
Towards Evaluating a Procedural Content Orchestrator
Gameplay Data to Differentiate User Profiles
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Abstract. We tested a procedural content orchestration algorithm against 15
anonymous users, against 12 different dungeons, played 119 times in total. We
used questionnaires to collect data regarding player profiles, and gameplay data
to analyze if could identify profiles using them only. Using PCA and clustering
techniques, we were able to identify the most important attributes one may col-
lect from gameplay data to analyze and differentiate play-styles. We also iden-
tified that the dungeon’s characteristics have a heavy influence on analyzing
profiles through gameplay, and a more controlled environment may be needed
to identify player profiles. More data and further analysis are needed to extract
player profiles from gameplay data, but preliminary results show promise.

1. Introduction
One of the significant challenges in the multibillion-dollar gaming industry is unders-
tanding the diverse types of players and designing games that appeal to a broad audi-
ence [Lora et al. 2016]. Another challenge is, regardless of the player’s skill level, ad-
justing the game’s difficulty for a challenging, but not too punishing, player experience
[Cowley et al. 2008]. A technique called procedural content generation (PCG), i.e., con-
tent creation through algorithms, is a path to address these challenges. Specifically, an
adaptive PCG can create content by analyzing the player’s interactions with the game in
real-time [Togelius et al. 2016].

However, for extracting and analyzing player data, an adaptive PCG system needs
strategies to define player profiles, estimate skill levels, and identify player motivation
factors. These strategies often elevate the game development process into a user-centered
design approach [Loria and Marconi 2018, Melhart et al. 2019]. Accurate player mode-
ling with adaptive PCG can create an engaging player experience, increasing playing time
while keeping the player entertained and challenged.

However, gaps in the literature still need to be explored to get closer to an ideal
adaptive PCG system. One of the issues relates to the lack of PCG algorithms for cre-
ating content with distinct creative facets (e.g., levels, visuals, rules) simultaneously
[Liapis et al. 2019]. The other is the lack of real-time PCG algorithms that can adapt
their content in real-time.

This paper presents preliminary results from the analysis of implicit and explicit
data collected from a real-time procedural content orchestrator, able to generate dungeons,



missions, and enemies for different player profiles, expanding the generator presented in
[Pereira et al. 2022]. Our study aims to provide insights on user evaluation using game-
play data, specially towards real-time PCG algorithms that may use gameplay data only
to provide tailored content for users and adapt to them.

2. Related Work
We tested a procedural content orchestration algorithm against 15 anonymous users,
against 12 different dungeons, played 119 times in total. We used questionnaires to collect
data regarding player profiles and gameplay data to analyze if we could identify profiles
using them only. Using PCA and clustering techniques, we identified the most important
attributes one may collect from gameplay data to analyze and differentiate play styles.
We also identified that the dungeon’s characteristics heavily influence analyzing profiles
through gameplay, and a more controlled environment may be needed to identify player
profiles. More data and further analysis are needed to extract player profiles from game-
play data, but preliminary results show promise.

In this study, we focus on analyzing if and how gameplay data may be adequately
used to infer a player’s preference and play style, comparing it against explicit feedback
from users. These data, mentioned in Jameson’s categories for collecting data for ”Adap-
tive Interfaces and Agents”, as nonexplicit input, include all actions a user performs with
the system which does not have the explicit purpose of revealing the user’s information
to the system [Jacko 2012, p. 318]. Therefore, works related to collecting and analyzing
gameplay metrics are presented.

Four works stand out in this area [Heijne and Bakkes 2017, Melhart et al. 2019,
Loria and Marconi 2018, de Lima et al. 2021]. The first collects dozens of game metrics,
separated into different gameplay blocks of the research: the village tutorial, combat
against enemies, puzzle solving, and exploration. These metrics were used to determine
correlations between the player’s profile and questionnaire responses regarding their dif-
ficulties and preferred activities. No conclusive result was obtained, but the analysis poin-
ted out that a set of metrics may accomplish the desired goal [Heijne and Bakkes 2017].

The second work uses data from the Ubisoft Perceived Experience Questionnaire
(UPEQ) and several gameplay metrics to feed machine-learning models. 26 metrics were
collected, including player level, days played, duration of gaming sessions, among others.
Several playing styles were derived from these observations by employing profiling te-
chniques based on the sequence of player activities within the game. These models
were found to be more accurate than 65% in the worst case and almost 80% in the best
case.[Melhart et al. 2019]. Unlike our study, they used support vector machine models,
with data from a specific third-person shooter game named Tom Clancy’s The Division.

Using metrics from a gamified application, Loria and Marconi create abstract
player behaviors and compare them with profiles obtained through the Hexad question-
naire. Some behaviors involved competitiveness, with players paying attention to the sco-
reboard and noticing when they reach the top 10 on the board. The relationship between
metrics and Hexad types is low, but abstract actions may be capable of crafting more
believable characters [Loria and Marconi 2018].

The fourth work, authored by de Lima, Feijó, and Furtado, modifies the game’s
narrative following the player’s in-game actions, including combating enemies, utilizing



items, and engaging with non-player characters. The story arc adds an element of tension
to the narrative, which changes the narrative dynamics and provokes game events accor-
ding to the action. Comparing a game with its quest-adaptive system and a base system
without it revealed that their work resembles a more defined narrative trajectory based on
player data in the game [de Lima et al. 2021].

The book by Bernhaupt contains a set of generic and gender-focused metrics em-
ployed in slightly older research and outside the context of procedural generation or player
profiling. Some numbers show how long a game lasts, when important things happen, and
when the player interacts with things in the game [Bernhaupt 2015].

3. Methodology
This section presents the method used to collect data from the player. Subsection 3.1
presents the game prototype used to conduct the experiments, including a description
of collected implicit gameplay metrics. Next, Subsection 3.2 describes how we defined
player profiles from a pre-test questionnaire.

3.1. Top-down game

Figure 1. A screenshot of the game’s dungeon. The player is the yellow character,
the red mage is the enemy, the gray actor is a Non-player character, and the
red gem is a pickable item.

The game was developed with Unity1 game engine, using C# as a programming
language. The game’s project is free and open-source on Github2.At the start of the game,
it presents a pre-test questionnaire to the player (detailed in Subsection 3.2). After the
player answers the questionnaire, the game screen changes to an overworld scene, where
the player may choose between different dungeons, and start playing, as shown in Figure
1. Each player may play as many dungeons as they like, and we gather the gameplay data
for each dungeon and user separately.

1https://unity.com/
2Removed for anonymity



The game is a Top-down genre game. The mechanics of the player and enemies
consist of moving and shooting. Different enemies have different types of bullet projec-
tiles or types of movement. Moreover, enemies with no shooting mechanic damage the
player from touch. A room example is illustrated at the bottom of Figure 1. The yellow
robot represents the player. A room can contain enemies, collectibles, doors, keys, and
NPCs. Some doors are locked and require a key. NPCs ask the player to complete quests.

The winning condition is the player finding a Triforce, an interactive object inspi-
red by Legend of Zelda instantiated in the dungeon. Therefore, completing quests, defe-
ating enemies, exploring extra rooms, and collecting items are not mandatory. The loss
condition is the player dying by taking enough damage to expire their life hearts.

Volunteers played the game through a link published on social networks and mai-
ling lists. Before starting the game, they were shown a text explaining the research, which
data we would collect and how. If they agreed, they would press the “Play” button and
continue. A pre-test questionnaire was shown, so we could identify their profiles, and ga-
meplay metrics were collected within Unity and sent to a private Firebase database as the
player ends the game by winning or losing. The whole process was anonymous: anyone
with the link could play, no personal data was collected, as names, IPs, and the like, and
users were identified by a randomly generated number treated as their ID.

Table 1. Collected gameplay variables.

Variable Data type Description
Has finished Boolean Indicates whether the player found the Triforce or not.
Has died Boolean Indicates if the player died.
Lost health Integer Indicate how much health the player lost.

Max combo Integer
Indicates the highest player’s combo. A combo is counted by the player
hitting an enemy and is reseted wehn the player loses health.

Rooms visited Integer Indicates how many rooms (with repetition) were visited.
Unique rooms visited Integer Indicates how many unique rooms were visited.
Keys found Integer Indicates how many keys the player found.
Doors unlocked Integer Indicates how many doors the player unlocked.
Enemies defeated Integer Indicates how many enemies the player killed.

Completed quests
List of
Integers For each quest type, count how many were completed.

The collected gameplay variables are presented in Table 1.

The aforementioned quests were created with a similar algorithm as presented in
[Pereira et al. 2022], with quests pertaining to each player type (Achievement, Creativity,
Immersion, and Mastery). The first had quests of the exchange and gather archetypes, the
second had quests for the go to and explore types, the third contained give, listen, read,
and report quests, and the final type had only kill quests. All quests were extracted from
the set proposed by [Doran and Parberry 2011]

3.2. Player profiling

The system’s player profiles are based on four motivation factors formalized by Yee et al.
[Yee and Ducheneaut 2018]:

• Achievement: interest in power and completion, such as obtaining powerful items
or completing all quests;



• Creativity: interest in design and discovery, such as character customization or
exploring dungeons;

• Immersion: interest in fantasy and story, relating to the player’s importance in the
game world or rich character developments;

• Mastery: interest in challenge and strategy relating to difficult or strategy games.

We chose the given motivators because it is widely accepted in the industry and
academic communities. Moreover, defined profiles using these motivators apply to many
game genres, which is suitable to a goal for a PCG system to be usable for different game
genres.

The used PCG system, adapted from [Pereira et al. 2022] defines the player’s pro-
file using a pre-test questionnaire with 12 questions. We built the questionnaire based
on three-player modeling questionnaires, extracting crucial gameplay features for each
player’s motivator [Yee 2006, Rivera-Villicana et al. 2018, Vahlo et al. 2017]. Table 2
displays the used questionnaire.

Table 2. Pre-test questionnaire, presented to the player at the start of the game.

ID Question
Q1 I am an experienced player.
Q2 I am an experienced player in the action-adventure genre.
Q3 In which difficulty do you usually play? (Options: Very easy, Easy, Medium, Hard, Very Hard)
Q4 I like playing games where I can explode, crush, destroy, shoot, and kill.
Q5 I like playing games where I can fight using close combat skills and evade fast attacks.
Q6 I like playing games where I can explore the game world and uncover secrets and mysteries.
Q7 I explore all the places, elements, and characters of the virtual world.
Q8 I complete all quests, including those that aren’t necessary to finish the game.
Q9 I like playing games where I can collect rare items and hidden treasures.
Q10 I like playing games where I can build friendships between game characters and work toward a common goal.
Q11 I like playing games where I can immerse myself in the role of the character and make meaningful decisions.
Q12 I usually only do what is necessary to pass a level or complete a quest.

Except for Q3, the questions are presented on a 5-point Likert scale, with options
ranging from Strongly Disagree (1) to Strongly Agree (5). From Equation 1, the weight
of 7 is given to the highest-rated motivator, 5 for the second, 3 for the third, and 1 for
the lowest-rated motivator. The content adaptation process using the player weights is the
same as presented by [Pereira et al. 2022].

A = Q8 +Q9 + 5−Q12 C = Q6 +Q7 + 5−Q12 (1)
I = Q10 +Q11 + 5−Q12 M = Q3− 3 +Q4 +Q5 (2)

4. Results

Our game prototype was played by users with 15 different IDs (as our data acquisition
was anonymous, the same user may have played more than once, and we would not be
able to identify it), and their pre-test answers showed these users pertained to 8 different
profiles. We collected data from 119 playthroughs from different dungeons (from a total
of dungeons generated using 12 different input profiles, as seen in the markers in Figure
2, presented later). The profiles found in the pre-test follow: {A=4, C=3, I=2, M=1};



{A=2, C=1, I=3, M=4}; {A=3, C=2, I=4, M=1}; {A=4, C=2, I=1, M=3}; {A=1, C=3,
I=2, M=4}; {A=2, C=1, I=4, M=3}; {A=3, C=2, I=1, M=4}; {A=4, C=1, I=3, M=2}.

We first scaled the data with a min-max scaler, so that data could be distributed in
the 0-1 range. This was specially helpful for the max combo, which had no upper limit.
The other data was scaled from 0 to 1 considering their natural bounds. The exception was
the total visited rooms, which was first divided by the dungeon’s total rooms (presenting
the backtracking ratio), and then was scaled with the min-max scaler.

Then, we describe the gameplay data statistical summary, presented in Table 3.
and cluster the gameplay data from these 119 playthroughs to identify if we find any
signs of the given profile over the gameplay metrics.

Table 3. Descriptive statistics for each gameplay variable, after min-max scaling.

Data Max
Combo

Completed
Report
Quests

Completed
Listen
Quests

Completed
Achievement
Quests

Lost
Health

Completed
Explore
Quests

Completed
Exchange
Quests

Mean 0.176 0.101 0.101 0.131 0.527 0.126 0.0857
Std. Dev. 0.232 0.249 0.188 0.222 0.375 0.2156 0.174
Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Data
Completed
Kill
Quests

Completed
Mastery
Quests

Completed
Give
Quests

Time To
Finish

Completed
Creativity
Quests

Completed
Immersion
Quests

Completed
Go To
Quests

Mean 0.109 0.109 0.081 0.223 0.117 0.1397 0.078
Std. Dev. 0.199 0.199 0.194 0.190 0.196 0.234 0.170
Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Data
Completed
Gather
Quests

Completed
Read
Quests

Lock
Usage
Rate

Key
Collected
Rate

Map
Completion

Room
Revisit
Rate

Enemy
Kill
Rate

Mean 0.125 0.067 0.628 0.774 0.694 0.235 0.580
Std. Dev. 0.228 0.183 0.414 0.323 0.358 0.187 0.390
Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max. 1.0 1.0 1.0 1.0 1.0 1.0 1.0

As we may observe, the data was scaled by the min-max value to the range of 0-1.
We observe that the players’ combo (total hits against enemies without receiving damage)
was, on average, lower than the best players, with a relatively high standard deviation
(0.232). Overall, the completed quests were also, on average, lower than for the most
completionist players, and having a standard deviation close to 0.2 for most quests. The
data with larger standard deviation were mostly the ones not related to quests. Lost health,
lock usage, and enemy kill had a standard deviation close to 0.4, and key collection was
close to 0.3. This may suggest that a clustering algorithm will benefit from these data the
most, as they have a higher entropy.

To further understand the data’s entropy, while also reducing the dimensionality
for clustering, we apply the Principal Component Analysis (PCA) algorithm to the data,
reducing it to two dimensions. Applying PCA over the dataset to reduce it to two di-
mensions gives us the first component having 57% of the explained variability, and the
second one having 9% of it. Therefore, these 2 components explain 65% of the data vari-
ability. A third component would explain 7% of it, and as it reduces visibility on further
visualizations, we will analyze clustering after reducing data to 2 components.



Table 4 presents, for each component (row), the contribution (Eigenvalues) of
each variable. The largest Eigenvalues show the most important variables contributing
to each component. Therefore, the first component (which has the greatest explained
variability) is largely formed by the information of Lock Usage, Enemy Kill Rate, Map
Completion, Key Collected Rate, and Lost Health. The one is composed majorly by the
values of Completed Immersion Quests, Completed Report Quests, Key Collected Rate,
Map Completion, Lock Usage Rate, Completed Achievement Quests, Completed Gather
Quests, and Completed Give Quests.

Table 4. Each variable’s contribution to each principal component of the PCA.

Component Max
Combo

Completed
Report
Quests

Completed
Listen
Quests

Completed
Achievement
Quests

Lost
Health

Completed
Explore
Quests

Completed
Exchange
Quests

0 0.02 0.14 0.12 0.16 0.34 0.15 0.10
1 0.21 0.33 0.19 0.27 0.09 0.20 0.18

Component
Completed
Kill
Quests

Completed
Mastery
Quests

Completed
Give
Quests

Time To
Finish

Completed
Creativity
Quests

Completed
Immersion
Quests

Completed
Go To
Quests

0 0.12 0.12 0.11 0.18 0.14 0.18 0.10
1 0.08 0.08 0.24 0.10 0.21 0.36 0.16

Component
Completed
Gather
Quests

Completed
Read
Quests

Lock
Usage
Rate

Key
Collected
Rate

Map
Completion

Room
Revisit
Rate

Enemy
Kill
Rate

0 0.15 0.09 0.44 0.31 0.38 0.18 0.40
1 0.25 0.19 0.29 0.31 0.29 0.09 0.10

This means that information related to locks, keys, enemies, map completion, and
health are the most important to identify players by their gameplay, while quest-related
data, specially those for the achievement, immersion, and creativity types has a minor but
significant contribution. The first group of data is related to exploration (linked to the cre-
ativity type) and mastery, but may also relate to the achievement one, considering players
that may consider exploring the whole dungeon an achievement. While the second group
is more related to the immersion type (the most influential variable), and achievement.
This shows that data that may relate to all four explored player types have a significant
role in the explained variability aspect of the PCA, and may be useful to discover player’s
preferences through gameplay data alone.

Now, we apply clustering algorithms to explore if the gameplay data may be grou-
ped in such a way that represents the original player’s provided profiles by the pre-test.
The first algorithm used to cluster the data is the K-Means algorithm. As we want to find a
possible correlation to the player profiles, all algorithms will be executed with parameters
related to creating 8 clusters. Figure 2 shows the generated clusters. At the bottom, the
scatter plot of each gameplay data, considering the two principal components of the PCA,
and grouping each playthrough by the player’s profile (color) and the level’s profile (mar-
ker), that is, the input provided to the generator to create the level’s quests, enemies, and
layout. This specific data may help visualize if different dungeons’ configuration impact
over the gameplay of each player profile.

We may observe the clustering was unable to precisely divide players by profile.
However, some interesting groups emerged. Clusters C3 and C7 are majorly composed
by players of the yellow profile (A=4, C=1, I=3, M=2), and both contain mostly data



Figure 2. Scatter plot showing the generated clusters by the K-Means algorithm
(top), and the gameplay data marked by player and level profile, with each
cluster space marked by the lines.



from level M=3, I=4, A=2, C=1. C3 also contains the majority of data from level M=3,
I=1, A=4, C=2, while C7 also holds data from M=4, I=1, A=3, E=2. This may be
evidence that the level played has a significant impact on players, regardless of profile.
Furthermore, said dungeons are focused on combat (high mastery), and are dungeons
most players may have had more difficulty clearing them. As health and enemies killed
were important variables for the variety in the PCA execution, the dungeon difficulty itself
may impact more players than their profiles. We also observe cluster C0 has most data
from the same dungeons as C7, but has players with a higher mastery profile (M=4 for
most of them).

Cluster C4 and C5 have a high concentration of players with a high Mastery prefe-
rence (M=3 and M=4), but ranging through various levels. C6 holds few data, but consists
of mastery-liking players (M=4) that played low mastery levels (M=1). And C5 also con-
tains players with high mastery preference, playing levels with a medium level of mastery
(M=2 and M=3). For the other clusters (C1, C2, C4), they seem to hold a high variation
of players and levels.

To further validate our analysis, a second clustering algorithm was used, the Spec-
tral Clustering, also considering 8 clusters. It provided similar results, as shown in Fi-
gure 3. The Spectral’s clusters C0, C1, C5, and C4 are almost identical to K-Means’
clusters C1, C6, C2, and C3, respectively. Spectral’s cluster C3 aggregates even more
playthroughs of the M=3, I=4, A=2, C=1 dungeon, from the same types of player than
K-Means’ cluster C0. Spectral’s C2 holds more gameplay data from dungeon M=4, I=1,
A=3, C=2, being a cluster of levels with difficult combat played by Mastery-oriented
players, furthering the profile already perceived from K-Means’ C0. Spectral’s C6 and
C7 are mostly a segregation of K-Means’ C5, leaving easier dungeons in Spectral’s C6,
and the more difficult ones in C7.

Figure 3. Scatter plot showing the gameplay data marked by player and level
profile, with each cluster space marked by the lines, now generated by the
Spectral Cluster algorithm (top).



5. Conclusion

We introduce a preliminary analysis on gameplay data from 119 playthroughs of 15
anonymous users, from 8 different profiles, playing through different dungeons aimed
to target 12 different profiles, thanks to a procedural content orchestrator able to gene-
rate dungeons, quests, and enemies. Our focus was to find evidence in gameplay data
that may help us identify a player’s profile without the need for explicit input, such as
questionnaires.

Through a PCA, we identified that data related to quest completion, time to finish
a level, and how many hits a player gives without taking a hit were secondary to data
related to elements such as enemies killed, health lost, keys collected, doors unlocked,
and map completion. Signaling that these attributes are the most important to collect to
evaluate users’ gameplay behavior.

Then, we used clustering algorithms to identify if any behavior related to each
user’s profile would emerge. Although we could not trace from the cluster the player’s
profiles, we found that the level’s components had a great impact on the clustering, spe-
cially how difficult their enemies were. Both clustering techniques used were mostly able
to divide players and levels into categories related to: users who liked combat playing in
dungeons with hard combat or easy combat, and users who disliked combat playing in
dungeons with hard or easy combat.

Although more experiments are needed to draw better conclusions, our analysis
was able to provide important insights. The first one is that the dungeon’s difficulty may
affect what is perceived as the user profile, and care must be taken in that regard. That is,
a future study with more users playing the same dungeon (or a very reduced number of
them) may provide data that allow clustering techniques to better identify player profiles,
but generality may be hindered. The second one is that tracking which quests were com-
pleted by the player may not help to identify those who like immersion or achievements,
as was expected. This may be caused by our test games lack of complex quests, but also
may help future research to be careful when considering quest data.

Finally, the analysis provides insight that it is possible to group players using
gameplay data, although we were not yet able to do so with the expected granularity, such
as to define their specific player types and preferences. With more users, more data, and
more implicit data collected, results may improve. However, these preliminary results
may pave the way for real-time procedural content orchestration to use gameplay data to
generate new content for users after each playthrough, creating a feedback loop to tailor
content for each user’s needs and improvement.

As possible future work, besides collecting more data, we plan to use classification
algorithms to check their accuracy on classifying players with a given profile having only
their gameplay data, and use the results in a real-time procedural content orchestration
algorithm to analyze player’s opinions on the quality of generated content and, therefore,
the classification algorithm.
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