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Abstract. Considering the characteristics found in the post-pandemic scenario
of public higher education in Brazil, we must address issues related to equity in
access to educational resources. We present the new features of Machine Teach-
ing, a web system used in introductory programming classes to support students
and instructors. The innovations aim to adapt the system to post-pandemic con-
ditions and the diverse public resulting from policies to democratize access to
Brazilian universities. We present functionalities to mitigate problems related to
many students per instructor, such as student dashboards and alerts indicating
disengaged students who are likely to drop out. We also address computer and
internet access difficulties by transforming the architecture from client-based to
remote-based.

1. Introduction
The 21st century’s first two decades were a significant encouragement period from the
Brazilian Federal Government to expand access to higher education. During these years,
the Federal Government offered more than 9 million higher education student vacancies,
directly or indirectly, in all of Brazil’s federate units1. The attendees’ scenario in Brazilian
universities changed due to policies to democratize access to higher education, which
include opening new institutions in all regions of the country, reserving places for students
from public schools (quotas policy [Lima et al. 2014]), and offering students financial
support. Consequently, the educational work of higher education also changes.

A critical point is the increase in the number of students per class. Al-
though instructors and students may prefer classes with a small number of students

1Data obtained from the 2017 report “Censo da Educação Superior: Sinopse Estatı́stica – 2017” pro-
duced by “Instituto Nacional de Estudos e Pesquisas Educacionais Anı́sio Teixeira (INEP)”. Available at
https://www.gov.br/inep/pt-br/acesso-a-informacao/dados-abertos/sinopses-estatisticas



[Paul J. Baker and Tolone 1974], this option has lost economic viability compared to
other priorities for resource investments. To deal with a large number of students per
instructor, we must address issues related to equity in access to educational resources.
In a country like Brazil, a significant portion of university students must be assisted
by financial support policies to make their studies viable. Their home access condi-
tions to resources such as the internet and computers are precarious. In regions of so-
cial vulnerability, such as favelas, broadband internet access services are rarely available
[Cunha et al. 2023]. Conditions worsened during the COVID-19 pandemic when remote
teaching became the only possible practice [Castioni et al. 2021]. Also, several students’
families lost their main sources of income. In 2023, as the WHO declared the end of
the pandemic state, the Brazilian universities fully returned to face-to-face activities, with
a deficient budget and highly deteriorated infrastructure and computational equipment
[Hipólito et al. 2022].

In the quest to maintain introductory programming courses running at Universi-
dade Federal do Rio de Janeiro (UFRJ), the main pedagogical support tool used, Machine
Teaching [Moraes et al. 2021], was modified in favor of students’ equal access. Machine
Teaching is an online learning environment to support introductory programming classes.
Its features include an in-browser integrated development environment (IDE) for students
to code and submit their assignments; dashboards where instructors can analyze students’
difficulties; and alerts for instructors signaling students who are at risk of low performance
or dropout. Machine Teaching’s main functionalities and achievements were already de-
scribed in previous papers [Moraes et al. 2021, Moraes et al. 2022]. The system is useful
for students as it provides didactic support for programming practice through automatic
testing and feedback mechanisms, as well as operational support through the student ac-
tivities’ organization and dashboards with information on expected resolution time and
the activities’ difficulty. For instructors, the tool is useful for dealing with a large number
of students by supporting programming tasks feedback, providing class difficulties con-
solidated views and students’ performance over time, and alerting about students at risk
of dropping out.

In this article, we address issues related to the adaptation of Machine Teaching to
the scenario of inequalities 2, which we perceive to have worsened in the post-pandemic.
The updated architecture allows access by smartphones and client machines with low
computational power and deals with weak and intermittent connections. The tool supports
instructors in managing a great number of students.

Section 2 presents works related to ours – other online environments that support
programming teaching and learning tasks. Section 3 briefly describes the system Ma-
chine Teaching, highlighting the functionalities to support instructors in dealing with a
massive number of students. Section 3.2 details how Machine Teaching’s architecture
was modified to support students accessing from any device with internet connectivity.
Our conclusions and future work are stated in section 4.

2These are challenges related to United Nations (UN) sustainable global goals number 4, “quality edu-
cation”, and 10, “reduced inequalities” [United Nations and Development 2015].



2. Literature review
Online environments that automatically correct source code are commonly
used as pedagogical support tools in programming courses, mainly due to
their speed in providing student feedback. Table 1 gathers automatic code
correction environments for Python language taken from systematic litera-
ture reviews conducted by [Ihantola et al. 2015] and [Luxton-Reilly et al. 2018]
(CloudCoder [Hovemeyer and Spacco 2013, Papancea et al. 2013], CodeWorkout
[Panamalai Murali 2016], PCRS [Zingaro et al. 2013], UUhistle [Sorva and Sirkiä 2010],
Pythy [Edwards et al. 2014], Web-CAT [Edwards and Perez-Quinones 2008],
PEEF [Araujo et al. 2021]), as well as two environments developed by Brazilian univer-
sities that were not included in the conducted review (CodeBench [Galvão et al. 2016]
and Beecrowd [Bez et al. 2012, Bez et al. 2013]), a popular commercial web-
system (Repl.it), and the Machine Teaching environment mentioned in this paper.
These environments’ functionalities were analyzed and compared in a previous pa-
per [Moraes et al. 2022]. In this paper, we investigate whether these tools are suitable for
use in classes with a large number of students, severe budget restrictions, and students
with deficient access to computers and the internet. These tools are analyzed and
compared based on five criteria3:

1. Is the online learning environment still active (recent developments)? When was
the last update?

2. Can the environment be accessed using a smartphone?
3. Is the environment distributed as open source?
4. Does the environment provide a dedicated area for instructors with statistics and

graphs so that they can have both an overview of the class and specific students?
What is available?

5. Was the environment evaluated? By which method?

The second question assesses if the tool can be used in a smartphone. According
to the Brazilian Institute of Geography and Statistics (IBGE), 99.6% of the individuals
with internet access, do it using a smartphone in contrast with 42.7% that do it using a
computer (an individual can use both). It means that only half of the people with internet
access also have access to a computer with internet. But almost everyone with internet
access has access to a smartphone with the internet as well4. Nowadays, most web systems
are built upon javascript libraries and HTML5 that provide them with a responsive design
and allow them to function and automatically adjust to different screen sizes and devices.
Therefore, all the tools that were developed as web systems ran perfectly on smartphones.
The tools that did not work were developed as desktop applications or were not available
online.

To consider budget restrictions, we analyzed if the tools are distributed as open
source and if they still have active developments (questions three and one, respectively).
A tool distributed as open source is guaranteed to be always accessible (institutions could
always manage the system locally) and to never have a fee that could derail the tool’s

3This review is limited in comparing the tool’s availability and features. The analyzed papers do not
present their architecture, so they could not be compared.

4Data obtained from the 2021 Continuous National Household Sample Survey. Available at
https://sidra.ibge.gov.br/tabela/7311



Table 1. Online environments to autocorrect Python code. Dashboard features:
G=grades; S=submissions; ST=statistics; D=dropout prediction

Environment 1. Active /
last update

2.
Smart-
phone

3.
Open
Source

4. Dashboards 5. Evaluation

CloudCoder No / Feb
2016 N/A Yes G Not evaluated

CodeWorkout Yes / Nov
2021 Yes Yes G S Questionnaire

PCRS Yes / Jan
2023 Yes Yes G S Not evaluated

UUhistle No / N/A No No No dashboard Questionnaire
and control
group

Pythy No / Feb
2020 Yes Yes No dashboard Questionnaire

Web-CAT Yes / Sep
2020 Yes Yes G S Control group

PEEF No / Abr
2021 No No G S ST Not evaluated

CodeBench Yes / N/A Yes No G S ST Questionnaire
and control
group

Beecrowd Yes / May
2023 Yes No G S ST Questionnaire

Repl.it Yes / N/A Yes No G S N/A

Machine
Teaching

Yes / Sep
2022 Yes Yes G S ST D Questionnaire

adoption. Also, recent developments indicate that the system development is active and it
still has support for bugs and improved functionalities.

Finally, as analyzed by the fourth question, the investigated tools support the use
by instructors and students. For students, the tools generally function as an integrated
development environment (IDE), where students code and receive real-time feedback.
However, the features for instructors vary significantly. In UUhistle, for example, instruc-
tors use the system for simulations and examples. Most tools allow instructors to see
whether or not a student has passed a question. Additionally, Beecrowd and the Brazil-
ians CodeBench and Machine Teaching provide student submissions with in-depth analy-
sis through dashboards with graphs or statistics about students and classes. To efficiently
deal with a large number of students, the tool must provide consolidated statistics about
the questions, classes, and students, instead of only providing a final grade for a question.
The statistics allow instructors and course administrators to pinpoint students’ difficulties
throughout the semester before their final exams and grades.



Machine Teaching differs from these systems because, in addition to supporting
the regular use by students, it focuses on data collection for decision support. The dash-
boards presented in the system provide information so that instructors can reflect on the
syllabus’ order, the content difficulty, and activities’ deadlines, encouraging reflection and
supporting the continuous course update. It also provides a dropout prediction feature to
alert instructors about students at risk of low performance or dropout.

3. Machine Teaching Web System
This section presents the developed online learning environment to support instructors
and students in programming classes. The system’s main functionalities were already
presented at [Moraes et al. 2022]. This paper focuses on the new requirements and func-
tionalities concerning the support given to instructors in dealing with a great number of
students and the differences in access across university students in the Brazilian scenario.
We present our data analysis functionalities: dashboards for students’ and instructors’
awareness, and student dropout prediction. Then, the new system architecture designed
to allow an increased number of simultaneous access and access from low computational
power machines is presented.

After logging in the system, the students have access to an integrated develop-
ment environment, where they are presented with a problem, and they should write the
expected answer in a free-text coding format. For each exercise, a test case function gen-
erator was defined to correct the results. The students receive feedback every time they
submit an answer, and they can see whether they passed or failed a unit test case. If they
get all of them correct, the task is considered done, and the student may move on to an-
other problem. The system saves a state every time a student submits an answer. The
set of submissions is used to generate aggregated statistics regarding problems, content,
students, instructors, course, among others.

3.1. Data analysis
3.1.1. Dashboards for awareness

The system offers three interfaces for instructors to analyze student submissions at the
individual level or aggregated by class. Figs. 1 and 2 present the interface with detailed
information for each student, including their codes, outcomes, and the timestamp of each
submission. In particular, the interface in Fig. 2 was requested by the instructors to be
able to compare individual student submissions. This interface displays all student sub-
missions side by side, along with the respective submission timestamp, and the percentage
of successful test cases for a single problem. In this way, the instructor can identify com-
mon errors among students.

To support analysis by class, the dashboard shown in Fig. 3 was proposed. In
this dashboard, instructors can verify the content and problems that took the longest for
students to solve or required more attempts, which may indicate the need for adjustments
in the teaching activity. Consolidated information is also available about individual stu-
dents. These dashboards are designed to make the instructor’s work more efficient and
to reduce the time needed to access a class overview and each student’s evolution. These
features and the system’s usability and effectiveness were evaluated in a previous pa-
per [Moraes et al. 2022].



Figure 1. Interface with each student’s outcome for a specific chapter.

Figure 2. Interface with the detailed solutions for a specific problem for each
student.

3.1.2. Dropout prediction

Dropout prediction used to be a simpler task when class sizes were smaller and it was
possible to assess student attendance by observing class routines, student behavior, and
outcomes in assignments and tests. However, this observation is limited in classes with
a massive number of students per instructor. Therefore, we propose a dropout prediction
feature that alerts instructors to potential risk situations.

Previous research has achieved positive outcomes in dropout predic-
tion using decision trees and providing interpretable results [Pereira et al. 2019,
Damasceno et al. 2019, Al-Shabandar et al. 2018]. We utilized the CART algorithm with
the Gini Index as the splitting criterion and 10-fold cross-validation, with 80% of the
observations in the train set and the remaining 20% in the test set. In this application, it
is more harmful to misclassify the “likely to dropout” class if a student who is likely to
drop out is classified as a false-negative. Therefore, the model was optimized for the F1
metric, aiming at balancing sensitivity and specificity for the “likely to dropout” class.
Analysis of the resulting tree yielded an F1 score of 0.81 and a Recall of 0.88 for this
class, meaning that the model can recover most of the true-positive “likely to dropout”
observations and not provide too many false negatives. Weekly success rates emerged
as the strongest predictors, followed by the number of attempts per question and unique
days of exercise submission, meaning that positive feedback from the system and student
continuous attendance are important factors when determining the student dropout risk.



Figure 3. Dashboard for a class. Contains overall class progress, indications of
problems and content that required more time or more attempts, and per-student
completion statistics.

3.2. Architecture

The initial implementation of Machine Teaching encompasses a peculiar architectural
element: the code processing, as submitted by the student, occurs within the student’s
browser. This client-side processing demands that the employed hardware satisfies min-
imum requirements. In the year 2022, a refined version of Machine Teaching was con-
ceptualized to bypass the restrictive element of the client-side architecture inherent in the
prior version. This novel implementation resolves the issue through the establishment of
a remote environment dedicated to code execution, encompassing an auto-scalable server
cluster. This adaptation allows students to undertake exercises from any device with in-
ternet connectivity. Furthermore, the processing time will no longer be a function of the
student’s hardware, as a dedicated server cluster will facilitate the processing of exercises
submitted through Machine Teaching.

3.2.1. Cluster Management

The solution implemented in the refined version of Machine Teaching is delineated in the
diagram presented in Fig 4. The platform adaptation was facilitated by employing the
Kubernetes container orchestration system. Each container in the cluster operates as an



isolated environment for executing the students’ code. The key factors underscoring the
decision to utilize Kubernetes encompass:

• Load Balancing: Kubernetes exhibits the ability to balance the load and manage
network traffic distribution. Consequently, student submissions will be directed
towards the available container.

• CPU and Memory Bounds: The system permits the definition of CPU and mem-
ory (RAM) limitations for each cluster container. This prevents a surge in work-
load, whether due to malicious code or non-performant code, from adversely af-
fecting the execution environment of other students.

• Self-healing: Kubernetes autonomously manages the restart of containers that
encounter failure, replacing containers when necessary, and discarding containers
that do not respond to health checks.

Figure 4. Architecture using a container orchestration system and source code
scanning stage.

Beyond alterations in the student’s code execution environment, business rules
were instituted to ensure scalability and continued security. Evaluation of the imple-
mented system was performed, taking into consideration two principal aspects: scalabil-
ity and security. The security analysis was predicated on the three pillars of information
security, as per [Beal 2005]: confidentiality, integrity, and availability. Conversely, the
scalability analysis was conducted with the intent to estimate the maximum number of
simultaneous users that the system could accommodate without compromising its opera-
tional speed. Details of each evaluation can be seen at [de Castro Xara Wanderley 2023].

3.2.2. Security Evaluation

To safeguard against server compromise, a source code scanning stage was incorpo-
rated to identify potentially malicious code or vulnerabilities. This procedure, known
as SAST (Static Application Security Testing), leverages several extensively utilized so-
lutions, both open-source and proprietary.

1. Confidentiality: Confidentiality is infringed upon when data, expected to be ac-
cessed exclusively by a pre-defined set of users, are inadvertently exposed to unau-
thorized users. To guarantee data confidentiality, the Machine Teaching system is



required to prevent system users from accessing data generated during another
user’s session. Through a series of tests, it was ascertained that file manipulation
and read operations are identified as potential threats and subsequently obstructed.
Thus, a malicious user would be unable to access the code submitted by another
user or the files generated by them.

2. Integrity: The system’s integrity would be at risk if a malicious user or agent
managed to improperly manipulate any system file. As corroborated by the confi-
dentiality test, breaching the system’s integrity proved impossible, as it effectively
detects and precludes any form of file manipulation.

3. Availability: Lastly, to assess the system’s availability, the possibility of compro-
mising it was considered in the event of a code submission rendering one of the
servers unavailable, thereby impacting the processing of other users’ submissions.
Currently, the system lacks any interruption mechanism for submissions that ex-
cessively consume CPU and memory resources. Hence, it has been empirically
demonstrated that compromising the system’s availability is relatively straightfor-
ward.

3.2.3. Scalability Evaluation

The evaluation of the system’s scalability and resilience includes studying its performance
under a load of multiple users and identifying any constraints that may manifest as the
number of simultaneous requests increases. A load test was conducted to evaluate the
maximum number of users the system could accommodate without the response time
exceeding one second. The metric of RPS (requests per second) was employed, assuming
each user would generate approximately 0.3 requests per second. The result can be seen
in Table 2.

If there is only one available container (all student submissions are sent to the same
container in a queue), the system can handle only five requests per second, resulting in
17 simultaneous students submitting exercises. By increasing the number of containers to
five, the system can handle up to 18 requests per second, which results in 60 simultaneous
users submitting their code. The number of containers can increase or decrease depending
on the expected number of simultaneous users and requests.

It is crucial to highlight that the system did not employ threads during this eval-
uation. Consequently, the system processed the code synchronously. However, it would
be misleading to assume that each container managed only one request at a time. In re-
ality, each container provided the submissions API via a WSGI (Web Server Gateway
Interface), which utilized a prefork worker to spawn and manage multiple application
instances. For this evaluation, the WSGI was configured to spawn 5 instances of the
submissions API for each container.

Table 2. Scalability results achieved varying the number of available containers
No. containers Requests per second (RPS) Maximum No. simultaneous users

1 5 17
3 15 50
5 18 60



The performance metrics revealed a noteworthy pattern. As the number of con-
tainers increased from 1 to 3, there was a predictable increase in requests per second
(RPS). However, the transition from 3 to 5 containers did not achieve the expected linear
scaling; the server reached only 18 RPS instead of the projected 25 RPS. The underly-
ing cause for this performance deviation remains uncertain, but preliminary investigations
suggest that it could be linked to the load-balancing strategy. Within the Kubernetes clus-
ter, the kube-proxy component is responsible for routing requests to an operational pod. A
potential limitation here is that kube-proxy lacks insight into a container’s internal status.
This could result in requests being directed to containers that are already managing their
full quota of 5 requests, as dictated by the number of WSGI forks. Further analysis would
be required to confirm this hypothesis.

4. Conclusion and future work
In pursuit of fulfilling the UN’s sustainable goal of ”quality education”, policies to expand
access to public universities were implemented in Brazil. This changed the scenario in
classrooms and brought many challenges, including classes with a large number of stu-
dents and students without adequate access to computers and the internet. This work pre-
sented a learning environment web system to support instructors in programming classes.
We considered the instructor’s difficulties in managing such a large class and presented
functionalities to mitigate these problems, such as automated student feedback in real-
time, dashboards with consolidated statistics per class and student, and alerts indicating
disengaged students who are likely to drop out.

The presented system had an initial architecture that did not take into account stu-
dents’ low computational power machines by automatically correcting source code on the
client. Therefore, we also presented the system’s new architecture which establishes a safe
remote environment for code execution, releasing the workload from the client machine.
It is based on an auto-scalable server cluster and incorporates a source code scanning
stage to increase server security. We ran a security evaluation on this architecture and it
passed two out of three criteria. The system’s confidentiality and integrity were not com-
promised, but its availability was. Future work will implement an interruption mechanism
if an executed code takes longer than expected. The new architecture scalability was also
tested. As the number of containers increases, the maximum number of simultaneous
users also increases. In our tests, we achieved 60 simultaneous users with a response
time of less than one second by deploying just five workers. Another advantage of the
proposed architecture is that it promotes a separation of responsibilities. The Web IDE,
used to process the student’s code in the browser itself, now plays the role of code editor,
so that future editions in this module will aim to improve the user experience. The source
code execution and validation were separated, allowing updates to expand the coverage
of security checks, without the need to alter the cluster that executes the code.

5. Online Resources
1. Machine Teaching: www.machineteaching.tech
2. Github: https://github.com/MachineTeachingEdu/
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programação. In Anais do II Simpósio Brasileiro de Educação em Computação, pages
213–223, Porto Alegre, RS, Brasil. SBC.

Moraes, L. O., Pedreira, C. E., Delgado, C., and Freire, J. P. (2021). Supporting decisions
using educational data analysis. In Anais Estendidos do XXVII Simpósio Brasileiro de
Sistemas Multimı́dia e Web, pages 99–102, Porto Alegre, RS, Brasil. SBC.

Panamalai Murali, K. (2016). CodeWorkout: Design and implementation of an online
drill-and-practice system for introductory programming. Thesis, Virginia Tech.

Papancea, A., Spacco, J., and Hovemeyer, D. (2013). An open platform for managing
short programming exercises. In Proc. 2013 ACM Conf. Int. Computing Education
Research, pages 47–52, San Diego, CA, USA.

Paul J. Baker, R. B. and Tolone, W. (1974). Diversifying learning opportunities: A re-
sponse to the problems of mass education. Research in Higher Education, 2:251–263.

Pereira, F. D., Oliveira, E., Cristea, A., Fernandes, D., Silva, L., Aguiar, G., Alamri, A.,
and Alshehri, M. (2019). Early Dropout Prediction for Programming Courses Sup-
ported by Online Judges. In Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren,
B., and Luckin, R., editors, Artificial Intelligence in Education, Lecture Notes in Com-
puter Science, pages 67–72, Cham. Springer International Publishing.

Sorva, J. and Sirkiä, T. (2010). UUhistle: a software tool for visual program simulation.
In Proc. 10th Koli Calling Int. Conf. Computing Education Research, pages 49–54,
Koli, Finland.

United Nations, D. o. E. and Development, S. A. S. (2015). Transforming our world: the
2030 agenda for sustainable development.



Zingaro, D., Cherenkova, Y., Karpova, O., and Petersen, A. (2013). Facilitating code-
writing in PI classes. In Proc. 44th ACM Technical Symp. Computer Science Educa-
tion, pages 585–590, Denver, CO, USA.


