
Enabling Parallel Processing at the Edge for Real-Time Video
Analysis Applications

Rafael C. Chaves1,2, Lucas M. Souza1, Otacı́lio A. Ramos Neto1, Ruan D. Gomes1,2,3

1 Smart4i – Polo de Inovação do IFPB
2Programa de Pós-Graduação em Tecnologia da Informação (PPGTI)

3Programa de Pós-Graduação em Engenharia Elétrica (PPGEE)
Instituto Federal da Paraı́ba (IFPB) – João Pessoa – PB – Brasil

{rafael.chaves,lucas.mendes}@polodeinovacao.ifpb.edu.br

{otacilio.ramos,ruan.gomes}@ifpb.edu.br

Abstract. In the context of video analysis systems, distributed processing is a
widely recognized strategy for handling large volumes of data and reducing the
execution time of complex tasks. In this paper, we present a solution, called
Prisma, designed to enable parallel processing by implementing video stream-
splitting strategies, which generate multiple derived streams from the original
video stream. These derived streams can be distributed to multiple clients, al-
lowing each processing instance to handle only a portion of the original stream
while abstracting the complexities of network management and video fragmen-
tation.

1. Introduction
In recent years, the importance of video analysis systems has increased significantly.
One factor contributing to this growth is the adoption of computer vision as a first step
in quality control in many industrial plants [Wagner et al. 2023]. Computer vision is
also applied in the monitoring of human activities in factory environments. In many
cases, such systems have been shown to be more efficient than human-based monitor-
ing, contributing to improved safety and precision in the management of industrial pro-
cesses [Czimmermann et al. 2020, Meribout et al. 2022]. Object identification and track-
ing, as well as image classification, are just a few of the applications that highlight the
relevance of these systems in the context of Industry 4.0.

However, the increasing use of such systems also brings several challenges
that must be addressed, such as the need to efficiently process large volumes
of data and reduce the execution time of computationally intensive tasks. In
this context, the use of distributed processing is a common approach. Strate-
gies such as MapReduce [Dean and Ghemawat 2008] and Spark [Zaharia et al. 2010]
have been widely adopted, with applications such as video encoding in the
cloud [Pereira et al. 2010] and identification of relevant information through computer
vision [Perafan-Villota et al. 2021], among others.

Few studies have addressed the creation of solutions that facilitate distributed pro-
cessing for real-time video analysis in small-scale systems. In such cases, distributed
processing can be useful for parallelizing complex tasks, not only with the goal of re-
ducing execution time but also of maintaining the same processing rate while using hard-
ware with lower computational resources. In [George and Ravindran 2019], the authors



highlight the need for a middleware capable of handling video distribution with real-
time response and minimal processing delay. Their solution offers an API for specifying
latency and accuracy requirements, and their experiments show that latency increases
approximately linearly with frame size, reaching up to 164% higher when two video
streams are transmitted simultaneously. The Vision Edge IoT (VEI) middleware, pro-
posed in [Luu et al. 2022], targets edge-based computer vision applications by replicat-
ing video streams from cameras to multiple applications using a publish/subscribe API.
In [Perafan-Villota et al. 2021], the authors present a parallel video analysis architecture
built on a low-cost cluster using Apache Spark, Hadoop, and the MapReduce paradigm,
achieving significant reductions in processing time. Finally, [Singh et al. 2023] proposes
a real-time video processing framework for multiple streams using distributed comput-
ing. The system receives video streams via a Kafka server and applies computer vision
algorithms in parallel using Apache Spark.

In a previous work, a middleware named Espelho was proposed to en-
able the implementation of video analysis systems with support for edge comput-
ing [Neto et al. 2024]. One of the main features of Espelho that distinguishes it from
the other works found in the literature is its ability to replicate a video stream to multiple
processes on different machines, allowing distributed applications to access video streams
through Linux virtual video devices (/dev/video*) as if reading from a device physi-
cally connected to the machine. This facilitates the development of video analysis appli-
cations. Such functionality is particularly useful when the goal is to analyze a video using
multiple computer vision algorithms or to run a single algorithm with different parameters
in each instance.

Although it provides transparency for applications accessing video streams, the
Espelho middleware does not implement any functionality to split the video stream for
parallel processing, as it always forwards the complete stream to all instances responsible
for processing the video. However, in some scenarios, it may be beneficial to perform a
temporal or spatial split of the video to accelerate parallel processing, which is an impor-
tant aspect in edge computing environments and for applications that require low latency.
Therefore, a natural evolution is to enable parallel processing by dividing video streams
into multiple substreams and sharing them in such a way that each application instance
processes only a portion of the video, while still preserving the abstraction provided by
Espelho. In this scenario, applications consume the substreams as if they were captur-
ing frames from a local camera, without having to deal with the complexity related to
substream partitioning and their transmission over the network.

This paper presents a proposal for a new module, called Prisma, to implement
stream-splitting strategies to enable parallel video processing at the edge. Experiments
were carried out to evaluate the overhead introduced by a preliminary version of Prisma.
In this initial version, the module only replicates the video stream instead of splitting it.
Taking into account resolutions up to 2560×1440, the addition of Prisma resulted in an
11.9% increase in average latency when transmitting a single video stream. In contrast, in
the scenario with three replicated video streams in parallel, the use of Prisma resulted in a
4.7% reduction in average latency. This result demonstrates that, as the number of streams
to be generated increases, the use of Prisma provides better performance compared to the
use of Espelho alone to perform the same function.



2. Solution Architecture
This section describes the architecture of the solution proposed in this work. First, the
Espelho middleware is described, which is responsible for distributing video streams and
providing transparent access to applications. Then, the module proposed in this paper,
called Prisma, is presented. It is responsible for generating video substreams to facilitate
distributed parallel processing while maintaining compatibility with Espelho.

2.1. Middleware Espelho
Espelho is a video distribution middleware designed to simplify the implemen-
tation of video analysis systems in edge computing scenarios, initially described
in [Neto et al. 2024]. Figure 1 illustrates a use case of Espelho, in which a video cap-
tured in an industrial plant is transmitted to a distribution server. This server replicates the
video to two clients: one that processes the images using computer vision algorithms, and
another located in a monitoring center, which displays the video in real time. The client
applications access the video streams through virtual video drivers (/dev/video*) cre-
ated by the middleware.

Figure 1. Espelho use case in an Industry 4.0 scenario.

The Espelho middleware is composed of three modules: Capture, Espelho, and
Decapture. The Capture module is responsible for reading a video stream from an ex-
ternal camera and transmitting it over the network to the distribution server. It was de-
veloped to be compatible with embedded Linux, allowing it to run on edge devices with
limited computational resources. The Espelho core is the distribution server, which fol-
lows the publisher/subscriber model. Each video stream is associated with a topic, and
subscribers receive a copy of the stream in real-time. The Decapture module receives the
video stream, decodes it, and makes it available through virtual video devices. As a result,
the video transmitted over the network can be accessed as if it were coming from a local
camera. This approach hides the complexity of the transmission process, simplifying the
work of developers implementing the processing algorithms.

2.2. The Prisma module
As described in Section 2.1, Espelho replicates the complete video stream to all applica-
tion instances subscribed to receive the video. However, in certain distributed comput-



ing scenarios, it is beneficial to split the video to enable parallel processing of different
segments of the same stream. To support this distributed processing paradigm within Es-
pelho, this paper proposes the creation of a new module called Prisma. This module is
responsible for dividing the video into substreams, which are then sent to the Espelho
server to be distributed to the clients.

Figure 2 illustrates how Prisma interacts with the other middleware modules in a
distributed processing scenario. Prisma was designed to maintain full compatibility with
the abstraction provided by Espelho, allowing applications to continue reading network-
delivered streams as if they were reading from a locally connected camera. By applying
Prisma, different instances of applications can read different frames or different regions
of the frames, without having to deal with the complexity of video splitting and network
transmission management.

Figure 2. Distributed processing scenario using Prisma.

The decision not to incorporate video stream splitting functionality into the dis-
tribution server was made to simplify the codebase and facilitate future modifications.
Section 3 discusses the impacts of adding this new component, analyzing the results of
experiments conducted with a preliminary version of Prisma.

Internally, Prisma consists of three modules that communicate through queues,
allowing each module to be updated without affecting the operation of the others. The
Receiver module is responsible for establishing connections and communicating with
Capture. The Broker component handles the stream-splitting operations, and can be
configured to use different splitting strategies. Finally, the Sender component manages
communication with Espelho. Figure 3 shows the main components of Prisma.

Different splitting strategies can be implemented on Prisma. For example, in a
temporal splitting strategy, the byte stream received by the Capture module is analyzed
and divided into substreams, each encapsulated separately for transmission to Espelho.
In practice, this approach reduces the number of frames that each client must process per
second, allowing more time to process the incoming data. Another example is spatial
splitting, in which frames are partitioned into quadrants, each sent through a different
substream. This enables clients to process received frames more quickly due to their re-



Figure 3. Prisma Architecture

duced size. Depending on the chosen approach, decoding or transcoding of streams in
the Prisma module may be required. In other cases, Prisma may simply split an already
encoded stream, sending different frames or groups of encoded frames into separate sub-
streams.

3. Experimental Evaluation
This section describes the experiments proposed to evaluate the influence of using Prisma
on the performance of Espelho middleware. It is important to note that the tests were
conducted using a preliminary version of Prisma, which only implements video stream
replication. This scenario was designed to verify the feasibility of adding an external
component to the distribution server without imposing a high overhead. Furthermore, the
impact of running multiple instances of Decapture on the same machine was explored,
evaluating how this scenario could benefit parallel video processing on a single device.

To evaluate each of these questions, the average transmission latency and the deliv-
ered frame rate (frames per second - fps) were measured. To ensure the accuracy of these
metrics, the clocks of the machines used in the experiments were synchronized through
a software implementation of the Precision Time Protocol (PTP). Furthermore, to avoid
distorting the results, the experiment was conducted by transmitting a two-minute video
encoded in H.264 format at multiple resolutions (ranging from 800×480 to 4096×2160)
at a constant frame rate of 30 fps.

The experiments were carried out using three distinct machines connected to the
same gigabit Ethernet network, ensuring that middleware performance was not affected
by network bandwidth limitations. The source device, running the Capture module, is
equipped with a AMD A10 PRO-7800B processor and 16 GB of DDR3 RAM. The dis-
tribution machine, hosting both Espelho and Prisma, has a Intel Core i5-12400 processor
and 8 GB of DDR4 RAM. Lastly, the client machine, which ran the instances of Decap-
ture, has a AMD PRO A10-8750B processor and 16 GB of DDR3 RAM.

3.1. Results

Figure 4 shows the average latency values for resolutions up to 2560×1440. On the left
are the results for transmissions involving a single instance of Decapture, while on the
right the results for transmissions with three instances running simultaneously are pre-
sented. From the results, it can be observed that the addition of an external component to
Espelho did not significantly impact performance. In fact, under higher workloads (with



3 clients), Prisma integrated to Espelho achieved a slightly better performance than using
Espelho alone. This can be explained by the fact that the replication routine implemented
in Prisma is lighter and simpler than the one found in Espelho.

Figure 4. Latency per frame at resolutions up to 2560×1440 (with 1 client on the
left, and 3 clients on the right).

Figures 5 and 6 show the latency per frame and the frame rate for resolutions up to
4096×2160 (4K). Up to resolution 2560×1440 the clients were able to process a frame rate
equivalent to the one generated at the source (30 fps). However, it can be observed that
there is a significant performance degradation at the two higher resolutions. This occurs
because of the use of a machine equipped with a processor that offers low performance by
current standards. Because the decoding implemented is software-based, the CPU cannot
process frames at the incoming rate, resulting in dropped frames and increased latency
for the remaining ones. These results encourage the use of parallel processing, mainly
in scenarios in which a set of machines is being used with little resources available to
execute the applications.

Figure 5. Latency per frame at resolutions up to 4K (with 1 client on the left, and
3 clients on the right).

Another interesting observation is that running multiple Decapture instances on
the client machine does not cause as severe a performance drop as processing video at
higher resolutions (3840×2160 and 4096×2160). This occurs because Decapture runs se-
rially, with each instance only slightly affecting others as long as processor cores are avail-



Figure 6. Frames per second at resolutions up to 4K (with 1 client on the left, and
3 clients on the right).

able. Thus, increasing the workload beyond the capacity of a single core has a more sig-
nificant impact than increasing the number of parallel instances. Splitting video streams
into substreams to distribute workload across multiple instances could be an effective
solution to handle higher resolution streams on low-performance hardware.

4. Conclusion

This paper describes the Prisma module, which emerges as a solution to enable parallel
processing on the edge, maintaining a high level of transparency for applications, due
to its integration with the middleware Espelho. The solution described in this paper al-
lows for straightforward application development by abstracting the complexities of video
transmission over networks and parallel processing. Applications can be easily replicated
and configured to process different video segments simultaneously, without increasing
code complexity.

Experimental results demonstrated that adding an external component to the dis-
tribution server of Espelho introduces minimal overhead under low load conditions and
delivers superior performance as load increases. Another key observation from the exper-
iments is that increasing the workload for a single Decapture instance beyond the capacity
of a single processor core has a more severe impact than increasing the number of parallel
instances on a device. This finding supports the idea that the proposed stream-splitting
approach can effectively enable distributed video processing even on low-performance
devices.

As future works, we will implement multiple splitting strategies in the Prisma
module, and evaluate their performance across different edge-based video processing sce-
narios, and for applications in the context of Industry 4.0. Scenarios considering the use
of 5G private networks will also be evaluated.

5. Acknowledgments

This work is supported by EMBRAPII (BFA 2301.0001), Cisco, Prysmian, and MPT
Cable. The authors also thank CNPq (305536/2021-4), CPQD, Inatel, Taggen, Data
Machina, and the IFPB Innovation Hub.



References
Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M.,

and Dario, P. (2020). Visual-based defect detection and classification approaches for
industrial applications—a survey. Sensors, 20(5):1459.

Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–113.

George, A. and Ravindran, A. (2019). Distributed middleware for edge vision systems. In
2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life
Using ICT & IoT and AI (HONET-ICT), pages 193–194. IEEE.

Luu, S., Ravindran, A., Pazho, A. D., and Tabkhi, H. (2022). VEI: a multicloud edge
gateway for computer vision in IoT. In Proceedings of the 1st Workshop on Middleware
for the Edge (Quebec, Quebec City, Canada) (MIDDLEWEDGE ’22), pages 6–11.
Association for Computing Machinery, New York, NY, USA.

Meribout, M., Baobaid, A., Khaoua, M. O., Tiwari, V. K., and Pena, J. P. (2022). State
of art iot and edge embedded systems for real-time machine vision applications. IEEE
Access, 10:58287–58301.

Neto, O. d. A. R., Chaves, R. C., Nascimento, A. P., and Gomes, R. D. (2024). Middleware
para aplicações distribuı́das de vı́deo com suporte à computação na borda na indústria
4.0. In Brazilian Symposium on Multimedia and the Web (WebMedia), pages 215–222.
SBC.

Perafan-Villota, J. C., Mondragon, O. H., and Mayor-Toro, W. M. (2021). Fast and pre-
cise: parallel processing of vehicle traffic videos using big data analytics. IEEE trans-
actions on intelligent transportation systems, 23(8):12064–12073.

Pereira, R., Azambuja, M., Breitman, K., and Endler, M. (2010). An architecture for
distributed high performance video processing in the cloud. In 2010 IEEE 3rd inter-
national conference on cloud computing, pages 482–489. IEEE.

Singh, T., Rajput, V., Satakshi, Prasad, U., and Kumar, M. (2023). Real-time traf-
fic light violations using distributed streaming. The Journal of Supercomputing,
79(4):7533–7559.

Wagner, R., Matuschek, M., Knaack, P., Zwick, M., and Geiß, M. (2023). Industri-
aledgeml - end-to-end edge-based computer vision system for industry 5.0. Procedia
Computer Science, 217:594–603. 4th International Conference on Industry 4.0 and
Smart Manufacturing.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:
Cluster computing with working sets. In 2nd USENIX workshop on hot topics in cloud
computing (HotCloud 10).


