Enabling Native Coexistence Between ICN and TCP/IP
Architectures Over the Same Domain

Eduardo Castilho Rosa', Flavio de Oliveira Silva®

!Department of Computer Science — Goiano Federal Institute (IFGoiano)
Catalao, GO — Brazil

2Faculty of Computing — Federal University of Uberlandia (UFU)
Uberlandia, MG — Brazil.

eduardo.rosa@ifgoiano.edu.br, flavio@ufu.br

Abstract. Information-Centric Networking (ICN) has emerged as an alterna-
tive to overcome some issues imposed by TCP/IP architecture, such as the lack
of mobility, security, and Quality-of-Service (QoS) native support. Seeing as
TCP/IP will not disappear anytime soon, given the size of today’s Internet,
mechanisms to coexist multiples ICN architectures along with TCP/IP are neces-
sary. Through concepts like Network Function Virtualization (NFV), Software-
Defined Networking (SDN) and Data Plane Programmability (DPP), we pro-
pose in this paper the FIACS, a system capable of allowing pairs of entities
to communicate transparently with each other by using its L2 access link and
native protocols stacks over the same underline infrastructure.

1. Introduction

Over the last few decades, the Internet has shown its resiliency by supporting features
that were not present in the original design of TCP/IP protocols. Security mechanisms
such as SSL/TLS and Virtual Private Network (VPN), as well as Content Data Networks
(CDN), are some examples. Despite all the efforts to make the Internet more suitable for
modern applications, the growing number of new use cases such as Vehicle-to-Vehicle
(V2V) communication and the Internet of Things (IoT), create new challenges to the cur-
rent TCP/IP architecture. In this sense, it is getting more and more necessary to rethink
the original concepts behind TCP/IP to better support such applications. Among several
clean-slate architectures to address some of the TCP/IP issues, known as Future Inter-
net Architectures (FIA), those based on Information-Centric Networking (ICN) paradigm
seems to be predominant in the literature according to [Doyen et al. 2019].

Overall, the basic principle behind an ICN architecture is to treat data as a first-
class citizen and independent of its physical location. In-network caching mechanisms
are used to ensure such property, distributing copies of data throughout the network, and
allowing users to get the nearest available copy of data in the router’s cache system. Thus,
while TCP/IP forces the use of IP addresses to get the data, due to its host-to-host commu-
nication model, in ICN, the data itself is reachable from anywhere in the network through
its unique name. ICN does not require previous knowledge of the information’s loca-
tion. This data-driven communication model is capable of better support some of today’s
applications as well as the futures ones.

There are several ICN architectures available in the literature, each one more ap-
propriate for a particular use case. When it comes to mobility, for instance, the architec-
tures MobilityFirst [Chen and Raychaudhuri 2010], PURSUIT [Lagutin et al. 2010] and
CONET [Blefari Melazzi 2010] appears as good alternatives. Regarding IoT applications,
some other architectures provide better support such as NDN (Named Data Networking)
[Zhang and Claffy 2010] and GreenICN [TAGAMI and Arumaithurai 2016]. These ar-
chitectures have features that enable them to be deployed at large scale without to need
to use current Internet protocols and legacy equipment. So, the adoption of one particular
ICN architecture to substitute the TCP/IP will not happen anytime soon, mainly due to
the size of today’s Internet. Thus, ICN deployments probably will have to coexist with
TCP/IP for years to come, following the same road-map we have seen in both IPv4/IPv6
and 3G/4G transitions, for example.

A wildly adopted method to deal with the problem of ICN and TCP/IP coexistence
is based on overlay approaches. In such a technique, the IP protocol is used to carry ICN
traffic from one entity to another. This method is pretty simple and does not require any
changes in the core network. Section 2 presents some overlay approaches to coexist ICN
and TCP/IP. However, in the overlay technique is not possible to keep all the ICN na-
tive features such as caching, name-based forwarding, and routing as well as security and
mobility. To overcome such limitations, we propose in this paper the FIACS (Future In-
ternet Architectures Convergence System), which is a system capable of providing native
end-to-end connectivity between ICN entities within a specific administrative domain.

We can deploy FIACS at Local Area Network (LAN), Internet Service Providers
(ISP), data centers, or any other network in which the main goal is enabling traffic from
multiples architectures independently of TCP/IP stack. FIACS provides an abstraction
that allows any particular ICN or TCP/IP entity to exchange data with its peer over the
same underlying infrastructure. FIACS is independent of the link access technology (such
as optics fiber, phone cables, UTP) and L2 protocols (for example, PPP, Ethernet, or
WIF]). Instead of using an overlay approach to carry ICN traffic, we propose a new en-
capsulation method that is generic enough to enable name-based forwarding in the data
plane. FIACS makes use of technologies like Software Defined Networking (SDN), Net-
work Function Virtualization (NFV), and Data Plane Programmability (DPP), as we will
present in more detail in Section 3.

The rest of this paper is organized as follows: In Section 2, we present some
related works highlighting its main features. In Section 3, we provide an overview of the
FIACS’s main components and how we can deploy it in real scenarios. Finally, in Section
4, we present some considerations and future directions.

2. Related Work

In [Ren et al. 2014], the authors proposed an ICN and TCP/IP coexistence solution based
on SDN and NFV principles. The Versatile ICN Framework (VICN), as they called, can
manage virtual ICN instances on top of VICN-enabled switches, ensuring properties like
interoperability, routing, and security. In a way, VICN is similar to FIACS, seeing as
both of them make use of a new kind of switch that is capable of forwarding different
ICN traffic. VICN routers, though, are used to share storage capacity among several
ICN instances entirely in a software layer to ensure features like in-network caching. In

FIACS, on the other hand, the ICN instances are distributed between the data plane, local
control plane, and a remote control plane.

The authors in [Marchal et al. 2018] proposed an NFV architecture that enables
the communication between HTTP entities over ICN islands. A gateway is introduced in
this architecture to convert HTTP messages into ICN PDUs to become possible the inter-
operability between TCP/IP and ICN. Following the same idea, [Aguiar et al. 2019] also
proposes an interoperation mechanism between ICN and TCP/IP, called FIFu (Future In-
ternet Fusion). Differently from both works, however, FIACS focuses on just coexistence
instead of interoperability and makes uses of SDN, NFV, and DPP all together.

Along the lines of using the DPP principle, the authors in [State et al. 2016] intro-
duced the use of P4 language to treat native NDN traffic. Although P4 can brings many
benefits to ICN, the author concluded that P4 has limitations in terms of dealing with text-
based PDUs. FIACS can overcome such limitations by using IPC converters. Following
the same principle, [Gavazza et al. 2019] presents a P4 switch capable of processing traf-
fic from different ICN architectures. However, they do not show how text-based PDUs
are processed in the data plane.

3. FIACS overview

The FIACS system is an alternative to overlay approaches that is capable of multiplexing
traffic from different ICN and TCP/IP architectures under the same substrate. The idea
is enabling entities with the same architecture to communicate to one another through a
given path in which, from the entity’s point of view, the flows are going through dedi-
cated network equipment compatible with its architectures, when in reality, the traffic is
crossing a shared core. This method avoids the need to have specifics equipment for each
architecture that we want to support. Figure 1b shows the main components of the FIACS
system. Each entity of a particular architecture can connect to FIACS by using a generic
link technology where the native ICN or TCP/IP PDUs are encapsulated in propper L2
protocols associated with the corresponding link.

7~

N

Bluetooth - -----
3G —_—

P4Runtime - — —

(a) (b)
Figure 1. (a) Abstraction provided by FIACS and (b) all its main components.

As we can see in Figure 1a, each entity connects to FIACS using its available 1.2
access technology. An entity belonging to an architecture C, for instance, can connect to
FIACS through different standards such as WiFI and Bluetooth, enabling multihoming,
a popular feature in ICN architectures such as NDN. To do so, the FIACS has on its
outer layer called Adaptation Zone (AZone), a set of network equipment called ICN PDU
Converter (IPC) that performs the adaptation of the input traffic from a PDU format to a
specific one, as seen in Figure 2. This specific PDU can be easily forwarded in the inner
layer, called SDN Zone (SZone), regardless of the natives ICN PDUs format.

One crucial role that IPC plays in FIACS is performing the L2 signaling protocols
and link termination. For example, in a WIFI connection, the IPC is responsible for man-
age the exchange signaling messages and authentication mechanism. After that, every
incoming packet received by an input interface is encapsulated and sent it out to SZone
to be natively forwarded, as we will see next in this work. Specifying a new encapsu-
lation method turns the switches in SZone capable of processing packets based on its
binary fields, although ICN architectures are name-based. This encapsulation facilitates
the processing of ICN packets at line rate enabling features like long-prefix matches even
using named-base forwarding. However, one drawback of using this encapsulation is the
extra overhead generated for each packet. We have been conducted some experiments to
evaluate the impact of such overhead and we will present it in future works.

The encapsulation that IPC does in every incoming packet aims to adapt the ICN
traffic at the edge network to a common PDU format that carries all possible ICN PDU
formats as well as TCP/IP in the core network (SDZone). Figure 2 shows the PDU for-
mat that [PC can generate. The type field is responsible for identifying the architecture
correspondent to that payload. There are two possibilities here: 1) payload belongs to
an architecture that generates text-based PDUs like NDN, and 2) payload belongs to an
architecture that generates binary-based PDUs like TCP/IP in its L2-L4 protocols. In the
former case, we need to take all the name components, for instance, the name of a par-
ticular data and hash them using a specific algorithm given by hash type field code. To
clarify, lets suppose we take a NDN name called /ufu/facom/mehar/presentation/pl. In
such a case, we set the number blocks field to five (number of blocks), and then we hash
each name part individually using a specific algorithm and put all hashes into the next five
subsequent fields in which size is hash-type dependent. At the end of all hashed blocks,
we specify what type of text encoding algorithm we have used to encode the payload. To
ensure the integrity of the entire PDU, we calculate the CRC and appends it at the end of
the packet. In the latter case, for architectures that produce binary-based PDUs, we set
both hash type and number blocks fields to zero and skip to the encoding field where we
perform the same operations as we do in the previous case.

Version Type Hash type| # Blocks | Block 1 Block n | Encoding Payload CRC

-t 4 -t rtvr—r - 4+— bt rtv——e-4v—:—>:

04 bits 05 bits 05 bits 04 bits Hash-type Hash-type 04 bits Variable length 32 bits
dependent dependent

Figure 2. FIACS PDU format.

All incoming traffic processed by an IPC is sent it out to SZone. This zone repre-
sents a fabric that interconnects multiples switches in a Clos topology. The advantage of
this topology is that it can scale up easily just by adding new switches as we need, becom-
ing possible to increase the number of entities at any time. We propose a switch model
called cFlex that we can implement it by using server with a customized hardware like
FPGAs or other P4-capable SmartNics such as Agilio CX [Netronome 2018]. Other than
the local data plane and remote control plane that we have in traditional SDN switches,
our cFlex switch model adds the concept of a local control plane that runs on top of a
programmable ASIC or FPGAs. That local control plane includes the Network Operating
System (NOS) and a set of VNFs deployed on top of it. We can implement each VNF
either as a virtual machine or a docker container and represents a set of features of a given
architecture. To get rid of TCP/IP stack in VNFs, we bypass the NOS and uses raw sock-
ets to receive and transmit customized PDUs directly into the ASIC or FPGA using the
PCI-E bus. Thus, as we can see in Figure 3, each architecture supported by FIACS has
its components distributed in the local data plane, local control plane, and remote control
plane. By using this approach, each architecture runs in a separate slice that can be in-
stantiated automatically or manually. So far, we are using the latter case, but at the same
time, we are investigating the possibility of using a system capable of orchestrating such
slices automatically.

e —

:|VNFA| |VNFB] |VNFC|:
SR D R
' Hypervisor '

................................

APPAHAPPBHAPPC

SDN Controller

e

R R | |

P4Runtime

Local Data Plane

........... Local Control Plane

Programmable —- —--—--— Remote Control Plane

Figure 3. Proposed cFlex switch model.

N |:| Architecture A (slice A)

Architecture B (slice B)

DEPARSER

PARSER

|:| Architecture C (slice C)

The arriving packets in cFlex are initially processed in local data plane by using a
P4 program. At least for now, IPC does not support the P4 language and all the traffic gen-
erated by it uses our own packet process engine. We uses P4 to implement a customized
pipeline with specific tables and actions for each architecture. Of course, not every fea-
ture of a given architecture can be expressed in P4 and processed fast in the data plane.
Due to the TCAM’s memory limitations, for example, in-network caching is not possible
in the data plane. To deal with this, for each feature of a given architecture that we can
not implement it in P4, we package such feature as a VNF and get it executed in the local

control plane using a general-purpose CPU. In other words, what we are doing here is
offloading some functions from the local control plane (slow path) to the data plane (fast
path). However, by doing so, we may add a bottleneck at the PCI-E bus depending on
how often we send packets to be processed in VNFs, which can cause some degradation
in terms of latency and bandwidth. We have been conducting some experiments to evalu-
ate, for a given number of architectures, how often the flows in the data plane needs to be
processed in VNFs at local control plane and the impact of it in terms of bandwidth and
latency. We use the PARuntime API to enable the communication between the local data
plane and the local control plane, as we can see in Figure 3.

Another essential component of our model is the remote control plane, which is
deployable as a SDN controller. For each architecture that FIACS supports, we have a
particular SDN application that is responsible for establishing the flow path interconnect-
ing peers of entities that are exchanging data to one another in a given moment. All
these paths are created dynamically by populating the tables in the pipeline using the
P4Runtime API. Besides the applications for each architecture, we also implement in the
SDN controller, an application to VNF placement across all cFlex switches in SZone. All
VNF images files are previously-stored at each cFlex switch, and the corresponding SDN
applications will perform their instantiation.

4. Considerations and Future Directions

We presented in this work FIACS, a system to enable the coexistence between multiples
ICN architectures as well as TCP/IP. The abstraction provided by FIACS allows entities to
communicate with one another transparently using its native architectures over L2 access
technology available to them. The combination of emerging technology such as SDN,
NFYV, and DPP facilitates the coexistence between ICN and TCP/IP improving the trade-
off between performance and flexibility.

In the next steps in this work, we intend to include the development of all the
components we have proposed here, such as IPC, cFlex, and the SDN controller. To
demonstrate the feasibility of FIACS, we’ll first get a proof-of-concept implementation by
using low-cost devices like Raspberry Pi. Once we have promising results, we will focus
on the performance aspect of FIACS by using servers with customized hardware like
FPGAs or other P4-capable SmartNics such as Agilio CX [Netronome 2018]. By doing
so, we expect that FIACS can bring many benefits in terms of low latency to applications
running on top of ICN or TCP/IP architectures.

Some challenges imposed by FIACS so far include the need to have physical IPC
converters for each group of entities that can not scale up so quickly. One other future
direction is to virtualize the IPC by using commodity hardware. Thus, we can make
one single virtual IPC capable of connecting multiples entities with different L2 access
technology.

References

Aguiar, R. L., Guimaraes, C., Quevedo, J., Ferreira, R., and Corujo, D. (2019). Explor-
ing interoperability assessment for Future Internet Architectures roll out. Journal of
Network and Computer Applications, 136:38-56.

Blefari Melazzi, N. (2010). The Convergence Project.

Chen, J. and Raychaudhuri, D. (2010). MobilityFirst Future Internet Architecture
Overview.

Doyen, G., Cholez, T., Mallouli, W., Mathieu, B., Mai, H., Marchal, X., Kondo, D.,
Aouadj, M., Ploix, A., Montes-de Oca, E., and Foster, O. (2019). An Orchestrated
NDN Virtual Infrastructure Transporting Web Traffic: Design, Implementation, and
First Experiments with Real End Users. IEEE Communications Magazine, 57(6):33—
39.

Gavazza, J. A., Santos, M., Jr, P. D. M., Verdi, F. L., and Monteiro, J. A. S. (2019).
Implementacdo de um switch em P4 com suporte simultaneo a multiplas arquiteturas
de Internet do Futuro. Anais do Workshop de Pesquisa Experimental da Internet do
Futuro (WPEIF), pages 13—18. Conference Name: Anais do X Workshop de Pesquisa
Experimental da Internet do Futuro Publisher: SBC.

Lagutin, D., Fotiou, N., and Tsilopoulos, C. (2010). Publish Subscribe Internet Technol-
ogy | PURSUIT Project | FP7 | CORDIS | European Commission.

Marchal, X., Aoun, M. E., Mathieu, B., Cholez, T., Doyen, G., Mallouli, W., and Festor,
0. (2018). Leveraging NFV for the deployment of NDN: Application to HTTP traffic
transport. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management
Symposium, pages 1-5.

Netronome (2018). Agilio CX SmartNICs. Library Catalog: www.netronome.com.

Ren, J., Lu, K., Wang, S., Wang, X., Xu, S., Li, L., and Liu, S. (2014). VICN: a versatile
deployment framework for information-centric networks. IEEE Network, 28(3):26-34.

State, R., Signorello, S., Frangois, J., and Festor, O. (2016). NDN.p4: Programming
information-centric data-planes. In 2016 IEEE NetSoft Conference and Workshops
(NetSoft), pages 384-389. ISSN: null.

TAGAMI, A. and Arumaithurai, M. (2016). GreenICN Project: Architecture and Appli-
cations of Green Information Centric Networking. /EICE Transactions on Communi-
cations, E99.B:2470-2476.

Zhang, L. and Clafty, K. (2010). Named Data Networking (NDN) - A Future Internet
Architecture.

