
On Enhancing Network Throughput using Reinforcement
Learning in Sliced Testbeds

Daniel Pereira Monteiro1, Lucas Nardelli de Freitas Botelho Saar1,
Larissa Ferreira Rodrigues Moreira1,2, Rodrigo Moreira1

1Institute of Exact and Technological Sciences – Federal University of Viçosa (UFV)
Rio Paranaı́ba – MG – Brazil.

2Faculty of Computing (FACOM) – Federal University of Uberlândia (UFU)
Uberlândia – MG – Brazil.

{daniel.p.monteiro, lucas.saar, larissa.f.rodrigues, rodrigo}@ufv.br

larissarodrigues@ufu.br

Abstract. Novel applications demand high throughput, low latency, and high
reliability connectivity and still pose significant challenges to slicing orches-
tration architectures. The literature explores network slicing techniques that
employ canonical methods, artificial intelligence, and combinatorial optimiza-
tion to address errors and ensure throughput for network slice data plane. This
paper introduces the Enhanced Mobile Broadband (eMBB)-Agent as a new ap-
proach that uses Reinforcement Learning (RL) in a vertical application to en-
hance network slicing throughput to fit Service-Level Agreements (SLAs). The
eMBB-Agent analyzes application transmission variables and proposes actions
within a discrete space to adjust the reception window using a Deep Q-Network
(DQN). This paper also presents experimental results that examine the impact of
factors such as the channel error rate, DQN model layers, and learning rate on
model convergence and achieved throughput, providing insights on embedding
intelligence in network slicing.

1. Introduction
Disruptive applications, such as 8K video streaming, Virtual Reality (VR), and Aug-
mented Reality (AR), had led to an increased demand for high network through-
put [Khan et al. 2022]. Additionally, other application families, including remote surgery,
smart factories, and autonomous vehicles, require low-latency and high-reliability con-
nectivity [Aripin et al. 2023]. Ensuring the compatibility between these conflicting re-
quirements within a physical network is a significant challenge for both management and
resource orchestration [Khan et al. 2022]. To address this, various advances have been
made in network slicing, virtualization, programmability, security, and Artificial Intelli-
gence (AI), especially in mainstream mobile networks, such as beamforming and energy-
aware solutions [Khan et al. 2022, Moreira et al. 2023, Brilhante et al. 2023].

The literature has explored approaches for performing network slicing that
can handle errors in the underlying channel while ensuring throughput using
canonical techniques such as artificial intelligence, and combinatorial optimiza-
tion [Ojijo and Falowo 2020, Liu et al. 2023]. Some of these techniques involve interven-
tion in the link [Moreira et al. 2021], while others involve intervention in the communicat-
ing entity, such as those based on Transmission Control Protocol (TCP) [Li et al. 2019b,



Siddiqi et al. 2022] Congestion Control. The proposed control in the communicating en-
tities aims to reduce the reception window in the event of packet loss, thereby reducing
the amount of traffic in the network. However, this approach is not sufficiently flexible to
incorporate intelligent mechanisms seamlessly.

In this paper, we propose and evaluate the eMBB Agent, which is based
on Reinforcement Learning (RL) coupled with a vertical application to improve the
throughput of network slicing to guarantee Service-Level Agreement (SLA). Func-
tionally, eMBB-Agent analyzes the vertical application variables and proposes actions
within a discrete space to increase or decrease the reception window. Subsequently,
the eMBB-Agent verifies the effectiveness of its actions through an Deep Q-Learning
(DQN). Experimentally, we verified how factors such as the channel error rate, number
of layers in the DQN model, and learning rate impact the model convergence and achieved
throughput.

The remainder of this paper is organized as follows. In Section 2, we contextual-
ize the related work on intelligent throughput enhancement. The proposed experimental
method is presented in detail in Section 3, followed by a description of the experimental
setup and results in Section 4. Section 5 discusses concluding remarks and future research
directions.

2. Related Work

Recent efforts, such as [Zhang et al. 2019], have sought to improve the Multipath Trans-
mission Control Protocol (MPTCP) protocol through reinforcement learning techniques.
Using asynchronous training, this study allows parallel execution of packet scheduling,
data collection, and neural network training. The goal was to optimize scheduling in real
time by employing an asynchronous algorithm for neural training.

The work proposed by [Li et al. 2019a] aimed to improve network efficiency us-
ing the SmartCC algorithm. This algorithm employs reinforcement learning techniques to
improve the congestion window management. SmartCC uses an asynchronous reinforce-
ment learning mechanism to acquire a set of congestion rules. While [Tang et al. 2018]
presented a traffic prediction algorithm based on deep learning. This algorithm aims to
anticipate the workload and network congestion. After the prediction, partial channel al-
location based on deep learning is performed to prevent possible congestion by assigning
appropriate channels.

The study carried out by [Beig et al. 2018] examined mobile users using the
MPTCP protocol, with the aim of optimizing congestion control in heterogeneous net-
works. This study proposes an algorithm based on Q-learning (QL) to improve through-
put, with the aim of maximizing throughput. [Vieira and Garcez 2011] developed a math-
ematical expression to calculate the probability of data loss on the servers. This expression
is used to condition the estimation of the probability of data loss in analog servers that
have a finite buffer and receive time-dependent multifactor flows.

Table 1 aims to clarify the standards adopted by related studies in relation to the
metrics and technologies used. The throughput metric is frequently used as an evaluation
criterion in several studies. Another observed constant is its use as a search variable for
designing experiments.



Table 1. Prior works aimed to enhance network conditions using AI.

Approach Evaluation Metric Search Variable AI Evaluation Testbed
[Tang et al. 2018] Throughput Software-Defined Networking (SDN) Controller Reinforcement Learning API C++/ WILL
[Beig et al. 2018] Throughput Throughput Q-Learning NS3

[Vieira and Garcez 2011] Probability, buffer Buffer Does Not Use Own
[Zhang et al. 2019] Goodput, Delay, Download MinRTT, Round-Robin Deep Reinforcement Learning (DRL) Own

[Li et al. 2019a] ACK, Round Trip Time (RTT) Throughput, RTT, Jitter RL Own
Our Approach Throughput, and RTT Congestion Window DQN NS3 on Fabric

3. Evaluation Method
This study examines the influence of various factors, including the number of layers in
the DQN model, percentage of channel error, and learning rate, on the convergence time
and data transmission rate (throughput) between two applications. The study employs
metrics such as congestion window size, packet size, total number of bytes sent, average,
total number of recognized segments, and network throughput. The aim is to optimize the
current throughput on a link generated by the NS3 simulator, focusing on the impact of
the eMBB-Agent on the search space, as shown in Fig. 1.

eMBB Agent

Actions<0-64Kb>

Ex
p

er
im

en
ta

l T
es

tb
ed

Host 1 Host 2

States
and Rewards

cwndcwnd

DNNs

ServerServer

FTP FTPSliced Connectivity

Agent

Q-Learning Algorithm:
2-Layers
10-Layers

Slice Link Error (Packet Loss):
0%-Error
20%-Error

Learning Rate:
0.01
0.001

Figure 1. Proposed Evaluation Method.

We used Network Simulator 3 (NS3) to create a network topology and simulate
the transmission of packets between two File Transfer Protocol (FTP) applications, as
shown in Fig. 1. We set the bandwidth between the hots to 10 Mbps and 2 Mbps between
the routers to induce congestion, as illustrated in Fig. 2. We used configurations NN-2
containing two hidden layers, NN-4 with four hidden layers, and NN-8 with eight hidden
layers.

10Mbps 10Mbps2Mbps

Figure 2. Experiment Topology.

Through partial factorial combination, that is, we take combinations two-by-two
and carry out experiments on the levels of variations to verify the influence of these vari-
ations. Each combination was run 10 times to generate a statistical sample. We measured
the error rate in packets in scenarios of 0% and 20%, and varied the learning rate hyper-
parameter to 0.01 and 0.001. The parameters of the combinations performed are listed in
Table 2.



Table 2. Factorial-partial Experimentation Combinations.

Factor Levels
# Layers DQN Algorithm 2 4 8

Learning Rate 0.01 0.001
Network Error Rate 0% 20%

To train the DQN models and their variations, we used RTX 4060ti 16 Gb GPU
hardware with an Intel(R) Core (TM) i5-4430 CPU @ 3.00GHz with 32 GB of acRAM.

4. Results and Discussion
The central objective of the experiments was to analyze the behavior of the network in re-
sponse to different configurations of Neural Networks (NNs) by using the DQN algorithm
with the NS3-GYM [Gawlowicz and Zubow 2018] tool. With this technology, it has be-
come possible to combine RL algorithms and interventions in the control mechanisms of
communication networks by using NS3. In this study we considered NS3-GYM online.

0 25 50 75 100 125 150 175 200

0

20

40

60

80

re
wa

rd

0

1000

2000

3000

4000

Re
wa

rd
s a

nd
 C

wn
d

Gráficos Múltiplos
Rewards
Cwnd

(a) NN-2

0 25 50 75 100 125 150 175 200

0

10

20

30

40

re
wa

rd

0

1000

2000

3000

4000

5000

Re
wa

rd
s a

nd
 C

wn
d

Gráficos Múltiplos
Rewards
Cwnd

(b) NN-4

0 25 50 75 100 125 150 175 200

0

10

20

30

40

re
wa

rd

0

1000

2000

3000

4000

Re
wa

rd
s a

nd
 C

wn
d

Gráficos Múltiplos
Rewards
Cwnd

(c) NN-8

Figure 3. Increasing cwnd using different DQN structures.

During the simulation, a progressive increase in the congestion window was ob-
served, which was directly related to a significant increase in the rewards obtained by
the eMBB-Agent. According to Fig. 3, advantageous network flow rates were identified
with the implementation of the Neural Network (NN)-2 model containing two layers. In
detail, Fig. 3a, 3b and 3c provide a visual representation of the algorithm over 200 steps.



Thus, it is possible to verify that the larger the size of the cwnd variable in a smaller
number of epochs, the faster eMBB-Agent increases the communication throughput.

(a) Maximum throughput achieved by differ-
ent NN configurations.

(b) Convergence step required by different
NN configurations.

Figure 4. Analyses of a physical link with (20%) and without (0%) errors.

The NN configuration, shown in Fig. 3a, 3b and 3c exhibit a progressive increase
in throughput with an increasing congestion window cwnd based on decisions and receiv-
ing rewards for correct choices. Three models (NN-2, NN-4, and NN-8) were analyzed,
and NN-4 presented a lower average flow rate considering NN-2 and NN-8. Subsequently,
NN-8 manifested the second-worst throughput. This behavior is attributed to the time
required to train a DQN with more layers, given the time sensitivity in the experimental
scenario.

Fig. 4a highlights the performance of the Q-Learning algorithm in three configu-
rations: NN-2, NN-4 and NN-8, representing the average throughput of the network slice
in an error-free and with error in slicing. NN-2, with an error-free demonstrates the best
performance, followed by NN-4, while NN-8 displays lower performance, with a lower
Average Network Throughput. We associate this with its complexity, which requires more
computational resources owing to its deep neural network structure.

Fig. 4b shows the convergence times of the DQN algorithm for three different
architectures: NN-2, NN-4 , and NN-8. As can be seen, in an error-free channel, algorithm
NN-4 exhibits the best performance, with a convergence time 20.09% lower than NN- 2
and 32.99% lower than NN-8, respectively.

Alternatively, in a channel with 20% error induction, NN-2 reaches convergence,
that is, fullness in the second variable faster. Thus, the convergence time for NN-2 was
10.34% less than that of NN-4 and 15.00% less than that of NN- 8. We associate this better
performance of the simpler NN with better training time.

Finally, we investigate the effect of the error rate, learning rate, and RL algorithm
on network throughput through regression. Tables 3 and 4 present the variables consid-
ered, their estimated impacts, associated coefficients, standard errors, and T and P-values,
providing information about the relationships between Algorithm DQN , error rate, learn-
ing rate, and network throughput.



Table 3. Influence of network error rate and DQN structure on Network Through-
put.

Term Influence Coefficient Standard Error T-Value P-Value
Constant 84320 1075 78.41 0.000

Network Error Rate -1133 -567 1075 -0.53 0.599
DQN Algorithm -17170 -8585 1317 -6.52 0.000

Network Error Rate × DQN Algorithm 850 425 1317 0.32 0.748

Table 4. Influence of network error rate and learning rate on Network Throughput.

Term Influence Coefficient Standard Error T-Value P-Value
Constant 84320 1075 78.41 0.000

Network Error Rate -1133 -567 1075 -0.53 0.599
Learning Rate 907 453 1075 0.42 0.678

Network Error Rate × Learning Rate 680 340 1075 0.32 0.748

5. Concluding Remark
The analysis of congestion algorithms with various combinations of artificial NN demon-
strated an inverse correlation between the number of layers and the efficiency of optimiz-
ing the flow in communication networks, as indicated by the data from linear regression
analysis. This suggests that an increase in network complexity leads to a decrease in net-
work throughput. The study found that neither the network error rate nor the learning rate
had a statistically significant effect on the network throughput.

This study struggled with some constraints, one of which was that the analysis
was carried out in a simulated environment using Network Simulation Library 3 (NS3).
To overcome this limitation, we suggest that future research explore the functionality of
eMBB-Agent in a real-world setting, in which variables can be manipulated to assess
its impact in more complex and dynamic situations. This provided a more accurate and
comprehensive understanding of the practical implications of the findings across various
operational scenarios. In addition, we suggest the optimization of additional parameters
and evaluation of latency and reliability to further improve network performance.

Acknowledgments
We acknowledge the financial support of the FAPESP MCTIC/CGI Research project
2018/23097-3 - SFI2 - Slicing Future Internet Infrastructures. This study was financed
in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

References
Aripin, N. M., Zulkifli, T., and Radzi, N. A. M. (2023). Performance Analysis of 5G Net-

work Slicing for Hospital of the Future. In 2023 IEEE 13th Symposium on Computer
Applications & Industrial Electronics (ISCAIE), pages 18–21.

Beig, E. F. G. M., Daneshjoo, P., Rezaei, S., Movassagh, A. A., Karimi, R., and Qin, Y.
(2018). Mptcp throughput enhancement by q-learning for mobile devices. In 2018
IEEE 20th International Conference on High Performance Computing and Communi-
cations; IEEE 16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pages 1171–1176,
Conference. IEEE.



Brilhante, D. d. S., Manjarres, J. C., Moreira, R., de Oliveira Veiga, L., de Rezende, J. F.,
Müller, F., Klautau, A., Leonel Mendes, L., and P. de Figueiredo, F. A. (2023). A
Literature Survey on AI-Aided Beamforming and Beam Management for 5G and 6G
Systems. Sensors, 23(9).

Gawlowicz, P. and Zubow, A. (2018). ns3-gym: Extending openai gym for networking
research. CoRR, abs/1810.03943.

Khan, B. S., Jangsher, S., Ahmed, A., and Al-Dweik, A. (2022). URLLC and eMBB
in 5G Industrial IoT: A Survey. IEEE Open Journal of the Communications Society,
3:1134–1163.

Li, W., Zhang, H., Gao, S., Xue, C., Wang, X., and Lu, S. (2019a). SmartCC: A Reinforce-
ment Learning Approach for Multipath TCP Congestion Control in Heterogeneous
Networks. IEEE Journal on Selected Areas in Communications, 37(11):2621–2633.

Li, W., Zhou, F., Chowdhury, K. R., and Meleis, W. (2019b). QTCP: Adaptive Congestion
Control with Reinforcement Learning. IEEE Transactions on Network Science and
Engineering, 6(3):445–458.

Liu, Y., Clerckx, B., and Popovski, P. (2023). Network Slicing for eMBB, URLLC, and
mMTC: An Uplink Rate-Splitting Multiple Access Approach. IEEE Transactions on
Wireless Communications, pages 1–1.

Moreira, R., Rodrigues Moreira, L. F., and de Oliveira Silva, F. (2023). An intelligent
network monitoring approach for online classification of Darknet traffic. Computers
and Electrical Engineering, 110:108852.

Moreira, R., Rosa, P. F., Aguiar, R. L. A., and de Oliveira Silva, F. (2021). Deploy-
ing Scalable and Stable XDP-Based Network Slices Through NASOR Framework for
Low-Latency Applications. In Barolli, L., Woungang, I., and Enokido, T., editors,
Advanced Information Networking and Applications, pages 715–726, Cham. Springer
International Publishing.

Ojijo, M. O. and Falowo, O. E. (2020). A Survey on Slice Admission Control Strategies
and Optimization Schemes in 5G Network. IEEE Access, 8:14977–14990.

Siddiqi, S. J., Naeem, F., Khan, S., Khan, K. S., and Tariq, M. (2022). Towards AI-
enabled traffic management in multipath TCP: A survey. Computer Communications,
181:412–427.

Tang, F., Fadlullah, Z. M., Mao, B., and Kato, N. (2018). An Intelligent Traffic
Load Prediction-Based Adaptive Channel Assignment Algorithm in SDN-IoT: A Deep
Learning Approach. IEEE Internet of Things Journal, 5(6):5141–5154.

Vieira, F. H. T. and Garcez, S. G. (2011). Estimação de probabilidade de perda de da-
dos em redes através de modelagem multifractal de tráfego e teoria de muitas fontes.
Revista de Informática Teórica e Aplicada, 18(1):13–30.

Zhang, H., Li, W., Gao, S., Wang, X., and Ye, B. (2019). ReLeS: A Neural Adaptive
Multipath Scheduler based on Deep Reinforcement Learning. In IEEE INFOCOM
2019 - IEEE Conference on Computer Communications, pages 1648–1656, INFO-
COM. IEEE.


