
A Simple Approach to Verify and Debug Data Plane Programs
Eduardo Castilho Rosa1,3, Italo Tiago da Cunha2,3, Flávio de Oliveira Silva3

1Department of Computer Science – Goiano Federal Institute (IFGoiano)
Catalão, GO – Brazil

2Faculty of Computing – Jatai Federal University (UFJ)
Jataí, GO – Brazil.

3Faculty of Computing – Federal University of Uberlândia (UFU)
Uberlândia, MG – Brazil.

eduardo.rosa@ifgoiano.edu.br, italo@ufj.br, flavio@ufu.br

Abstract. The advances in data plane programmability through domain-specific
languages such as P4 require the adoption of verification methods to ensure that
a given code behaves appropriately. The standard approach in the literature is
to use formal methods to verify a provided software. However, traditional tech-
niques are often time-consuming and expensive. In this work, we propose a
model to demonstrate the behavior of a P4 program that is simple and fast. To
validate our model, we have used a name-based forwarding program and a con-
trol plane application that injects in a P4 table a total of 1 million random name
prefixes. The results have shown that our model can quickly indicate whether or
not a given program is behaving correctly.

1. Introduction
Recent developments in the networking industry and academia has become possible the
design and implementation of devices that is capable of forwarding packets at a high-
speed while providing flexibility to network operators. The adoption of domain-specific
languages such as P4 not only facilitate rapid innovation in this field but also opens up
new opportunities for novel use-cases such as in-network caching [Jin et al. 2017] and in-
band network telemetry, for example. In this regard, although data plane programmability
offers a huge benefit to network operators as a whole, it also creates some challenges
related to correctness.

To illustrate just how important is to make sure that a P4 code behaves properly,
let’s consider a firewall as an example. Suppose we have rules in this firewall to drop
packets with destination IP address starting with 10. Once we have created a P4 code
specifying such firewall and populating the corresponding tables with the rules, for a
given packet P with IP address equals to 10.1.1.1, we expect such packet being dropped.
If the P4 code contains non-detected errors in such a way that it forwards the packet P
anyway, the security of the firewall is compromised and sometimes such misbehaviour
can not be detected right away. Therefore, it is really important to verify whether or not
the P4 code is behaving as expected before we deploy it into a production network.

In literature, the most common way to verify a P4 code is by using formal meth-
ods. Generally, formal methods consists in formal specification by using mathematical
models to specify the desired properties of a given system. The mathematical models are



usually expressed through a language whose syntax and semantics are formally defined.
However, formal methods requires extensive training since only few network developers
have the essential knowledge to implement it. Also, formal methods are time consuming
and expensive. To address this problem, we propose in this paper a verification model to
validate P4 programs that is simple and fast. The key idea of our method is to extract in-
formation such as input and output port from the log file generated by the BMv2 software
switch, store them into a hash table and compare them with an expected set of input.

The remaining of this paper is organized as follows: Section 2 presents the related
works. Section 3 presents the proposed model. Section 4 shows the experimental results
and finally Section 5 provides the final considerations.

2. Related Works
Verification methods are common in software development. When it to comes to data
plane programmability, such methods are also necessary to make sure the switches and
routers process and forwards packets correctly. In [Stoenescu et al. 2018], the authors
presents Vera, a verification tool that enables debugging of P4 programs both before de-
ployment and at runtime. Vera verifies a P4 program exhaustively by using symbolic
execution [Stoenescu et al. 2016]. Since verification is exhaustive, Vera can guarantee
the P4 program is bug-free. Because Vera explore a large number of paths, one limitation
is the verification process is time consuming and worst case time and space complexity is
quadratic.

More recently, another P4 verification tool called p4v [Liu et al. 2018] is pre-
sented. Although p4v is based on classic verification methods, it adds a novel mechanism
to make assumptions about the control plane. In contrast to Vera [Stoenescu et al. 2018],
p4v avoids explicit run-time traversals of the P4 program, reducing the time consuming
in the verification process. However, a limitation of p4v is that control-plane interfaces
must be written by hand which impairs the scalability. Also, p4v can not run successfully
some P4 programs such as HyperP4 [Hancock and van der Merwe 2016] because the Z3
theorem prover [de Moura and Bjørner 2008], used to solve the formulas that captures the
execution of the program, ran out of memory.

3. Verification Model
Our model is represented by four modules shown in Figure 1. The control plane entity is
responsible for generating the table entries and install them into the P4 tables by using the
runtime_CLI or P4Runtime API. Such control plane APIs enables the sending of a batch
of entries from a text file. Thus, in our model, we select a group of random prefixes from
a public domain dataset and we set random output ports for each one of them.

As a case study, we have implemented a name-based forwarding algorithm pro-
posed in [Rosa and Silva 2022]. In summary, [Rosa and Silva 2022] introduces an alter-
native way to perform the longest name prefix matching (LNPM) in Named-Data Net-
working (NDN). The key idea is to create multiple tables with different bit-width to ac-
commodate name prefixes of different lengths. The LNPM is performed by using packet
recirculations in the pipeline. Since the LNPM is a process that involves quite a number of
operations in the data plane, to avoid misbehaviour in forwarding the packets, it is crucial
to verify weather or not the P4 name forwarder is sending packets to the correct output



Figure 1. Operational flow in the verification model and its main components.

ports. As such, the table entries corresponds to name prefixes and the P4 code performs
the longest name prefix matching for each packet that cross the pipeline.

The traffic generator is responsible for injecting on BMv2 NDN interest pack-
ets containing content names. The traffic is generated into two steps. First, a file
called packets.txt is generated by selecting random domain names from the dataset
[DomCop.com 2021]. Each line in the file packets.txt is a 4-tuple containing the fol-
lowing fields: <id, prefix, inputPort, expectedOutputPort>. Whenever a given packet is
received from an input port or is sent to an output port, the BMv2 executable enables
dumping the packet content in the log file. Then, we may use the packet content hash
to identify each packet. However, the traffic generator can inject multiple copies of the
same packet into the BMv2 and this approach impairs the uniqueness of identification. To
solve this problem, each packet has an unique id controlled by the applications. The input
port is random and the expected output port is obtained by performing a traversal in a trie
data structure to determine the longest prefix matching. For simplicity, we assume such
algorithm is correct. The second stage of the traffic generator is to convert the packets.txt
file into a binary file called packets.bin to be used as input in scapy software. The struc-
ture of this file is a sequence of 3-tuple <inputPort, packetSize, packet>. The input port is
generated randomly to avoid backpressure in one single port. The packet size is a 2-byte
field indicating how many bytes the subsequent packet has. The data format of the packet
is the same as proposed in [Rosa and Silva 2022].

In the data plane, one instance of BMv2 software switch called simple_switch
is executed by using the v1model architecture. The simple_switch generates a log file
that registers the main operations performed on each packet. Such operations includes
receiving a packet, parsing the headers, performing the table lookup, and so on. The
packet id is not registered in the log file by default. To do so, we uses the log_msg
construct that is part of the P4 specification and allows us to log customized messages.



Algorithm 1 Data plane program validator
Input: H1 = Expectation hash table and H2 = Results hash table
Output: yes or no

validated← true
for each k ∈ K and K = {keyset of H1} do

expected_value← H1(k)
obtained_value← H2(k)
if obtained_value exists in H2 then

id← obtained_value.id
ip← obtained_value.input_port
op← obtained_value.output_port
if expected_value.input_port ̸= obtained_value.input_port then

print "Pck:"+id+" Expected input port: "+ip+ " Obtained input port: "+op
validated← false

end if
if expected_value.output_port ̸= obtained_value.output_port then

print"Pck:"+id+"Expected output port:"+ip+"Obtained output port: "+op
validated← false

end if
else

print"Pck "+id+" does not exist"
end if

end for each
if validated then

print "passed"
return yes

else
print "failed"
return false

end if

The core of our model is the validation module. It takes the log file produced by
the BMv2 as input and uses the grep tool to filter out the lines that contains the words
"packet_id", "Received" and "Sending". The former identify the customized line that we
set into the log file through the construct log_msg and it contains the following infor-
mation: <timestamp, switch_type, bmv2_thread, packet_id, pipeline_passes>. The two
latter identify the lines that corresponds to the events "receiving a packet" and "sending a
packet", respectively. Besides the information aforementioned, these lines also includes
information such as packet_length, input_port, output_port and the packet_content in
hexadecimal.

The information extracted from the log file are stored into a hash table H1 by using
a hash function h : K → V , where K is the key set represented by the packet ids and V
is the associated value represented by the 7-tuple <receive_timestamp, send_timestamp,
input_port, output_port, packet_length, pipeline_passes, latency>. On the other hand, the
name prefixes that we insert into the P4 tables are first stored into a trie data structure.



Then, we perform a search in the trie to determine the output port corresponding with
the longest prefix. We uses such information to create a second hash table H2 storing the
names with its corresponding correct output ports. To verify whether or not a given P4
code produces the correct output, we compare the two hash tables element by element as
we can see in Algorithm 1.

4. Evaluation and Preliminary Results

As a case study, we have use the name dataset [DomCop.com 2021] to implement the
NDN forwarding algorithm in [Rosa and Silva 2022]. Such dataset contains 10 million
domain names and we filter them out following the rules:

• We eliminate urls that contains duplicated name components.
• For urls with more than 8 name components, we take just the 8 first ones;
• We reverse the url to be NDN-friendly;
• For each url, we check with probability p whether or not the such url will contain

all its sub-prefixes;
• We generate random output ports for each url;

The experiment was conducted on two different platforms. First, we have ex-
ecuted one instance of the BMv2 on Ubuntu 16.04 Virtual Machine. The BMv2 was
configured with 8 data ports as well as 1 CPU port to send the packets to the control
plane for additional processing. The table entries corresponds to 1 million name prefixes
and all its sub-prefixes (p = 1) extracted randomly from the filtered dataset. Second,
the traffic generator and the validation process is performed on Windows 10 with Intel(R)
Core(TM) i7-4600M CPU @ 2.90GHz and 8GB of RAM. The traffic consists of ten thou-
sand packets randomly picked from the dataset and it is injected on BMv2 by using scapy
in intervals of 100ms to avoid packet queuing. Our algorithm was capable of performing
the validation in only 32 seconds. Figure 2 shows the graphic interface of our validator.

Figure 2. Graphic interface of our P4 code validator.

In contrast to verification methods that uses symbolic execution such as
[Stoenescu et al. 2018], one limitation of our model is the need to execute a P4 code and
to inject traffic to generate the log file. Thus, the validation time depends on how many
packets the BMv2 process. As future works, we can extend our model to extract not only
information such as input and output ports but also information related to parsing states,
match action operations and conditional statements.



5. Considerations
Validation and verification techniques are required in software developments to ensure
correctness. Data plane programs written in domain-specific languages such as P4 can be
very complex and, therefore, the use of verification tools can be beneficial in networking.
In this paper we have proposed a simple tool to verify a P4 code by using information
extracted from the log file generated by the BMv2 software switch. We do not intend to
provide a complete verification tool to prove the correctness of any P4 program. Instead,
the idea is to provide a simple and quick alternative to make sure that a given P4 code,
when deployed on a programmable switch, produces the correct output. As future work
we are planning to extends our model to support a wide range of P4 programs.

References
de Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In Ramakrishnan,

C. R. and Rehof, J., editors, Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, Berlin, Heidelberg. Springer Berlin Heidelberg.

DomCop.com (2021). Top 10 million websites. https://www.domcop.com/top-10-
million-website. last accessed: May 1, 2021.

Hancock, D. and van der Merwe, J. (2016). Hyper4: Using p4 to virtualize the pro-
grammable data plane. In Proceedings of the 12th International on Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’16, page 35–49, New
York, NY, USA. Association for Computing Machinery.

Jin, X., Li, X., Zhang, H., Soulé, R., Lee, J., Foster, N., Kim, C., and Stoica, I. (2017).
Netcache: Balancing key-value stores with fast in-network caching. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, page 121–136, New
York, NY, USA. Association for Computing Machinery.

Liu, J., Hallahan, W., Schlesinger, C., Sharif, M., Lee, J., Soulé, R., Wang, H., Caşcaval,
C., McKeown, N., and Foster, N. (2018). P4v: Practical verification for programmable
data planes. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’18, page 490–503, New York, NY, USA. Asso-
ciation for Computing Machinery.

Rosa, E. C. and Silva, F. d. O. (2022). A hash-free method for fib and lnpm in icn pro-
grammable data planes. In 2022 International Conference on Information Networking
(ICOIN), pages 186–191.

Stoenescu, R., Dumitrescu, D., Popovici, M., Negreanu, L., and Raiciu, C. (2018). De-
bugging p4 programs with vera. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, page 518–532, New
York, NY, USA. Association for Computing Machinery.

Stoenescu, R., Popovici, M., Negreanu, L., and Raiciu, C. (2016). Symnet: Scalable
symbolic execution for modern networks. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, page 314–327, New York, NY, USA. Association for
Computing Machinery.


