
A Simple Solution for IoT Experimentation in the Context of

Future Internet Architectures

Ramon P. S. Chaib1, Antonio M. Alberti1

1ICT Laboratory, Instituto Nacional de Telecomunicações

INATEL - João de Camargo 510, Centro, Santa Rita do Sapucaı́

CEP 37540-000, Minas Gerais, Brazil. Phone: +55 35 3471 9218

ramonp@gec.inatel.br, alberti@inatel.br

Abstract. In the last decade, many approaches appeared to revolutionize Inter-

net architecture from scratch. They are collectively called Future Internet Archi-

tectures. In this paper, we address the challenge of experimenting with Internet

of things in this context. Using open-source tools, we developed a standard

scenario capable to evaluate proposals in a small scale first (locally, in labora-

tory), and latter in large scale cloud-based testing platform. As a use case of

the proposal, we discuss its application to the eXpressive Internet Architecture.

1. Introduction

This work proposes a solution for testing IoT over future Internet architectures (FIAs) [1].

The aim is to test how the architecture behaves while interoperating with motes running

Contiki [2], an open source operating system for the Internet of Things. Using Cooja,

a network simulator that allows networks of Contiki motes to be simulated even in a

hardware level [2], and Docker [3], a software container platform, we created a standard

evaluation scenario to compare distinct Internet architectures with minor implementations

of components for each of them. Unlike virtual machines (VMs), containers do not bundle

a full operating system, they initialize only libraries and settings required to make the

software work as needed. This enables efficient, lightweight, self-contained systems that

guarantee software will always run the same, regardless of where it is being deployed [3].

The first architecture to be tested is XIA (eXpressive Internet Architecture), an

Future Internet Architecture with native support for multiple principals and the ability to

evolve its functionality to accommodate new, as yet unforeseen, principals over time [4].

It will be testing interoperating with a 6LoWPAN IoT Network [5]. 6LoWPAN defines

encapsulation and header compression mechanisms that allow IPv6 packets to be sent and

received over LoWPANs. Specified by the IEEE 802.15.4 standard, LoWPAN is a simple

low cost communication network that allows wireless connectivity in applications with

limited power and relaxed throughput requirements [5].

The remainder of this article is organized as follows. Section 2 presents our sys-

tem works and what we have to adapt for testing each architecture. Section 3 presents

a study case where XIA [4] will be tested interoperating with a 6LoWPAN [5] IoT Net-

work. Finally, Section 4 presents the final considerations, emphasizing both the main

contributions of the article and future work.

2. Proposed Solution

Our system consist in a shell script that load five different types of Docker Images

(Client, Gateway, Client Router, Gateway Router, and Server) connected in a star topol-

� � � � � � � � � 	 
 � � 
 � �

� �



Figure 1. Proposed solution to evaluate IoT in future Internet architectures.

ogy. Clients are connected to the Client Routers, Gateways are connected to the Gateway

Routers, Client Routers and Gateway Routers are connect to the Server.

There is only one Server, each Server can have GR Gateway Routers and CR

Client Routers. Each Gateway Router can have G Gateways, while each Client Router

can have C Clients. Gateways are running Cooja with M IoT motes, forming the IoT

Network. C CR G GR M are input parameters of the script. The Figure 1 shows an

example of the script configuration where the server is connected to one Gateway Router

with two Gateways and one Client Router with three Clients. Each Gateway is simulating

a IoT Network.

2.1. Echo Client/Server

The firmware of the motes is an echo-server, the echo-server receives data and replies

the same data to the source. Each Client runs an echo-client that sends data to a mote

randomly selected from a table previously stored in the Server and get its reply. The

echo-client also make all the measures (delay, efficiency, load, errors, etc.). Everything

will be stored and sent to the server at the end of the execution. Data size S and the

number of requests RQ of each Client are also input parameters from the script.

2.2. Gateway Service

There is a Gateway Service running in the Gateways, the Gateway Service translate data

from the IoT Network to the tested architecture. echo-clients and echo-servers will talk

directly to it. In the initialization step, the Gateway Service store all motes addresses and

send to a table in the Server.

2.3. Docker Images

All Docker Images must have the tested architecture running with all necessary proce-

dures for its operation configured in the initialization step. Docker Images are started in

the following order: Server, Gateway Routers, Client Routers, Gateways, Clients.

• Server: Configured as a router of the tested architecture. Connects all routers,

store test results and address tables.

• Client Routers/Gateway Routers: Configured as routers of the tested architecture.

• Gateways: Configured as hosts of the tested architecture, starts Cooja and the

Gateway Service in the initialization step.

• Clients: Configured as hosts of the tested architecture, starts echo-client on the

initialization step.

� � � � � � � � � 	 
 � � 
 � �

� �



3. Study Case: XIA / 6LoWPAN

In the first test, a 6LoWPAN service will be used by a purely XIA application. For this,

IPv6 addresses need to be bound to XIA identifiers (XID) [4]. The XIA architecture defines

several XIA identifier types with distinct semantics of communication, processing that is

required to forward packets, and intrinsic security properties [4]. In this case, a SID

(Service Identifier) type will be used. SIDs support communication with services [4].

3.1. XIA Docker Images

All Docker Images will be running XIA Prototype [4] in Ubuntu Linux containers. XIA

Prototype allows users to Run Sample Applications over the XIA network and write XIA

applications. The prototype is implemented on top of the click modular router [6], which

will create some overhead and increase the Docker Images complexity.

• XIA Server: First image to be initialized. It is configured as an XIA router. It starts

with an empty address table that will be populated by the Gateway Services later.

• XIA Gateway Routers: Will be initialized after the XIA Server has been fully

started. They are configured as XIA routers and their only function is to route

packets between XIA Gateways and the XIA Server.

• XIA Client Routers: Will be initialized after the XIA Server has been fully started.

They are configured as XIA routers and their only function is to route packets

between XIA Clients and the XIA Server.

• XIA Gateways: Will be initialized after all routers have been fully started. Config-

ured as XIA hosts. First they start Cooja and then the Gateway Service.

• XIA Clients: The last images to be initialized. They copy the address table stored

on the XIA Server and then initialize the echo-client.

3.2. 6LoWPAN echo-server/Cooja

A simple 6LoWPAN echo-server that receives a package and replies the same to the

source. It will be running in the Cooja motes over a simulated 6LoWPAN IoT Network.

3.3. XIA/6LoWPAN Gateway Service

The Gateway Service will list all IPv6 addresses of the motes and assign a SID to each

one creating a table. Another table containing only the SIDs will be concatenated to

the address table on the Server. After that the Gateway Service stays alive waiting to

route packets between echo-clients and echo-servers. When a packet is forwarded to

a echo-server, the Gateway Service waits for the response to forward back to the source

echo-client until a preset timeout. Any packet to the same echo-server received during this

period will be buffered until it can be forwarded. If a timeout happens the Gateway Service

replies to the echo-client an error message indicating packet loss on the IoT Network.

3.4. XIA Echo Client

The echo-client generate the messages and send to the echo-servers (SID) randomly cho-

sen from the address table. For each generated message, the echo-client waits for its

response, measuring: latency, packets lost in the XIA network (determined by a timeout),

packets lost in the IoT network (determined by the Gateway Service error message) and

errors (corrupted packets). Everything will be stored in a log and sent to the server at the

end of execution for analysis.

� � � � � � � � � 	 
 � � 
 � �

� �



4. Concluding Remarks

Once a test scenario is developed, running the tests will require just a single command in

the terminal or minor implementations to test other proposals. echo-client and Gateway

Service need to adapted using the new architecture APIs. Docker Images need to be

adapted as well, but they are easy to prepare and similar to one another. The echo-server

and the script remains the same. When a small test is successful in a single computer,

we can move for larger tests using computational clouds just choosing new values for the

topology. By employing open-source tools Docker and Cooja, this solution has very low

cost and covers all network overheads since its components are actually implemented.

Other applications can be developed as long as it is possible to implement a gateway

capable of translating the messages among the architectures.

As a future work, we will be testing Linux XIA [7], a native implementation of

XIA in the Linux kernel. Unlike XIA Prototype, Linux XIA does not use the click modular

router, which will reduce the overhead and facilitate the preparation of the Docker Images.

References

[1] P. Stuckmann and R. Zimmermann, “European research on future internet design,” IEEE

Wireless Communications, vol. 16, no. 5, pp. 14–22, October 2009.

[2] Contiki. (2017, Mar.) Contiki website. [Online]. Available: http://www.contiki-os.org/

[3] Docker. (2017, Mar.) Docker website. [Online]. Available: https://www.docker.com/

[4] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan, W. Wu,

A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste, “Xia: Efficient

support for evolvable internetworking,” NSDI’12, USENIX Association, pp. 23–23,

2012.

[5] G. Montenegro, C. Schumacher, and N. Kushalnagar, “IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement,

and Goals,” RFC 4919, Aug. 2007.

[6] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The click modular

router,” ACM Transactions on Computer Systems (TOCS), vol. 18, no. 3, pp. 263–

297, 2000.

[7] M. Machado, C. Doucette, and J. W. Byers, “Linux xia: An interoperable meta network

architecture to crowdsource the future internet,” ANCS ’15, IEEE Computer Society,

pp. 147–158, 2015.

Acknowledgments

This work was partially supported by Finep, with resources from Funttel, Grant No.

01.14.0231.00, under the Radiocommunication Reference Center (Centro de Referência

em Radiocomunicações- CRR) project of the National Institute of Telecommunications

(Instituto Nacional de Telecomunicações - Inatel), Brazil. The authors also would like to

thank CNPq, CAPES, FINATEL and FAPEMIG.

� � � � � � � � � 	 
 � � 
 � �

� 



