Foundation 2015], ODL Group Based Policy (GBP) [Linux Foundation a],
NEMO [c15] are solution examples using a prescriptive approach where users need some
knowledge of the network and Intents are controller-specific which means that they de-
pend on the network controller, constraints need to be converted into technology-specific
constraints. In case of descriptive frameworks, architectural designs such as DISMI
[Sköldström et al. 2017] and iNDIRA [Kiran et al. 2018] consider a simple, high-level,
and technology-agnostic interface, which in turn uses a prescriptive module in order to
translate advanced primitives into low-level primitives.

DISMI [Sköldström et al. 2017] provides Intent-based northbound interfaces for
network controllers that allow applications to request connectivity (including traffic con-
straints). The DISMI Intent model defines three different classes of primitives: (i) ac-
tions (determine the connectivity type), (ii) nouns (determine what to connect), and (iii)

modifiers (determine how the connectivity should behave). Another framework, iNDIRA
(Intelligent Network Deployment Intent Renderer Application) [Kiran et al. 2018] inter-
faces between the SDN north-bound interface and applications, understanding network
QoS requirements, and automating the translation for scientific applications. It uses an
ontology-based approach to define queries and translates them to network commands.

Other related work on Intent-based frameworks for specific network ap-
plications includes [Sanvito et al. 2018, Comer and Rastegarnia 2018, Han et al. 2016,
Tsuzaki and Okabe 2017]. The Open Software Defined Framework (OSDF)
[Comer and Rastegarnia 2018] provides high-level APIs that allow managers to express
network requirements for applications (network configuration, monitoring, and QoS pro-
visioning) without knowing about low-level details (e.g., network topology, flow rule de-
tails). In [Han et al. 2016], the authors propose a software-defined Network Virtualization
(NV) that automates the network management and configure the virtual network on the ba-
sis of Intent. The advantage of this platform is to provide an automated VN management
method with high-level Intent. It also allows management applications with high-level
representation. According to paper [Sanvito et al. 2018], the authors propose a process to
compile the multiple Intents and re-optimize the paths according to their flow statistics.
The Intent is handling to optimize the traffic forwarding of ONOS applications. Further,
[Tsuzaki and Okabe 2017] describes an automatic management procedure to update the
network configuration based on the Intent with reactive configuration.

2.3. Contributions

In short, this work proposes a system that automatically manages the network service in
order to assure and optimize video streaming service. Although our focus of this work
is video service, the proposed approach could be used for any services that demand re-
stricted quality metrics. Our work envisions different contributions based on 5 key fea-
tures: (i) modularity, use of API to allow add/remove components, (ii) adaptive policy,
change the policy conditions in runtime, (iii) multilevel intent, define levels of intents in
a bottom-up approach, (iv) topology abstraction, abstraction of the network topology, and
(v) smart control loop, management using machine intelligence techniques to obtain more
knowledge of network service. Table1 compares our proposed to related works.

Table 1. Related works and associated features
Feature [Sanvito et al. 2018] [Comer and Rastegarnia 2018] [Han et al. 2016] Our proposal
Modularity YES NO YES YES
Adaptive Policy YES YES NO YES*
Multilevel Intent NO YES YES YES
Topology Abstraction NO NO YES YES
Smart Control Loop NO NO NO YES*
* Future work

3. Proposed Approach: QoS-aware Intent-based Control Loops
Network programmability through paradigms such as SDN and NFV allows for new ap-
proaches based on active participation of the network to assure the network service de-
livery. In support of the decision making to reconfigure the network for service-specific
requirements dynamically, a large amount of various input data can be exploited. Due to
the dynamicity and large volume of such data, big data and machine-learning approaches

Collector/
Analytics

Policy

Actuators

SDN NFV LEGACY

Intent-based Networking Metrics, outcomes

Figure 1. High-level representation of a closed control loop design.

appear as promising approaches for delivering the required intelligence [Cui et al. 2016].
To that end, smart control loop approaches promise to automatically manage a set of
orchestrated actions on the network elements (and endpoints if possible) to assure the net-
work service regarding end-to-end quality, fundamentally as perceived by the end-user.

Thus, our objective is to develop a suitable actuation mechanism that implements
a closed control loop and translates the user needs and business targets into technology-
specific configurations. The system is responsible for assuring the requirements to deliver
high-quality video streaming service. The control loop enables the self-healing in end-to-
end video services, without human intervention, providing automation and agility in the
service management. Figure 1 presents a high-level view of the closed control loop design
to monitor and keep the services working based on pre-established agreements, as well
as optimize them. In order to abstract the underlying infrastructure through high-level
actions and to automate the control loop, we follow principles from IBN.

IBN scopes a higher level of abstraction. For this purpose, we define two layers
of intents in a bottom-up approach. In first level, intent assurances network connectivity,
e.g., connect two points through different networks. In second level, intents trigger policy-
driven actions based on holistic view of service. The Intents enables actions not only on
network but also on VNFs and endpoints, including scaling of VNFs, functions placement
and changing bitrate.

Briefly, our approach generates a flow of data between the various components
that allows implementing an automation system and self-healing of end-to-end network
services. In other words, the system detects an issue on a service, and it automatically de-
fines actions to fix it according to pre-set parameters (e.g., SLA). In the next subsections,
we explain each component and their functions.

The closed-loop system introduces a delay in monitoring and decision making.
However, the system will work with two lines of action: corrective actions, in case of
serious failures or SLAs violation, and preventive actions, detected from the Analytics
component and avoiding possible future issues.

3.1. Collector/Analytics

The Collector component monitors the deployed service (e.g., video stream) collecting
QoS and QoE metrics from SDN and no-SDN data plane. Firstly, it is required to define a
set of metrics (e.g., bandwidth, packet loss, CPU) among all those available. Such metrics
will enable to register the service performance. After, the data are organized in a well-
defined information model for providing service-related information. Differently from
works as [da Costa Filho et al. 2018] and [Comer and Rastegarnia 2018], the monitoring
of the services is done through the installed intents for each network flow resulting in
more precise monitoring.

The collected data are stored in a database to track the historical data and on-line
and off-line analysis in runtime. The database stores the status of infrastructure (e.g.,
topology, components), deployed services and relationship among them. Besides, it must
have high performance, scalability, and availability because of the dynamics and the large
volume of network data. The same element can also run data analytics based on machine
learning (ML) and artificial intelligence (AI) techniques. It analyzes the collected data
and exposes parameters and processed information to Policy component. Also, it receives
information from performed actions, from there it generates reports and feedback to Policy
to facilitate the service/infrastructure adjustment. Through historical network data, it is
possible to create a tendency curve and an original curve. When a threshold is exceeded
in the tendency curve, an alert is sent to the Policy component.

3.2. Policy

Formally, policies are defined as a set of rules that are used to manage and control the
state of one or more managed objects. In the control loop context, policies can manage
the interaction among services and resources with the environment to obtain the desired
objective [ETSI 2017]. There are three types of policies: (i) Imperative – uses statements
to define the state of targeted objects explicitly. Thus, a set of tasks are executed in the
correct order using an event-condition-action tuple; (ii) Declarative – expresses the targets
of the policy, but not how to achieve it. It follows a formal logic without define clearly the
objects state. Examples are SQL and OpenStack Congress3; and (iii) Intent – expresses
the goals of the policy in high-level. It has not formal logic. Thus it needs the translation
to one or more primitive policies.

The Policy component is responsible for defining and applying policies that ensure
the quality of service. For that, it uses the metrics and information provided by both the
Analytics component and database. It abstracts internal configurations as well, i.e., it
is unaware of service details, only knows the service Intent and its status. Its operation
consists of the monitoring of different metrics and events (e.g., end-to-end data plane
video sessions) and reacts by the execution of programmable workflows. The workflow
consists of a set of conditions that can be updated in runtime and is triggered by any events
(e.g., when the flow has packet loss is greater than 10%). The component always actuates
according to networking goals.

We propose a policy that outlines the logic involved in the process of network
service management as depicted in Figure 2. It is an extended version from imperative

3https://docs.openstack.org/congress/

EVENT CONDITION ACTIONS ERROR ?

FALSE

EXIST
NEW

ACTIONS ?

TRUE

TRUE GENERATE
ALERT

FALSE

Report to Administrator
INFO

(SLA, Analytics,...)
UPDATE

FALSE

INFO
(Orchestrator,...)

TRUE

Figure 2. Workflow representation of the proposed extended imperative policy.

policy and describes a simple workflow to implement self-healing in case of error in the
execution of the actions. Standard Event-Condition-Action (ECA) policies do not have a
detection and recovery mechanism in case of failure to perform actions as we propose.

The workflow starts when an event (e.g., metric threshold) is identified by Policy
component. This event is compared to a condition (e.g., traffic is consuming 80% of the
link), if it is false, so the system returns to listening state; otherwise, the system lists a
set of actions to be performed. The condition can be updated in runtime. After that, the
system defines one or more actions to be executed based on information from external
elements such as Analytics. If there are no errors in the execution of the operations, the
flow returns to the listening state. Otherwise, another action is chosen from the list. This
process loops until the system find an action that is executed correctly, or there are no
more possible actions. In this case, the system generates an alert reporting to the network
administrator.

3.3. Actuators

The Actuator component closes the smart control loop by translating the high-level poli-
cies sent by Policy to low-level actions, for instance, OpenFlow flows. The policies are
expressed in a specific language closer to the natural based on an Information Model,
and require a mapping to network device commands (e.g., API, CLI) of the underlying
infrastructure.

Actuators can perform actions in different scopes including SDN, NFV, and
Legacy networks. Thus SDN controllers (e.g., OpenDaylight, ONOS), NFV orchestrators
or Management Systems can become embodiments of an Actuator. The other components
of the architecture are decoupled from the actuators, which are integrated through the
northbound interface (NBI). Functional responsibilities of the Actuator include to inform
the Policy about the performed actions status, i.e., if the action was executed correctly or
not. Given status will enable the Policy to select another action in case of failure and seed
the Analytics component towards improving the outcomes.

4. Prototype Implementation and Experimental Platform

Figure 3 illustrates our prototype implementation and experimental platform based on (i)
Mininet emulated network infrastructure, (ii) ElasticSearch to store/access network data,
(iii) Neo4j graph-based database embodying the annotated topology, (iv) Kibana to gen-
erate statistical graphs, (v) ONOS4 controller, and (vi) proposed IBN/CL Architectures

4https://onosproject.org/

Policy

NOS

Configure, modify
using OF

OF metrics:
Packet loss rate,

bandwidth,...

Video Source Clients

Actuators

ElasticSearch/
Neo4J

Network

API

Collector

NBI

High-level actions

Orchestrator

IBN

Network
Elements

Kibana

Figure 3. Prototype Implementation and Experimental Platform

based on the Policy, Collector, and Orchestrator components. Its objective is to reroute
network traffic based on network conditions, high-level policies, and IBN interfaces in
different scopes (high-and low-level intent). Note that the component Actuator from ref-
erence architecture was split into ONOS and Orchestrator. ONOS APIs are used to collect
information on the network such as topology, nodes, links, and intent status.

The Collector is a Python-based component responsible for collecting and storing
the data from the network. The design requires just one-way measurements of links used
by network services. Currently, it collects bandwidth, packet loss, and hop count met-
rics through Intent Monitor and Reroute (IMR) application from ONOS API. The IMR
exposes statistics and re-routing capabilities, of specific Intents, to external applications.
There is also a java application that captures topology information and stores them into a
graph-oriented database, Neo4J5. The topology is stored into Neo4j graph model as shown
in Figure 4. In this prototype version, the Analytics component is not implemented.

All network measurements are realized per flow and per link (between switches)
and stored into ElasticSearch6. Accessible through an extensive and elaborate API, Elas-
ticsearch allows for quick searches in support of data discovery applications. Kibana7

easies the visualization of Elasticsearch data by means of rich graphics. ElasticSearch
and Kibana are highly scalable, well-documented and easy to set up experimental sce-
nario, and it is being used in important projects including ONAP and OSM.

The Policy component is implemented using Python language too. It consumes
data directly from ElasticSearch or Collector and realizes a verification of Key Perfor-
mance Indicators (KPIs). This prototype uses a simple imperative policy, no-extended
yet, with three-tuples, consisting of an event, a condition, and an action clause. Pol-

5https://neo4j.com/
6https://www.elastic.co/elasticsearch
7https://www.elastic.co/kibana

hasLinkLog
hasLinkLog

hasLinkLog

of:00000...

of:00000...

hasLinkLog

of:00000...

hasLinkLog

hasLinkLog

hasLinkLog

hasLinkLog

hasLinkLog

of:00000...

of:00000...

of:00000...

of:00000...

hasLinkLog

hasLinkLog

of:00000...
hasLinkLog

hasLinkLog

of:00000...

hasLinkLog

of:00000...
hasLinkLog

of:00000...hasLinkLog

of:00000...
hasLinkLog

hasLinkLog

of:00000...

hasLinkLog

of:00000...

hasLinkLog

hasLinkLog

of:00000...

hasLinkLog

hasLinkLog

hasLinkLog
of:00000...

(a) Switches

hasPort
of:00000...

hasPort

hasPorthasLinkLog

hasLinkLog
hasPort

of:00000...

hasPort

of:00000...

hasLinkLog

hasPort

of:00000...

hasLink
31

hasLink
3

hasLink

31
hasLink

1

hasLink

2

hasLink

31

hasLinkLog

(b) Links (Switches + Ports)

Figure 4. Abstracted topology into Neo4J, e.g., switches and links.

icy checks a set of metrics periodically and compares them with some pre-set condition
(e.g., packet loss is higher than 5%). If the condition is satisfied, then the Policy sends
high-level action to Orchestrator. Examples of high-level action are: select shortest path
avoiding link “X-Y”, or ”Route traversing links with properties (A, B, C).”

The Orchestrator, in turn, is a Python-based application that works as a Broker
that handles technological details related to network service management. Its function
is to translate high-level actions sent by Policy to primitive Intents of ONOS, which are
further decomposed into simpler actions (e.g., install OpenFlow flows). It can work as
a plugin for the orchestration platform as OSM. Therefore, all actuation is implemented
via northbound Intent interface from ONOS. Components consume database information
updated at runtime.

5. Experimental Validation and Evaluation
For validation and evaluation through experimentation, we developed a Proof-of-Concept
use case scenario based on a video streaming service. We first analyze the connectivity
between hosts using ping. We then start the video stream from a video server to one
or more clients. The Control Loop system monitors the video service and automatically
actuates if a problem is found regarding the intended QoS. To this end, the Collector
component periodically monitors the bandwidth, packet loss rate, and hop count per flow
and per link.

Figure 6 presents the evaluation scenario: network topology composed of 34 de-
vices, organized following an operator-like access-aggregation-core topology, inspired by
[da Costa Filho et al. 2018], featuring up to 20 clients connected to the edge switches and
one video server. The idea of this scenario is to represent a video server located in the
Internet streaming video to client 1 in the access network. VLC 8 is used as the video
software.

For the sake of our PoC scenario, the policy is applied over a unique metric: packet
loss rate. Considering “Intent” as the desired state of an action to automate the network
control, the “Intent” is applied whenever packet loss of monitored flow is greater than X
value, e.g., 12%. After identifying the problematic network segment, the system selects

8https://www.videolan.org/vlc/index.html

POLICY

Metric: Packet Loss

Condition: PL > 12%

Action: change-route
 Parameters:
 Avoid: higher loss link
 Service ID: 2019

ORCHESTRATOR

Higher Loss Link: sw22 = sw27

New route: s34; s33; s31; s28
s23; s22; s21; s1

Action: Apply reroute intent
HIGH-
LEVEL

ACTION

ONOS

Run IMR API

Translate to Point-to-Point Intent
NETWORK

ONOS
API

OF
FLOWS

INTENT: Second Level INTENT: First Level

Figure 5. Translation of high-level policies to underlying configurations.

s2

...

1

2

3

4

5

6

7

8

9

10

20

Video
Server

s1

s3

s4

s5

s6

s7

s8

s9

s10

s20

s25

s24

s23

s22

s21

s26

s27

s28

s29

s30

s31 s33

s34s32

First route

New route

Packet Loss

Figure 6. Topology used in the experimental evaluation. Adapted
from [da Costa Filho et al. 2018]

the next shortest path avoiding such link. Annotated topology state is kept in the Neo4J
database to provide proper routing data. Figure 5 presents detail on the process of policy
enforcement until the effective action execution. The Policy sends a high-level action to
the Orchestrator to effectively reroute the traffic. The Orchestrator translates the high-
level action to Intents supported by the ONOS controller, which, in turn, performs the
state changes to adequately reroute the traffic between the video server and the client.

The initial route between the video server and the client (1) goes through on
sw34− > sw32− > sw30− > sw27− > sw22− > sw21− > sw1. The Control
Loop monitors throughput and packet loss metrics. The experiment script uses TC 9 to
configure the packet loss to force a 3% loss in the link between sw22 and sw27. The sys-
tem identifies the packet loss, but the Policy performs no action since the rate is lower than
12%. Next, the packet loss rate is increased to 13%. In this case, the Policy notes that the
threshold was exceeded. After querying ElasticSearch to identify the under-performing
link (sw22 = sw27), the Orchestrator is requested to reroute the flow to avoid the said link
by querying Neo4j to return all shortest routes except that link. The new route is selected
and through ONOS APIs the route changed by the IMR and IFWD applications. The new
path looks as follows: sw34− > sw33− > sw31− > sw28− > sw23− > sw22− >

9http://man7.org/linux/man-pages/man8/tc.8.html

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

10
3

10
6

10
9

11
2

0

2

4

6

8

10

12

14

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Packet Loss Throughput

Sampling

P
a

ck
e

t L
o

ss
 R

a
te

 (
%

)

T
h

ro
u

g
h

p
u

t (
M

b
p

s)

Figure 7. Packet loss and throughput before and after applying the policy.

sw21− > sw1. Note that the ONOS Intent framework provides fault-tolerance and re-
silience even when some switch fails, i.e., the Intent is recompiled by rerouting the flow
in the case of failure. If there is no alternative path, the framework tries to establish the
path once one becomes available.

5.1. Results and Analysis

Evaluation of QoS metrics In this experiment, the video duration is 3767 seconds and
the packet loss in link sw22 = sw27 is increased by 1% every 280 seconds. We set up
the policy to applying a rerouting action when the flow packet loss is greater than 12%
and the polling interval is 35 seconds. Figure 7 presents the observed packet loss and
throughput during the execution of the experiment.

Note that the packet loss starts in 0% and gradually increases until it exceeds
the limit, around sample #93. Then, the flow is rerouted to another path with no loss, and
from that point, the loss drops to practically 0%. Observe that the throughput decreases as
losses increases, returning to normal conditions after the policy is applied. This behavior
is normal due to the number of packets dropped.

Evaluation of QoE metrics To evaluate the quality of the video, we use the traditional
PSNR and SSIM metrics. PSNR can be interpreted as a measure of the peak error whereas
SSIM provides a metric of the overall video quality. Video transmissions with higher
PSNR and SSIM closer to one (1) indicate better quality of the video. To provide the
PSNR and SSIM QoE metrics, we use the Evalvid.10 The experiment workflow is similar
to the previous one. In this case, another video, composed of 15691 frames, is used and
the packet loss is manually configured. Figure 8 presents the experiment results, where
the X-axis represents the frame number, and the Y-axes represent the PSNR and SSIM.

We can observe no packet loss between frames 1 to 1460 with PSNR ranging
between approximately 35 and 50, and SSIM close to 1. The packet loss between 1 to
10 % corresponds to frames 1460 and 7460, where both PSNR and SSIM float and yield
low values. After frame number 7460, the policy is applied, and the path is changed to
another one without losses, following the noteworthy enhancements in the QoE metrics.

10http://www2.tkn.tu-berlin.de/research/evalvid/fw.html

 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 4000 5000 6000 7000 8000 9000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

P
S

N
R

S
S

IM

Frames

PSNR SSIM

Figure 8. Evaluating QoE metrics: PSNR and SSIM.

Rerouting time = 15 s Rerouting time = 25 s Rerouting time = 35 s No rerouting
16

16,5

17

17,5

18

18,5

19

19,5

20

1 flow 5 flows 10 flows 20 flows

T
ho

ug
hp

ut
 (

M
bp

s)

(a)

Rerouting time = 15 s Rerouting time = 25 s Rerouting time = 35 s No rerouting
0

2

4

6

8

10

12

14

1 flow 5 flows 10 flows 20 flows

P
ac

ke
t
Lo

ss
 R

at
e

(%
)

(b)

Figure 9. Evaluation of rerouting in terms of (a) Throughput, and (b) Packet loss
rate for different flows and rerouting time.

Impact of Control Loop on Network-level Metrics We now analyze the network impact
of the closed control loop in case of rerouting events. The goal is to investigate how the
network reacts, in terms of packet loss and throughput, when occur rerouting. To this end,
we use the same topology of Fig. 6, run iperf to generate traffic between client 1 and the
video Server and compare traffic in the presence of rerouting to the same traffic without
rerouting. A script is used to trigger the route changes between the orange path and the
green path. We evaluate the observed behavior for different parallel flows (5, 10 and 20)
and different rerouting intervals (15 s, 25 s, and 35 s) over a 350 s simulation. The results
are shown in Fig. 9 with 95% of Confidence Interval and ten repetitions.

Regarding throughput (see Fig. 9(a)), the results are statistically equivalent due
to the overlapping confidence intervals in all scenarios, except for the case there of 20
simultaneous flows and rerouting interval of 15 seconds. In this case, the frequent changes
between the primary and backup paths drop the throughput significantly and with large
fluctuation (i.e., high confidence interval). Figure 9(b), presents the packet loss results
to assess the impact on performance. The observed behavior is similar to all cases, the
larger the amount of parallel flows and lower the rerouting interval, the higher the losses.
Various factors influence the performance hit. As one would expect, the crucial one is the

routing changes. The system requires time to apply all new Intents, thereby introducing
delay and packet losses in the flows, most critically for large amounts of flows.

6. Conclusions and Future Work

The driving theme of this paper is the potential role of smart control loops and Intent-
based Networking concerning automation, abstraction, and self-healing in end-to-end ser-
vice. We developed a smart control loop approach to improve video service quality. A
policy system is exercised to reconfigure the network using IBN as dynamic high-level
decisions. The results demonstrated that when the packet loss crosses certain threshold
levels, traffic is effectively rerouted thereby enhancing the observed QoS (e.g., Through-
put) and QoE metrics (e.g., PSNR, SSIM).

In future work, we will investigate different network topologies and video server
locations, including wireless clients using Mininet-WiFi. Parallel work is ongoing on
to apply machine learning techniques to identify and classify the traffic to be monitored
and improved the smart control loop decisions beyond static packet loss to QoE-centric
metrics, including forecast predictions.

Acknowledgment

This research is supported by the Innovation Center, Ericsson S.A., Brazil, grant UNI.64.

References

Nemo - The Application’s interface to Intent Based Networks. http://www.nemo-project.net/.

Cisco (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,
2016–2021 White Paper - Cisco. https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.

Clemm, A., Ciavaglia, L., and Granville, L. (2018). Clarifying the Concepts of Intent and Pol-
icy. Internet-Draft draft-clemm-nmrg-dist-intent-01, IETF Secretariat. http://www.ietf.
org/internet-drafts/draft-clemm-nmrg-dist-intent-01.txt.

Comer, D. and Rastegarnia, A. (2018). OSDF: A Framework for Software-Defined Network
Programming. 2018 15th IEEE Annual Consumer Communications Networking Conference
(CCNC), pages 1–4.

Cui, L., Yu, F. R., and Yan, Q. (2016). When Big Data Meets Software-Defined Networking: SDN
for Big Data and Big Data for SDN. IEEE Network, 30(1):58–65.

da Costa Filho, R. I. T., Lautenschläger, W., Kagami, N., Luizelli, M. C., Roesler, V., and Gaspary,
L. P. (2018). Scalable QoE-aware Path Selection in SDN-Based Mobile Networks. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pages 989–997.

de Sousa, N. F. S., Perez, D. A. L., Rosa, R. V., Santos, M. A. S., and Rothenberg, C. E. (2018).
Network Service Orchestration: A Survey.

ETSI (2017). Improved operator experience through Experiential Networked Intelligence (ENI).
Technical Report 22, ETSI.

Han, Y., Li, J., Hoang, D., Yoo, J., and Hong, J. W. (2016). An Intent-Based Network Virtu-
alization Platform for SDN. In 2016 12th International Conference on Network and Service
Management (CNSM), pages 353–358.

Kiran, M., Pouyoul, E., Mercian, A., Tierney, B., Guok, C., and Monga, I. (2018). Enabling Intent
to Configure Scientific Networks for High Performance Demands. Future Generation Comp.
Syst., 79:205–214.

Kreutz, D., Ramos, F. M. V., Verı́ssimo, P. E., Rothenberg, C. E., Azodolmolky, S., and Uhlig, S.
(2015). Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE,
103(1):14–76.

Linux Foundation. Group Based Policy User Guide. https://docs.opendaylight.org/en/stable-
fluorine/user-guide/group-based-policy-user-guide.html.

Linux Foundation. ONOS Intent Framework. https://wiki.onosproject.org/display/ONOS/ In-
tent+Framework.

Linux Foundation (2015). ODL Network Intent Composition.
https://wiki.opendaylight.org/view/Network Intent Composition:Main.

Linux Foundation (2018). ONOS - A new carrier-grade SDN network operating system designed
for high availability, performance, scale-out. https://onosproject.org/.

Marshall, C. By 2019, 80% of the World’s Internet Traffic Will Be Video.
https://tubularinsights.com/2019-internet-video-traffic/.

Noction (2018). Intent-Based Networking Explained. https://www.noction.com/blog/Intent-
based-networking-ibn-explained.

Sanvito, D., Moro, D., Gulli, M., Filippini, I., Capone, A., and Campanella, A. (2018). ONOS
Intent Monitor and Reroute Service: Enabling Plug and Play Routing Logic. 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft), pages 272–276.

Singh, K. D., Hadjadj-Aoul, Y., and Rubino, G. (2012). Quality of Experience Estimation for
Adaptive HTTP/TCP Video Streaming using H.264/AVC. In 2012 IEEE Consumer Communi-
cations and Networking Conference (CCNC), pages 127–131.

Sköldström, P., Junique, S., Ghafoor, A., Marsico, A., and Siracusa, D. (2017). Dismi - an in-
tent interface for application-centric transport network services. In 2017 19th International
Conference on Transparent Optical Networks (ICTON), pages 1–4.

Stein, Y. (2018). Closed-loop Implementation – one size does not fit all - TM Forum
Inform. https://inform.tmforum.org/digital-transformation-and-maturity/2018/03/closed-loop-
implementation-one-size-not-fit/.

Tsuzaki, Y. and Okabe, Y. (2017). Reactive Configuration Updating for Intent-Based Networking.
In 2017 International Conference on Information Networking (ICOIN), pages 97–102.

Wu, D., Hou, Y. T., Zhu, W., Zhang, Y.-Q., and Peha, J. M. (2001). Streaming video over the
internet: approaches and directions. IEEE Transactions on Circuits and Systems for Video
Technology, 11(3):282–300.

