
A lifecycle experience of PolKA: From prototyping to
deployment at Géant Lab with RARE/FreeRtr
Everson S. Borges1,2, Edgard Pontes1, Cristina Dominicini2,

Marcos Schwarz3, Csaba Mate4, Frederic Loui5, Rafael Guimarães2,
Magnos Martinello1, Rodolfo Villaça1, Moisés R. N. Ribeiro1

1Federal University of Espı́rito Santo (UFES)
Av. Fernando Ferrari, 514, Goiabeiras – 29.075-910 – Vitória – ES – Brazil

2Federal Institute of Espı́rito Santo (IFES)
3RNP-National Research Network

4RARE - Router for Academia Research & Education
5GÉANT - Pan-European Research and Education Networks

{everson.borges,edgard.pontes}@edu.ufes.br

Abstract. In this paper, we take the position of developers that need to deploy
emerging programmable protocols (or services) with specific network require-
ments and want to know how to benefit from an open router platform and testbed
infrastructure. Our focus is to exploit the PolKA lifecycle experience as a use
case to figure out a balance between integrating and reusing legacy protocols
with new protocols.

Resumo. Neste artigo, assumimos a posição de desenvolvedores que precisam
implantar protocolos (ou serviços) programáveis emergentes com requisitos de
rede especı́ficos e querem saber como se beneficiar da plataforma de roteador
aberta e da infraestrutura de teste. Nosso foco é explorar o equilı́brio na
integração e reutilização de protocolos legados com novos protocolos.

1. Introduction
Source routing (SR) is a prominent alternative to table-based routing for reducing the
number of network states. In this approach, a source adds a route label in the packet
header to define the paths along with the network. Segment Routing and PolKA
[Dominicini et al. 2020] are two new approaches to the source routing paradigm that al-
low a flow to be routed to a specific topological path while maintaining a per-flow state
only at the ingress node to the SR domain.

However, a significant challenge in developing a new protocol is designing and imple-
menting it with its encapsulation representing an encoding abstraction that needs to be
efficiently processed by the switches. For example, implement an integer modulo opera-
tion that is not natively supported in commodity or even programmable network hardware.
Therefore, a network developer needs to use software switches [Martinello et al. 2014],
or depend on synthesizing integer division to ASICs or NetFPGAs[Liberato et al. 2018].

In this paper, we take the position of developers that need to deploy emerging pro-
grammable protocols (e.g., PolKA[Dominicini et al. 2020]) with specific network re-
quirements (e.g., mod operation). In addition, we want to know how to benefit from
the open router platform and testbed infrastructure. Our focus is to exploit the balance of
integrating and reusing legacy protocols with new protocols.



2. PolKA and RARE/freeRtr in a nutshell

2.1. PolKA- Polynomial Key-Based Architecture
Let us assume that a packet should be routed via a selected path, represented by N core
nodes and their respective output ports. Let S = {s1(t), s2(t), . . . , sN(t)} be the multiset
of the polynomials representing the nodeIDs of the nodes in this path. The set S must be
composed of pairwise co-prime polynomials, and satisfy the condition degree(si(t)) ≥
log2(nports), where nports denotes the number of ports in the node. For simplicity, we
assume that si(t) are irreducible polynomials. Let O = {o1(t), o2(t), . . . , oN(t)} be the
multiset of N polynomials, where oi(t) represents the output port for the packet at the
core node si(t), for i = 1, 2, . . . N , satisfying the condition that degree(si) > degree(oi).
For instance, if the output port polynomial is oi(t) = 1 · t2+1 · t, it maps the port 110 and
the packet is forwarded to port label 6 at node si(t). Based on the definition of the path
represented by S and O, the Controller calculates the routeID using the polynomial CRT
[Shoup 2009, Bajard 2007] as the polynomial R(t) that satisfies:

R(t) ≡ oi(t)si(t), for i = 1, 2, . . . N (1)

The routeID is embedded in the packet by the edge, and the forwarding operation in each
core node calculates the output port as the remainder of the euclidean division of the
routeID in the packet by its nodeID: oi(t) = < R(t) >si(t)

Figure 1 shows an example of a path composed of three core nodes, which received their
nodeIDs from the Controller in a network configuration phase: s1(t) = t+1 = 11, s2(t) =
t2 + t+ 1 = 111, s3(t) = t3 + t+ 1 = 1011. Considering the path s1 → s2 → s3, the set
O is composed by: o1(t) = 1, o2(t) = t = 10, o3(t) = t2+ t = 110. For this example, the
routeID, calculated according to the polynomial CRT, is R(t) = 10000. The Controller
may proactively compute this R(t) or calculate it when the first packet of a flow arrives.
To configure the path, the Controller installs flow entries in the edges, which embed the
routeID 10000 into the packets. Then, each node can calculate its portID by dividing the
routeID of the packet by its own nodeID. For example, the remainder of R(t) = 10000
divided by s2(t) = 111 is o2(t) = 10 (port label 2).

Figure 1. Example of PolKA SR. Figure 2. freeRtr.

2.2. RARE/freeRtr
RARE/freeRtr is a control plane platform shown in Fig. 2, which uses UNIX socket to
forward packets and this is a key feature that is leveraged to connect the control plane
RARE/freeRtr to any type of protocol plane legacy, such as OSPF, IPv4, IPV6, ATM,
ethernet, etc. In RARE/freeRtr everything is in a VRF so there is no global VRF, this
design choice has positive consequences like. There are no VRF recognition questions,



having multiple BGP processes for the same RARE/freeRtr instance linked to a different
VRF. in addition, RARE/freeRtr uses dual stack, so the entire feature set supports both
IPv4 and IPv6 without compromise.

In order to support legacy applications, RARE/freeRtr brings along a densily populated
control plane able to handle: i) diverse encapsulation; ii) cryptography; iii) both table-
based and also lable-based at L2 and L3 forwarding; iii) diverse tunneling; iv) both IGP
and EGP routing protocols; and v) Policy-Based Routing services, NAT, QoS, and other
services, highlighted by Fig. 2. A more detailed list of supported protocols can be found
in the RARE project website1.

3. PolKA lifecycle experience
This section describes the PolKA lifecycle experience from its proposal, prototyping,
validation, deployment, and integration in production-grade testbeds.

3.1. Initial proposal: Prototyping PolKA in an emulated environment
Previous works explored the integration of RNS-based SR [Martinello et al. 2014,
Liberato et al. 2018]. However, these works relied on integer RNS, and the integer mod-
ulo operation cannot be implemented in current commodity network hardware. Therefore,
they either used software switches implementations [Martinello et al. 2014], or depended
on synthesizing integer division to ASICs or NetFPGAs [Liberato et al. 2018].

To solve this problem, PolKA was introduced [Dominicini et al. 2020], as a RNS-based
SR scheme that replaces the integer arithmetic by polynomial arithmetic (Galois field
(GF) of order 2 or GF(2)). The immediate benefit was to enable the reuse of commodity
network functions based on polynomial arithmetic. In fact, PolKA explores the Cyclic Re-
dundancy Check (CRC) hardware to execute the modulo, and evaluated it in an emulated
environment with Mininet and P4-16 language. A hardware prototype with Netronome
SmartNICs was used for measuring forwarding latency, but, as these SmartNICs only
support fixed CRC polynomials, it restricts the use of its CRC hardware for PolKA.

3.2. PolKA as use case of the RARE testbed: Prototyping for Tofino targets
Then, PolKA was selected as an use case in RARE/GÉANT P4 Lab2. The partnership
enabled an implementation of PolKA with the high-performance switching ASIC Tofino,
and the first hardware-based comparison of PolKA with traditional approaches. As a
result, we deployed a PoC [Dominicini et al. 2021], which comprised four Intel/Barefoot
Tofino WEDGE100BF32X switches that were geographically distributed in Europe and
connected at 10Gbps links. The experimental results showed that PolKA matches the data
plane performance of traditional L2 table-based forwarding and list-based source routing.

In these experiments, the focus was on the data plane evaluation, and the control plane
was implemented as a set of scripts that automated the essential node configuration tasks.
In addition, our P4-based data plane was individually deployed in each switch.

3.3. Integration of PolKA in RARE/freeRtr
The next step was the integration of PolKA in the RARE project. Besides being the first
non-standard protocol to be available for any experimenter in RARE, we inherited various

1http://rare.freertr.org
2https://wiki.geant.org/pages/viewpage.action?pageId=148085131



features, such as diverse encapsulations, access control lists, and policy-based routing.
Moreover, RARE/freeRtr allows the emulation of any topology with the same config-
uration files that can be tested and, then, deployed in a real P4-enabled infrastructure
[Loui et al. 2022]. In addition, PolKA can now be evaluated with baseline approaches,
like Segment Routing, which are also supported by RARE/freeRtr.

The control plane in the RARE project is based on RARE/freeRtr. Thus, to develop
PolKA’s control plane we have to options: (i) to develop a centralized controller that in-
teracts with the RARE/freeRtr API, or (ii) to reuse standard distributed protocols already
running in RARE and RARE/freeRtr. As a first integration effort, we chose the second
option, by integrating the PolKA control plane logic to the RARE/freeRtr workflow3 to:
(i) retrieve available topology information from link-state routing protocols to calculate
the routeIDs when creating PolKA tunnels, and (ii) reuse the Segment Routing indexes
of the nodes to create a static table that maps these indexes to nodeID polynomials.

The DPDK framework and the P4 behavioural language are used to describe the packet
processing behaviour of RARE data plane. The supported P4 target platforms are the
BMv2 software switch with the V1Model architecture, and the Tofino high performance
network processor with the PSA (Portable Switch Architecture) architecture. For the
integration of PolKA data plane, we ported our previous code for both the DPDK and
the Tofino data planes4. In this implementation, our fixed-length PolKA header can use
different encapsulations (e.g., MPLS, Ethernet, VLAN, and PPP), and the routeID has
128 bits with CRC 16, which allows the maximum of 8 hops.

Figure 3. Edge-Core Experiment Figure 4. RARE/GEANT testbed

4. Deployment and validation of PolKA with RARE/freeRtr
As proof of concept, it was implemented a ring topology: R1, R2, R3 and R4 are core
nodes, while R5 and R6 are edge nodes, and R7 is the source, as shown in the Fig. 3.
This topology is composed by a shortest and a longest path chosen to be equivalent to the
topology of RARE/Géant P4 Lab testbed (Fig. 4).

4.1. PolKA Experiment in RARE/freeRtr
Retrieving topology information and configuring nodeIDs: For these functionalities,
our design choice was to reuse legacy protocols rather than re-implementing these features
in a centralized controller. In particular, for this experiment, the OSPF routing protocol
was enabled on all ethernet interfaces to gather the topology information. Besides, we
map the already assigned unique Segment Routing indexes of each router to an index of
a static table of irreducible polynomials to set a unique PolKA’s nodeID for each router.

Creating PolKA Tunnels: Two tunnels were created, one to the shortest path (2 hops)
Fig. 5 and a second one to the longest path (4 hops) with an example of settings in

3https://docs.freertr.org/guides/reference/
4https://bitbucket.software.geant.org/projects/RARE/repos/rare/

browse/p4src/include



Figure 5. IPv4 Tunnel settings Figure 6. IPv6 Tunnel settings

IPv6 Fig. 6. An important parameter is tunnel domain-name, that defines the path,
containing the address of all the routers, and enables the routeID creation at the edge.

Visualizing tunnels in the edges: PolKA routeID is automatically computed when
creating PolKA tunnels. Fig. 7 and Fig. 8 allow us to observe the configurations on the
edge router R5. This tunnel inserts the routeID in the PolKA’s packet header. Then
each router along the path extracts the routeID to forward the packet to the next hop, by
using a modulo operation with routeID and its nodeID.

Figure 7. RouteID on Tunnel 1 Figure 8. RouteID on Tunnel 4
Repository and dissector: We provide a github repository5 to allow the reproducibility of
the PolKA experiments on RARE/freeRtr, including installation, testing, and debugging
instructions. In addition, a Wireshark dissector6 allows the analysis of the PolKA header.

4.2. Agile Path Reconfiguration with Policy Based Routing
In order to demonstrate an agile path reconfiguration, we make use of a policy based
routing (PBR) for traffic classification at the edges, according to Figs. 9 and 10. So,
firstly, the traffic is classified through an access list, and then it is forwarded through one
of the available tunnels. This allows us to quickly steer and balance the traffic through the
PolKA tunnels, avoiding congestion due to an unequal use of the network.

In Fig. 9, we show a traffic in green sent between edge router R5, passing through core
routers R1 and R2, to reach at edge router R6 over PolKA tunnel 1. Fig. 10 shows a
PolKA tunnel in IPv6 to transport traffic over the longest path crossing the core routers
R1, R4, R3, and R2 until reaching the edge router R6.

5. Conclusion
This work describes the PolKA architecture and protocol implementation within the
freeRtr open-source router platform. We carried out experiments deploying PolKA in

5https://github.com/eversonscherrer/wpeif2022
6https://github.com/eversonscherrer/dissector-polka



Figure 9. Shortest Path Figure 10. Longest Path

a topology composed of edge and core nodes. The required topological information for
PolKA was enabled by reusing the OSPF legacy protocol. For validation purposes, tun-
nels were set both with IPv4 and IPv6 to reach distinct destinations through different paths
demonstrating that the connectivity service is functioning correctly. As lessons learned,
the lifecycle experience from prototyping to deployment is a loop-intensive development
process. The right balance between implementing everything from scratch instead of
reusing legacy protocols is key in this process. Although open-source router platforms
such as freeRtr bring along legacy protocols, it still needs to improve design modularity
and minimal documentation set for developers willing to integrate and test their protocols.

6. Acknowledgments
This work received the 2021 Google Research Scholar Award, and the 2022 Intel Con-
nectivity Research Grant (Fast Forward Initiative). It is also supported in part by the
following Brazilian agencies: CNPq, RNP, CAPES (Finance Code 001), FAPESP/M-
CTI/CGI.br (PORVIR-5G #20/05182-3, SAWI #20/05174-0, and SFI, #18/23097-3),
FAPES (#94/2017, #281/2019, #515/2021, and #284/2021). CNPq fellows Dr. Martinello
#306225/2020-4 and Dr. Ribeiro #315463/2020-1.

References
Bajard, J. C. (2007). A residue approach of the finite fields arithmetics. In 2007 Confer-

ence Record of the Forty-First Asilomar Conference on Signals, Systems and Comput-
ers, pages 358–362.

Dominicini, C. et al. (2020). Polka: Polynomial key-based architecture for source routing
in network fabrics. In 2020 6th IEEE Conference on Network Softwarization (NetSoft),
pages 326–334. IEEE.

Dominicini, C. et al. (2021). Deploying polka source routing in p4 switches. In 2021
International Conference on Optical Network Design and Modeling (ONDM), pages
1–3. IEEE.

Liberato, A. et al. (2018). RDNA: Residue-Defined Networking Architecture Enabling
Ultra-Reliable Low-Latency Datacenters. IEEE TNSM.

Loui, F., Mate, C., Gall, A., and Wisslé, M. (2022). Project overview: Router for academia
research & education (rare).

Martinello, M. et al. (2014). KeyFlow: a prototype for evolving SDN toward core network
fabrics. IEEE Network, 28(2):12–19.

Shoup, V. (2009). A computational introduction to number theory and algebra. Cam-
bridge university press.


