
Beyond the eye: making block-based programming languages

accessible to visually impaired people

Sandro M. Rezende1, Luciana T. Perdigão1, Jociene M. M. Silva1, Graziela F.

Guarda1, Sergio C. C. S. Pinto1, Edicléa M. Fernandes2, Gerlinde A. P. B. Teixeira1

1Programa de Pós-Graduação em Ciências, Tecnologias e Inclusão (PGCTIn) –

Universidade Federal Fluminense (UFF) – Niterói – RJ – Brasil

2Faculdade de Educação – Universidade do Estado do Rio de Janeiro (UERJ) – Rio de

Janeiro – RJ – Brasil

{sandromiranda,lucianaperdigao,jocienematheus,grazielaguarda,screspo,

gerlinde_teixeira}@id.uff.br, professoraediclea.uerj@gmail.com

Abstract. The aim of this work is to present a literature review concerning the

accessibility of block-based programming languages and environments for

people with visual impairments. The results show that the most popular block-

based languages are built on graphical features that are not accessible for

visually impaired people. However, some languages have been developed

with the visually impaired learner in mind. We conclude that, in addition to

the development of specific languages, other kinds of efforts have been made

for the creation of accessible block-based programming environments.

1. Introduction

Although technological resources are frequently discussed, many people still have little

dimension of their relevance in everyday life. As digital technologies increasingly

permeate spaces in society, it is important to develop content related to computing for

k12 students. One way of creatively using these tools is through activities that involve

the development of computational thinking, as well as basic concepts of computer

programming to solve problems. Countries such as the United States, Canada and

Israel, for example, as well as several countries in Europe, have already been

implementing the teaching of skills related to digital technologies, the development of

computational thinking and the introduction of computer programming in Basic

Education [Ferri; Rosa 2016; Valente 2016].

However, it is essential that all learning situations are developed in a way that

everyone can participate, considering the basic premises of inclusive school

communities. As Artiles and Kozleski (2007, p. 357) state, “schools are about

belonging, nurturing, and educating all children and youth, regardless of their

differences in culture, gender, language, ability, class, and ethnicity”. In this sense,

meeting the different educational needs of students with and without disabilities is an

important challenge that teachers must face in their pedagogical practice.

Understanding and valuing individual differences is an important aspect of an

inclusive education. In the logic of inclusion, individual differences are recognized,

accepted, and constitute the basis for building all pedagogical approaches. However,

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

01DOI: 10.5753/wpci.2022.226547

the implementation of inclusive didactics is not a simple task and must surpass

traditional pedagogical models. In this context, it is necessary to understand what kind

of knowledge is important for the teacher to plan and conduct learning activities that

meet both the educational specificities of students with and without disabilities, and the

multiple forms of interaction between the students, teachers, and content maters

[Camargo; Nardi, 2008]. Teaching computing related contents and, more specifically,

how to program, falls into this context.

More specifically, when teaching visually impaired people how to program, the

choice of the programming environment that is going to be used is an issue that must

be considered, since it is important that the resources enable participation and

interaction for all students. Programming can be challenging to learn, and for learners

with visual impairments there are additional barriers that must be considered.

According to Kölling et al. (2017), making programming accessible, for example to

blind programmers, is a difficult challenge.

Among the different types of programming environments that can be used in

introductory programming, for educational purposes, block-based environments

present relevant advantages. They allow students to develop codes by fitting blocks

withpredefined expressions, and there is no need to learn complex text-based language

elements, avoiding the occurrence of syntax errors. Besides, these resources make the

programming activity playful and dynamic. On the other hand, since block-based

languages are intrinsically visual, generally they are not accessible to visually impaired

students. In this sense, in this study we proposed a systematic literature review on the

accessibility of block-based programming environments for people with visual

impairments, aiming to answer the following research questions: “are there block-based

programming languages that are accessible to people with visual impairments?”; “If

block-based programming languages that are accessible to people with visual

impairments exist, what are they and how do they work?”; “What other strategies have

been implemented to make block-based programming environments accessible?”

2. Method

A systematic review is a type of research that uses the literature on a given topic as the

data source [Sampaio; Mancini, 2007]. This style of investigation provides a summary

of the evidence related to a specific interventional strategy through the application of

explicit and systematic methods of searching, critical appraisal, and synthesis of the

selected information [Medeiros et al. 2015]. The research questions that guided this

work were elaborated as follows: i) Are there block-based programming languages that

are accessible to people with visual impairments? ii) If block-based programming

languages that are accessible to people with visual impairments exist, what are they and

how do they work? iii) What other strategies have been implemented to make block-

based programming environments accessible?

The research was organized based on an adaptation of the systematic review

checklist proposed by Medeiros et. al. (2015), as shown in Table 1. To select the papers,

the inclusion criteria were: a) availability of the paper; b) written in English, Spanish

or Portuguese; c) reference to block-based languages or programming; d) reference to

visually impaired people; e) reference to accessibility. In turn, the exclusion criteria

were: a) not about block-based programming; b) the paper quotes visually impaired

people but does not present accessible block-based programming languages; c) only

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

02

https://drive.google.com/file/d/1okisSpck3n9CHvONaNObzAFxs0oM4CZN/view?usp=sharing

mentions accessibility other than visual; d) not full papers (abstracts, poster or

conference presentations); e) in French.

3. Results and discussion

The searches returned the amount of 86 results. After the application of the inclusion

and exclusion criteria 11 publications were selected for further analysis: 6 journal

articles, 2 conference papers, 2 thesis, and 1 dissertation (Table 2). To answer the

research questions, the publications were analyzed to identify the degree of

accessibility of blockbased programming languages for visually impaired people, and

if such resources exist, what are they, how do they work and what strategies have been

implemented to make block-based programming environments accessible.

Riazy et al. (2020) analyzed 17 web-based introductory programming

environments, as well as their usability for visually impaired people. To perform the

analysis, the authors created six categories where they checked if: 1) all of the images

had alternative text descriptions; 2) the font size could be enlarged without endangering

the structure and make-up of the website; 3) the website was navigable using

exclusively the keyboard; 4) there was a contrast of at least 1:3 for important items

(text, graphics); 5) the language of the website could be automatically detected using a

web service, which may be necessary for reading software; and 6) all viewers could

display and process the website correctly. Most of the environments analyzed were

widely used graphical blockbased programming languages, such as Scratch, Snap!,

OpenRoberta and MIT App Inventor. The authors concluded that none of the 17

analyzed graphical programming environments were suitable for blind and visually

impaired people including the widely used graphical programming environments based

on drag-and-drop blocks used in Scratch and Scratch-like IDEs. The authors place that

“apart from missing alt-text descriptions, the sites were not operable using only the

keyboard”.

Alternatively, in other studies it was possible to identify that less popular

languages have been developed aiming to provide accessibility to visually impaired

people. We also identified other types of efforts that have been made aiming to make

block-based languages accessible. These were divided into five categories, as follows.

3.1. Development of new accessible block-based languages

Hadwen-Bennett et al. (2018, 2019) highlighted the fact that many modern

programming environments such as block-based languages are intrinsically visual and

therefore are inaccessible to visually impaired learners, as they are difficult or

impossible to use with a screen reader. The authors performed a literature review to

identify strategies that have been employed to make programing learning accessible to

visually impaired learners and were able to identify some alternatives in this context.

Their results fell into four categories: physical artefacts, auditory and haptic feedback,

making text-based languages accessible, making block-based languages accessible.

Firstly, they presented Noodle, a programming system that allows the creation

of sound and music that has program elements which can be inserted and arranged using

keyboard commands. Nevertheless, the authors mentioned that the language used in the

audio feedback is not appropriate for primary school children, which makes it an

unsuitable choice for the introduction of programming to young visually impaired

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

03

https://drive.google.com/file/d/1xokWyNwwOai_v7MOP0pD_JFdzH2XRLhK/view?usp=sharing

children [Hadwen-Bennett et al., 2018, 2019].

Another language mentioned by Hadwen-Bennett et al. (2018, 2019) was the

Pseudospatial Block (PB) language, in which the learner can select an insertion point

using the keyboard and choose the program element they want from a list that is filtered

by a syntactic category. One of the advantages of the Pseudospatial Blocks for all

learners is the fact that invalid program blocks for a given space are filtered out of the

list. The authors also mentioned The Lady Beetle and World of Sounds, two

programming environments that were developed to introduce young visually impaired

children to basic concepts of programming. According to them, The Lady Beetle

programming environment enables the learner to select single word commands through

the movement of a beetle across a grid, without having to type the word, in such a way

that as the beetle moves, the coordinates of the current square are read out. In its turn,

World of Sounds allows learners to create simple programs that produce sequences of

sounds.

In accordance, Milne (2018) also stressed that commonly used block-based

programming environments, are inaccessible for visually impaired children as they

heavily rely on visual elements to convey information. Considering this fact, she

explored ways to allow children with visual impairments aged 5 to 14 years to access

the spatial information in programming environments. In this scenario, with the aim of

developing a touchscreen device with a combination of tactile and audio feedback that

allowed children to understand and create block-based programs, she built

Blocks4All, a blockbased environment for the Apple iPad that basically requires the use

of the touchscreen and VoiceOver (a screen reader built into Apple operating systems).

The environment explores non-visual features to present information about blocks,

block types, the spatial structure of program code and specific interactions that replace

the drag and drop gestures that are inaccessible to visually impaired people.

3.2. Development of block programming editors and libraries

According to Pasternak et al. (2017, p. 21), Blockly is “an open-source library that

makes it easy to add block based visual programming to an app”. It is a Google project,

first released in May 2012, that was designed to be flexible and support a large set of

features for different applications. The Blockly library adds an editor to an app that

represents coding concepts such as variables, logical expressions and loops as

interlocking blocks, and outputs syntactically correct code in a programming language

of the user’s choice [Google, 2020].

As a library, Blockly is not a language, but allows developers to create their

own block-based languages, providing a grammar and a representation for

programming that developers can use in their apps. Pieces of code are represented by

blocks, which may be dragged around the screen. However, Blockly does not provide

a full vocabulary of blocks or a runtime environment. Developers need to integrate

Blockly with some form of output, build their vocabulary, and decide how the

generated code will run [Pasternak et al., 2017, p. 21].

Using Blockly as a model, Ludi and Spencer (2017) discussed accessibility

design issues in block-based programming environments, focusing on the

programming workflow. The authors mention that Blockly is often used as a framework

for the design of other block-based languages and activities. They redesigned Blockly’s

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

04

user interface in such a way that the current drag-and-drop resources for creating block-

based programs was preserved, while adding additional features such as keyboard

interface, screen reader compatibility and appearance customization to increase

accessibility to visually impaired users. Among their goals we draw attention to:

providing a unique identifier for each block to enable visual and audio-based

understanding of blocks; allowing the user to change the highlight color of blocks,

connection points of blocks, or the workspace that minimize visual discomfort and

improve readability and discernibility; allowing the keyboard to navigate between

blocks and within a block; and providing audio cues in order to reinforce the level of

nesting.

In turn, Schanzer et al. (2018) argued that sighted programmers can use visual

elements such as syntax highlighting, bracket matching and auto-indenting to help them

understand the general structure of a program and keep track of the abstract syntax tree.

However, these elements are of little help for visually impaired people. On the other

hand, Baker et al. (2015, cited in Schanzer et al., 2018) pointed out that there is an

improvement in comprehension when visually impaired people can navigate the

structure of the program instead of its syntax, which gives block-based languages an

advantage since they allow the representation of the code’s tree structure. In this

perspective, the authors developed the UncleGoose toolkit, which creates a block

programming environment for different languages. Such an environment provides a

block editor that uses standard drag and drop conventions that can be done using

keyboard navigation. Besides, spoken feedback is also provided in a way that the

description of a block is separated from its visual or textual syntax, providing a third

representation beyond texts and blocks.

3.3. Use of auditory cues to sonify block-based programs

As mentioned before, another strategy explored in some of the analyzed studies was

the use of auditory cues. Ludi et al. (2016) investigated if auditory cues used in a visual

programming environment were effective in aiding users in navigating and

understanding source codes, and which types of cues are the most effective. The authors

conducted an experiment with seven visually impaired programmers, using a modified

version of Blockly. Along with the editor, the study employed the use of auditory cues,

specifically earcons (abstract sounds, usually musical, that are used to represent objects

or ideas) and spearcons (sounds generated from sped up speech). The experiment

consisted of three trials using a different type of auditory cue for each. The participants

used their typical screen readers to conclude the tasks, which involved finding a specific

block in a pregenerated source of code using the available auditory cues, listening to

an audio description of a set of source code, and then writing down their interpretation

of the code’s structure. When asked how useful the participants felt over the auditory

cues for navigation and comprehension, they rated that speech was the most useful

auditory cue, followed by spearcons and then earcons.

In a later study Ludi et al. (2019) compared the three types of audio cues

(speech, earcons and spearcons) to identify the most useful and the preferred by the

users. In the experiment, three visually impaired participants conducted a set of tasks

using a mockup based on Google Pencil Code and gave their opinions over how each

auditory cue should sound. The results showed that all the participants were able to

identify blocks through the three auditory cues. However, contrary to results presented

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

05

by the earlier study [Ludi et al., 2016], the participants of this study found that earcons

were the most useful auditory cues, followed by speech and then spearcons.

3.4. Development of audio-based programming languages with block-based

elements

Damsma and Norgaard (2018) highlighted the lack of accessible coding programs with

the relevant and essential specifications for children. The authors identified the

accessibility issues of the existing barriers in non-accessible programs regarding the

user interface and the coding output. They emphasized the fact that block-based

programming languages use an interface with graphical elements, which are user

friendly for sighted children but create accessibility challenges for students who are

blind. In this perspective, they presented Sonokids, a fully accessible iPad coding app

specifically designed to support visually impaired children to acquire basic coding

skills. Among the app’s objectives, the authors say that the idea is “to enable young

children who are blind to start to participate equally in learning how to code”, and to

achieve this “by developing an innovative, engaging, interactive learning experience

on iPad, which offers high levels of accessibility and usability for young children who

are blind, by way of audio”.

Subsequently, Damsma and Norgaard (2018) attempted to provide easy

access to the pieces of code and easy navigation of code sequencing and editing, with

no need to type any text or drag and drop codes. In this perspective, the app provides

pieces of code that can be selected in an accessible panel through finger gestures. In

addition, the authors argued that in most other programs, it is common that the audio

output that accompanies the graphical output is not as meaningful, engaging nor as

motivating as the visual effects are for sighted children. Therefore, they aimed to offer

audio description, audio effects and audio alerts that were truly meaningful and could

provide fun engagement for visually impaired children.

Inspired by the widely used block-based programming language Scratch, Quach

(2019) developed Codi, a computer program that children can talk to in order to create,

modify, and explore computer programs. Although Codi is not a block-based language,

we included this paper as it has a conversational audio-based interface that was

designed for a screenless experience and was inspired by voice assistants. This program

presents new possibilities and reinforces the potential of programming through

conversation. Besides, its virtual machine is heavily influenced by the Scratch Virtual

Machine, and both share the same targets, threads, runtime, and sequencer.

Quach (2019) also states that, in the development of the program, she first

attempted to implement screen reader compatibility for block-based programming.

However, in that case visually impaired children would have to follow a series of steps

in the learning process: firstly, they would have to learn how to use the screen reader

to access a web browser on a computer; then they would have to learn how to navigate

the code editing interface; next, it would be necessary to build an understanding of the

blocks; and finally, they would have to learn programming concepts by building with

the blocks. In her own words. Considering the amount of work that would have to be

done by the child, the author concluded that screen reader compatibility alone was not

enough for this audience to get started. On the other hand, as visual languages can lower

the barriers in the programming process for sighted children, a conversational audio-

based interface could be positive for children with visual or motor impairments. In this

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

06

perspective, Codi integrates audio cues that support coding conversationally, providing

information and suggestions when the child asks for them. This allows children to

express themselves through the projects.

3.5. Development of tangible programming languages with block-based elements

The development of tangible programming languages (physical programming

languages) was identified by Hadwen-Bennett et al. (2018) as one of the main strategies

that have been employed in the quest of making the programming learning process

accessible to visually impaired learners. As the authors state, “in physical programming

languages (PPLs), commands are represented by physical objects which can be joined

together to create programs”, which makes them particularly promising in terms of

accessibility to visually impaired people as they can be explored by touch.

Although the analysis of tangible programming languages is not the scope of

this study, Angelo (2018) proposes a block-based system formed by tangible pieces

with Braille characters for introductory programming activities for blind and sighted

children. In the proposed system, based on the Scratch interface, virtual blocks were

replaced by physical pieces with different shapes, so that tactile recognition and

auditory responses were provided. The Scratch programming principles were

maintained, with the difference that the digital blocks were replaced by tangible parts

that could be moved manually, instead of using the mouse. This physical programming

environment provided integration with the Scratch platform. According to the author,

the proposed system recognizes tangible parts arranged in a defined area, generates a

list with the parts in the order they are organized in the area, creates the digital blocks

in Scratch according to the order of the parts, executes the program and emits sounds

in response to certain interactions with the user. This project represents an alternative

to overcome limitations related to digital block-based languages for visually impaired

children, as it enables the exploration of block programming through tactile

manipulation and, in addition, allows the created code to be executed on the computer.

Finally, it is important to emphasize the existence of other types of efforts that

may be not primarily aimed at promoting accessibility to people with visual

impairments but can still benefit them. This is the case of the work of Kölling et al.

(2017), which did not meet the inclusion criteria for analysis in this work, as it does not

represent a specific strategy that has been implemented to make block-based

programming environments accessible, but still presents benefits for people with visual

impairments. The authors argue that block-based editors have become very popular in

introductory programming classes since they offer many advantages for beginner

programmers, such as elimination of syntax errors and availability of instructions for

visual selection. On the other hand, text-based systems are preferred among proficient

programmers or expert users due to usability and productivity related advantages. In

this perspective, they discuss the framebased editing paradigm. Although it does not

represent a block-based language, it combines advantages of block-based and text-

based systems. The authors discuss the implementation of such a system for a java-like

language called Stride.

In a frame-based editor, program components are represented by frames, using

both graphical and textual elements. In the case of the frame-based editor developed

for Stride, for example, “the editor uses some graphical elements (shapes and colors)

to present aspects where graphics have advantages over characters […], however, the

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

07

presentation maintains the look of a program as essentially a textual, if colored,

document” [Kölling et al. 2017, p. 44].

Regarding accessibility, the authors state that frame-based editing presents

different features that contribute to making them more accessible than existing block-

based editors. Besides, based on initial studies with middle-school students and

experienced programmers, the authors concluded that the proposed editing system has

clear advantages for both novice and expert programmers, improving program

representation and error avoidance for beginners, as well as speeding up program

manipulation for experts. The participants also reported more readability and flexibility

in the insertion of new codes or deletion of existing codes [Kölling et al. 2017].

Although it was not mentioned whether there were visually impaired people among the

participants, framebased editing are within the possibilities to improve programming

environment accessibility.

4. Conclusion

In the educational field, the objective of developing computational thinking is not to

transform all children into software developers, but to provide tools that allow students

to understand and act in the digital culture in which they are inserted. From the

perspective of inclusive education, the provision of these tools involves planning and

conducting learning activities that meet the educational specificities of students in their

individuality, as well as the multiple forms of interaction between students, teachers

and content. In this context, when planning learning situations for the development of

computer programming skills for groups where there are people with visual

impairments, the choice of the programming environment that will be used is crucial,

as the resources used must enable participation and interaction of all those involved.

Learning to program is not a simple task, and for visually impaired people the

challenge is even greater since many of the existing programming environments are

not accessible. To make the programming learning process simpler, new languages

that have less complex syntax have been developed over time, offering graphic and

playful features to help young learners to program. Block programming languages fall

into this context, since instead of requiring users to type textual elements to build the

code, they allow them to select predefined structures from lists presented on the screen,

and interconnect them through blocks. Consequently, it is possible to avoid many

syntax errors that are typical in text-based languages and prevent programs to run

correctly.

On the other hand, as block-based languages are essentially visual and

commonly use drag and drop features that are operationalized using the mouse, they

are usually not accessible to visually impaired people. To address this issue and enable

the exploration of these languages benefits in the programming learning process of

visually impaired learners, several researchers and programmers have been looking for

solutions to make them accessible. The literature review allowed us to identify some of

the efforts that have been made in this direction.

From the analysis of the articles, it was possible to identify several block-based

programming languages that were developed considering design aspects to provide

accessibility to visually impaired people. Projects such as Noodle, Pseudospatial

Blocks, The Lady Beetle, World of Sounds and Blocks4All are some examples of

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

08

block-based languages built with a focus on accessibility, which illustrates that it is

possible to develop accessible and playful programming environments aimed for young

learners. Efforts to build block programming editors with accessibility elements have

also been identified, as well as attempts to modify and extend existing editors. In special

the Blockly library, that aims to carry out improvements that enable the creation of new

accessible block-based languages. We also identified attempts to insert different types

of audio cues to give meaning to components of the source code in block-based

programs built using Blockly, with promising results.

The association of block-based elements with other types of languages, such as

audio-based, text-based or tangible languages was another strategy identified. This type

of approach makes it possible to explore the advantages of different languages and

overcome the limitations of block-based environments. In addition, in these cases other

senses such as hearing and touch gain emphasis in the construction and understanding

of the codes, which contributes to giving meaning to the learning process of visually

impaired people.

It is worth mentioning that although it is possible to find accessible block-based

programming environments, they still represent a minority and present limited

possibilities. Block-based languages are increasingly being used in different learning

situations due to their pedagogical potential. However, the most popular languages,

such as Scratch, still do not meet the accessibility requirements to enable visually

impaired people to participate effectively in such learning contexts. Just as it is

important that developers continue working to provide accessibility to block-based

environments, it is essential that teachers of visually impaired students seek to

understand the potentials, benefits, difficulties, as well as the limitations of the

different programming environments and based on this evaluation, find the best type of

language to work with their visually impaired students.

Finally, it is possible to raise a reflection about the role of the visually impaired

people in the development of more accessible block programming languages. This

approach faces the blind person not only as a user, but also as a developer of

technologies, and brings the necessity of including blind people in the systems

development teams. Lastly, it allows the creation of programming languages based on

the blind’s perception of the world and on the artifacts that blind people produce and

use.

References

Angelo, I. M. (2018) Recomendações para o desenvolvimento de ambientes de

programação inclusivos para crianças cegas. Universidade de São Paulo, São Paulo,

127 p. Dissertação de mestrado.

Artiles, A.; Kozleski, E. (2007) Beyond convictions: interrogating culture, history, and

power in inclusive education. Language Arts, 84, n. 4, mar, p. 351-358.

Camargo, E.; Nardi, R. (2008) O emprego de linguagens acessíveis para alunos

com deficiência visual em aulas de Óptica. Revista Brasileira de Educação Especial,

v. 14, n. 3, p. 405-426.

Damsma, P.; Norgaard, J. (2018) Audio Based Coding: An Innovative Approach to

Accessible Coding for Children who are Blind. Journal of the South Pacific

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

09

Educators in Vision Impairment, v. 1, n. 1, p. 49-58.

Ferri, J; Rosa, S. S. (2016) Como o Ensino de Programação de Computadores Pode

Contribuir Com a Construção de Conhecimento na Educação Básica Uma Revisão

Sistemática da Literatura. CINTED-UFRG.

Google (2020) Introduction to Blockly. Available at:

https://developers.google.com/blockly/guides/overview. Accessed: 20 January

2021.

Hadwen-bennett, A.; Sentance, S.; Morrison, C. (2018) Making Programming

Accessible to Learners with Visual Impairments: A Literature Review. International

Journal of Computer Science Education in Schools, v. 2, n. 2, p. 3-13.

Hadwen-bennett, A.; Sentance, S.; Morrison, C. (2019) Cómo conseguir que la

programación sea accesible a estudiantes con discapacidades visuales: examen de la

bibliografía. Integración: Revista sobre ceguera y deficiencia visual, n.74, p.127-

150.

Kölling, M.; Brown, N. C. C.; Altadmri, A. (2017) Frame-Based Editing. Journal of

Visual Languages and Sentient Systems, v. 3, p. 40–67.

Ludi, S.; Wang, J.; Chapati, K.; Khoja, Z.; Nguyen, A. (2019) Exploring the Use of

Auditory Cues to Sonify Block-Based Programs. Journal on Technology and

Persons with Disabilities, v. 7, p. 1-21.

Ludi, S.; Simpson, J.; Merchant, W. (2016) Exploration of the Use of Auditory Cues in

Code Comprehension and Navigation for Individuals with Visual Impairments in

a Visual Programming Environment. In: Proceedings of the 18th International ACM

SIGACCESS Conference on Computers and Accessibility. New York, NY, USA:

Association for Computing Machinery, p. 279-280.

Ludi, S.; Spencer, M. (2017) Design Considerations to Increase Block-based Language

Accessibility for Blind Programmers Via Blockly. Journal of Visual Languages and

Sentient Systems, v. 3, n. 1, p. 119-124.

Medeiros, I. L et al. (2015) Revisão sistemática e bibliometria facilitadas por um

Canvas para visualização de informação. Revista Brasileira de Design da

Informação, v. 12, n. 1, p. 93-110.

Milne, L. (2018) Touchscreen-Based Learning Technologies for Children with Visual

Impairments. University of Washington, Washington. 225 p. Dissertation. Available

at: https://digital.lib.washington.edu:443/researchworks/handle/1773/43021.

Accessed: 6 april 2022.

Pasternak, E.; Fenichel, R.; Marshall, A. N. (2017) Tips for creating a block language

with blockly, 2017 IEEE Blocks and Beyond Workshop (B&B), Raleigh, NC, USA,

p. 21-24.

Quach, T. (2019) Agent-based programming interfaces for children supporting blind

children in creative computing through conversation. Massachusetts Institute of

Technology. Thesis. Available at: https://dspace.mit.edu/handle/1721.1/123155.

Accessed: 6 april 2022.

Riazy, S.; Weller, S.; Simbeck, K. (2020). Evaluation of Low-threshold Programming

Learning Environments for the Blind and Partially Sighted: In: Proceedings of the

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

10

12th International Conference on Computer Supported Education. Prague, Czech

Republic: SCITEPRESS - Science and Technology Publications, p. 366-373.

Sampaio, R. F., Mancini, M. C. (2007) Estudos de Revisão Sistemática: Um Guia Para

Síntese Criteriosa Da Evidência Científica. Revista Brasileira de Fisioterapia, São

Carlos, v. 11, n. 1, jan./fev., p. 83-89.

Schanzer, E.; Bahram, S.; Krishnamurthi, S. (2018) Building an accessible block

environment: multi-language, fully-accessible AST-based editing in the browser.

BLOCK+ 2018, Boston, Massachusetts, nov, p. 2.

Valente, J. A. (2016) Integração do pensamento computacional no currículo da

educação básica: diferentes estratégias usadas e questões de formação de professores

e avaliação do aluno. e- Curriculum, São Paulo, v. 14, n. 6, p. 34.

XI Congresso Brasileiro de Informática na Educação (CBIE 2022)

Anais do I Workshop de Pensamento Computacional e Inclusão (WPCI 2022)

11

