
Parallel Storage Devices Profiling with SeRRa

Vinicius Rodrigues Machado1, Francieli Zanon Boito1,2, Rodrigo Virote Kassick1,2,
Jean Luca Bez1, Philippe O. A. Navaux1, Yves Denneulin2

1Institute of Informatics – Federal University of Rio Grande do Sul
Porto Alegre, Brazil

{vrmachado, fzboito, jlbez, rvkassick, navaux}@inf.ufrgs.br
2LIG Laboratory – INRIA – University of Grenoble Alpes

Grenoble, France
{yves.denneulin}@imag.fr

Abstract. This work presents the parallel storage device profiling tool SeRRa.
Our tool obtains the sequential to random throughput ratio for reads and writes
of different sizes on storage devices. In order to provide this information effi-
ciently, SeRRa employs benchmarks to obtain the values for only a subset of the
parameter space and estimates the remaining values through linear models. The
MPI parallelization of SeRRa presented in this paper allows for faster profiling.
Our results show that our parallel SeRRa provides profiles up to 8.7 times faster
than the sequential implementation, up to 895 times faster than the originally
required time (without SeRRa).

1. Introduction

Hard Disk Drives (HDDs) have been the main non-volatile storage devices on personal
computers and supercomputers for High Performance Computing (HPC). For this rea-
son, most systems were developed or adapted in order to maximize performance when
accessing these devices. For instance, disk schedulers often employ elevator algorithms
to reduce head movements [Zhang and Bhargava 2008], improving data access perfor-
mance. Several optimizations target on generating sequential accesses instead of random
accesses, since HDDs benefit from this access pattern.

Solid State Drives (SSDs) are a recent alternative to hard disks. These devices
use flash memory to store data. Because of that, they are more resistant to falls and
vibrations. Moreover, their advantages over HDDs include size, noise generation, heat
dissipation and energy consumption [Chen et al. 2009]. Nevertheless, despite the growing
adoption of SSDs, their larger cost per byte still hampers their use on large-scale systems
for HPC. Therefore, several parallel file system deployments on clusters still store data on
hard disks. Furthermore, hybrid solutions where both devices are used have been gaining
popularity [Xu et al. 2014].

Another popular solution for storage on HPC systems is the use of RAID arrays
that combine multiple hard disks onto a virtual unit for performance and reliability pur-
poses. Data is striped among the disks and can be retrieved in parallel, which improves
performance. Nonetheless, since both SSDs and RAID solutions are inherently different
from HDDs, they should not be treated simply as “faster disks”. Several assumptions
about performance from HDDs do not hold when using SSDs and RAID arrays, and dif-
ferent requirements arise [Rajimwale et al. 2009].



Regarding spatial locality, HDDs are known for having better performance when
accesses are done sequentially. Although RAID arrays are composed by hard disks and
their performance is usually better with sequential accesses, their organization compli-
cates this behavior. The alignment of accesses to the stripe size has a great impact and
must be considered. On the other hand, works that aim at characterizing SSDs’ per-
formance behavior achieve different conclusions. Despite most SSDs presenting bet-
ter performance for sequential writes than for random writes, read operations’ perfor-
mance follows no general rule. On some SSDs, there is no difference between sequen-
tial and random accesses, but on others this difference achieves orders of magnitude
[Chen et al. 2009]. The sequential to random throughput ratio on some SSDs surpasses
what is observed on some HDDs [Rajimwale et al. 2009].

Therefore, we cannot simply classify optimizations - such as I/O schedulers
[Boito et al. 2013] - by saying they are only suitable for HDDs or SSDs. Approaches
that aim at generating contiguous accesses (originally designed for HDDs) can greatly
improve performance when used on SSDs that are also sensitive to access sequentiality.
Furthermore, on any device, the performance improvement caused by the use of a specific
optimization may not compensate its overhead. Hence, these optimizations could be clas-
sified according to the sequential to random throughput ratio that devices must present in
order to benefit from them.

However, obtaining this metric to a storage device can be a time-consuming task.
In order to provide accurate results as fast as possible, SeRRa was developed in our pre-
vious work [Boito et al. 2015]. This tool reports, for a storage device, the sequential
to random throughput ratio for read and write operations with different request sizes.
Benchmarks are executed only over a subset of all profiled request sizes, and the remain-
ing values are estimated through linear regressions. It has been shown that this approach
is capable of obtaining a profile in a fraction of the originally required time with small
errors.

Although SeRRa offers a faster option for storage devices profiling, obtaining
these profiles even faster would facilitate the tool’s use for situations such as making
decisions about optimizations in execution time. Additionally, it is possible to increase
SeRRa’s accuracy by allowing for more repetitions of its benchmarks. Thus, accelerating
its execution would make it possible to achieve better results from the same profiling time.

In this scenario, this paper proposes a parallel implementation of SeRRa. We
evaluate our approach over clusters with HDDs, SSDs, and RAID arrays, and show per-
formance improvements of up to 8.7 times over the sequential version of the tool.

This paper is organized as follows: the next section discusses related work. Sec-
tion 3 presents the design of SeRRa. Section 4 details the parallel implementation. Sec-
tion 5 discusses results obtained with the new SeRRa. Finally, Section 6 brings final
remarks.

2. Related Work

With the growing adoption of solid state drives, several works focused at charac-
terizing these devices by evaluating their performance over several access patterns
[Chen et al. 2009, Rajimwale et al. 2009]. These works point at SSDs’ project options,



their impact on performance, and illustrate common phenomena as write amplification
and stripe alignment. Differently, our work aims at measuring storage performance in a
generic way, and not only on modeling or explaining SSDs’ performance.

El Maghraoui et al. [El Maghraoui et al. 2010] propose a detailed model of SSDs’
performance. Nonetheless, the model needs low-level information that must be profiled
through micro-benchmarks. Moreover, the proposed model is a low-level model, focus-
ing on the device only and not including higher levels of the I/O subsystem. A similar
approach is used by Desnoyers [Desnoyers 2012]. Such models are suitable for evalu-
ating project options for SSDs, for instance, contrary to what our tool does. We aim at
providing a high level profiling of the storage system in order to make decisions about
optimizations.

For similar reasons, device simulators like DiskSim [Bucy et al. 2008] and others
[Agrawal et al. 2008, Kim et al. 2009, Yoo et al. 2013] have no use on our context. They
allow the evaluation of devices parameters, but not the profiling of existing systems.

Although several benchmarking tools report access time and throughput on the
access to files over different access patterns, we could not find any tool that reports the
sequential to random throughput ratio. Other tools also do not estimate results for a large
set of parameters from a few measurements, as SeRRa does through linear regressions.
These reasons motivated the development of the tool, described in the next section.

3. SeRRa: A Storage Device Profiling Tool
This section describes SeRRa, a storage device profiling tool. Its development was moti-
vated by the need for a fast way to obtain the sequential to random throughput ratio from
devices as HDDs, SSDs and RAID arrays. The main goals of SeRRa’s project are:

• Performance: the information must be provided as quickly as possible;
• Accuracy: the provided information must fairly reflect the real behavior of the

profiled storage device;
• Generality: the tool must be easy to use and do not require user-provided infor-

mation about the device.

Keeping both performance and accuracy goals at the same time is a challenging
problem because profiling a storage device adequately can take a long time. Table 1
presents the time spent to profile the devices used in this study. It includes time required
for one execution of the tests and for the complete profiling (that includes several exe-
cutions in order to provide statistical guarantees). Details about these devices and the
executed tests will be presented in Section 5. From the times reported in Table 1, it is
clear that these tests are time consuming, as the fastest profile took over 1.5 days, while
the slowest one took almost 14 days.

Table 1. Original time in hours to profile the storage devices used in this study.

One test execution Total profiling time
Pastel (HDD) 15.22 329.49

Graphene (HDD) 12.26 120.38
Suno (RAID-0) 4.21 61.32

Edel (SSD) 3.09 40.44



Figure 1. Profiling data from a SSD - Access time per request for several request sizes.

Ideally, such a complete profiling would be needed only once for each storage
device and its stored results could be used for a long time. However, even considering
this fact, to dedicate the environment for days can be prohibitive. Moreover, since aspects
other than the storage device like local file system, disk scheduler and operating system
also affect performance, the reported results are dependent on a system configuration.
Changing the operating system version, for instance, could require a new profiling.

The slow profiling whose times are presented in Table 1 consists of executing an
I/O benchmark several times varying file sizes, request sizes and operation (sequential
read, random read, sequential write, and random write). Figure 1 shows an example
of access times graph - obtained for 1200MB files with different request sizes on a SSD.
Similarly to what can be observed in this example, most of the access times graphs present
a linear function appearance. Because of this observation, we have decided to use linear
regressions on the design of our profiling tool. Therefore, the following steps compose
SeRRa’s execution:

1. Monte Carlo: request sizes inside a given interval are randomly picked. This
interval is provided as a parameter, as well as the gap between every two consecu-
tive sizes. For instance: if asked to approximate the results for the interval [8KB,
40KB] using 8KB gaps, the tool would pick points from the set {8KB, 16KB,
24KB, 32KB, 40KB}. The number of points to be selected for each interval is
also defined by the user. Multiple intervals, with different gaps, could be pro-
vided. The points at the extremes of the interval (in this example, 8 and 40KB) are
always included on this step, since our previous analysis [Boito et al. 2015] has
shown that doing so improves approximations.

2. Benchmark: the test is executed for the request sizes picked on the previous
step. For this task, SeRRa uses the IOzone benchmark [Norcott and Capps 2006],
which generates requests to the local file system with configurable parameters
such as file size, request sizes, and access pattern (sequential, random, etc). We
have decided to use IOzone because it is a widely adopted I/O benchmark, easy



to install and use, and because it fits our needs. Other benchmarks that allow
sequential and random accesses, like IOR [Shan et al. 2008], could be used with
few modifications on the tool.

3. Linear Regression: from the access times measured on the previous step, the
complete set of access time results for each given interval is estimated through
linear regression. Each test (read or write, sequential or random) for each interval
is estimated separately.

4. Report: The sequential to random throughput ratios for the read and write tests
are reported. The tool provides such values for all request sizes, as well as aver-
ages, maximum and minimum values. The estimated access times curves are also
provided.

The tool, implemented on Python, is open source and available at
http://serratool.bitbucket.org.

4. Parallel SeRRa
Although SeRRa profiles a machine’s storage device through its local file system, one im-
portant use of the tool is to provide information to I/O optimization techniques that work
to improve performance in the access to a Parallel File System (PFS). In these file sys-
tems for cluster architectures, files are distributed among multiple data servers, and these
servers use their local storage systems to store data. Therefore, optimization techniques
can benefit from knowing how the PFS data servers’ storage devices behave regarding ac-
cess sequentiality. This information can be used, for instance, to decide between different
I/O scheduling algorithms, favoring the ones which generate sequential access patterns
when this characteristic is important for performance, and avoiding them when the per-
formance improvement caused by sequential access would not compensate the scheduling
overhead.

It is usual for HPC architectures to dedicate a set of nodes for the parallel file sys-
tem deployment. This shared storage infrastructure is often homogeneous, with identical
storage devices on all involved machines. These devices are expected to present the same
performance behavior, and thus the same sequential to random throughput ratios.

For this reason, we have decided to create a parallel implementation of SeRRa
which benefits from this characteristic to provide information faster. A faster profiling
facilitates the tool’s use for dynamic decision making. Moreover, it would also be pos-
sible to dedicate the same amount of time to obtain a profile but achieve more accurate
information.

The system administrator could, when deploying the storage infrastructure, use the
parallel SeRRa among the nodes with homogeneous storage devices in order to generate
information to be later used by optimization techniques. At this moment, the administrator
could dedicate as much time as possible to obtain a profile with the best accuracy possible.
On the other hand, allowing for faster profiling facilitates the tool’s adoption when dedi-
cating the infrastructure for a long time is prohibitive. Even if the storage infrastructure is
not completely homogeneous, the homogeneous sets of nodes can be profiled separately
(possibly with different parameters).

Moreover, parallel file systems could use SeRRa to profile storage devices that
were not profiled beforehand. These devices might, for instance, have been dynamically

http://serratool.bitbucket.org


added to the storage infrastructure. The PFS could dedicate idle time for this task, or
run SeRRa over a subset of its storage nodes. The latter approach would be possible by
redirecting requests to other servers which store replicated data. Many file systems keep
such redundant servers for fault tolerance purposes.

Another possibility we could envisage is using separated small periods of idle time
to storage devices profiling. This would mean obtaining results with low accuracy at first
and then incrementally refining by more benchmark repetitions. Every profile refining
would require access times curves approximations and sequential to random ratios to be
recalculated. Adapting SeRRa’s implementation to allow this approach is subject of future
work.

SeRRa’s parallel implementation uses the master-slave paradigm for communica-
tion between processors. We have parallelized the step of benchmarking (step 2 described
in the previous section), since it is the most time-consuming one. The master is responsi-
ble for all other steps, such as picking measuring points, linear regressions and reporting
results. Additionally, the master sends tasks to slaves and receives their results until there
are no tasks left. Each task corresponds to a request size to be tested with four access pat-
terns: sequential write, random write, sequential read and random read. This organization
is illustrated in Figure 2.

Therefore, it makes no sense to use more processes than available machines, since
this approach would lead to benchmarks being executed concurrently in the same node,
compromising the results. Furthermore, in this implementation the parallelism is limited
by the number of intervals, measuring points per interval and repetitions of the bench-
mark.

The parallel implementation of SeRRa was developed using MPI4PY1. The next
section discusses the results obtained with this new version of the tool.

1http://packages.python.org/mpi4py

SeRRa process 0 

Task 0: 8KB requests 

Task 1: 16KB requests 

Task 2: 24KB requests 

Task 3: 32KB requests 

Parameters Input 

Linear Regressions 

Results reporting 

SeRRa process 1 

Task 0: 8KB requests 

Benchmarking 

SeRRa process 2 

Task 1: 16KB requests 

Benchmarking 

SeRRa process 3 

Task 2: 24KB requests 

Benchmarking 

SeRRa process 4 

Task 3: 32KB requests 

Benchmarking 

Figure 2. Parallel SeRRa organization.



5. Performance Evaluation

This section presents a performance evaluation of SeRRa’s parallel implementation. First,
we describe the test environments and methodology on Section 5.1. Then Section 5.2
discusses the obtained results.

5.1. Tests Environments and Methodology

This section describes the four systems used as our test environments, listed in Table 2.
These systems were selected by their variety, aiming at representing most available de-
vices. All of them are homogeneous clusters from Grid’5000 [Bolze et al. 2006].

Table 2. Configuration of the evaluated storage devices

Cluster RAM Storage Device
Type Model Capacity Bus

Pastel 8GB HDD Hitachi
HDS7225SC

250GB SATA 1.5Gb/s

Graphene 16GB HDD Hitachi
HDS72103

320GB SATA 3Gb/s

Suno 32GB RAID-0 2×Seagate
ST9300653SS

2× 300GB SAS 3Gb/s

Edel 24GB SSD Micron C400 64GB SATA 1.5Gb/s

The tests were executed on the Linux operating system, using IOzone version
3.397. All tested devices were accessed through the Ext3 local file system, and the default
cfq disk scheduler was kept. Both virtual memory’s page size and file system’s block
size are 4KB. Caching was explicitly disabled through the O DIRECT POSIX flag (“-I”
parameter for IOzone).

For the tests described in this paper, five different file sizes were used - 40MB,
200MB, 400MB, 800MB and 1200MB. On all tested devices, we observed that the access
time curves usually stabilize before 1200MB, not showing significant differences as we
increase the file size further.

The request sizes lied within two ranges: from 8KB to 64KB with gaps of 8KB;
and from 64KB to 4MB with gaps of 32KB. These values have been chosen aiming at
generating interesting information to be used by I/O optimization techniques. Most par-
allel file systems employ stripe sizes of at least 32KB for their data servers, therefore the
requests they receive (and are object to optimizations) are usually multiples of this value.
This happens because each large request issued by an application becomes a set of re-
quests, that are multiples of the stripe size, to servers. We defined a smaller gap on the
first interval in order to better represent small requests.

We have executed tests using two measuring points per interval, as this configura-
tion was the one with the best results in our previous analysis [Boito et al. 2015]. We use
up to four benchmark repetitions. Statistically, executing more repetitions of the bench-
marks is expected to provide more realistic results.



5.2. Results with Parallel SeRRa

We compare the parallel implementation’s results with SeRRa’s sequential implementa-
tion and with the profile obtained without the tool. To obtain the latter, we have executed
the complete profiling - without estimations, executing the benchmarks for all the speci-
fied request sizes - on all tests environments with the parameters discussed in Section 5.1.
All tests were repeated until a 90% confidence could be achieved with a t-student dis-
tribution - with at least six executions. The maximum accepted error was of 10%. The
necessary time to obtain this complete profile per machine, up to 14 days, was previously
presented in Table 1.

Table 3 presents the total time to perform all experiments described in the previ-
ous section by the different implementations. The numbers between parenthesis represent
fractions of the originally required time (without SeRRa). The results with parallel SeRRa
from the table were obtained using 17 processes (a master and 16 slaves). We show the
times for sequential SeRRa with 1 and 4 benchmark repetitions. Repeating the bench-
marks multiple times and taking the results’ average allows for more accurate results. On
the other hand, the time required to obtain a profile increases linearly with the number of
repetitions.

Table 3. Time to profile (in minutes). The fractions between parenthesis compare SeRRa’s
results with the originally required time (without SeRRa).

No SeRRa Sequential SeRRa Parallel SeRRa
1 repetition 4 repetitions 4 repetitions

Pastel (HDD) 19769.4 93.21 (1/212) 376.99 (1/52) 71.57 (1/276)
Graphene (HDD) 7222.8 85.69 (1/84) 341.50 (1/21) 70.75 (1/102)
Suno (RAID-0) 3679.2 28.12 (1/130) 109.42 (1/33) 21.56 (1/171)

Edel (SSD) 2426.4 5.92 (1/409) 23.58 (1/102) 2.72 (1/892)
Sum 33097.8 212.94 (1/155) 851.49 (1/39) 166.6 (1/199)

We can see that the parallel version provides a faster alternative. Parallel SeRRa’s
times for 4 benchmark repetitions were faster than (but close to) sequential SeRRa with 1
benchmark repetition. In other words, it is possible to obtain more accurate results using
roughly the same profiling time.

Figures 3 and 4 present the profiling time with SeRRa on the different clusters
varying the number of benchmark repetitions. The x axis represents the number of pro-
cesses. The single-process case (the first point of each line) is the time obtained with
the sequential implementation. Onward, the number of processes depicted includes the
master plus the slaves – i.e. the number of processes that actually run benchmarks is the
number of processes minus 1.

We can see that performance increases (the profiling time decreases) as we
increase the number of processes. With few repetitions, performance reaches its
best with few processes and does not profit from more nodes to run the profil-
ing. This happens due to the parallelism limit of our experiment: using two
intervals with two measuring points per interval, the total number of tasks is
2 intervals × 2 points per interval × N benchmark repetitions. Therefore, us-
ing 2 benchmark repetitions we were expected to decrease the profiling time until 8 slaves



(a) Pastel cluster (HDDs)

(b) Graphene cluster (HDDs)

Figure 3. Time to profile disks with Parallel SeRRa - clusters with HDDs

(9 processes), and with 4 repetitions until 17 processes. In order to benefit from more pro-
cesses, it would be needed to use more benchmark repetitions. However, we can see that
in most cases (in Pastel, Graphene, and Suno) there was no difference between the results
with 4 benchmark repetitions using 9 or 17 processes. The same happened for results with
2 repetitions considering 5 or 9 processes. This indicates that the maximum speedup can
be reached using a number of tasks which is twice the number of slave processes. This
configuration leads to a better load balance, as it will be discussed later in this section.

In the Pastel cluster (Figure 3a) with 4 benchmark repetitions, the profiling time
is higher than what is observed for other values. One possible reason for this is the higher
overhead for the master to manage a higher number of tasks. Since this cluster is the one
with the least amount of memory and processing power on the nodes, it was more affected
by this overhead than the others.

Another possible explanation for this result is if one of Pastel’s nodes is taking
longer to run the benchmarks (its storage device is presenting a different performance



(a) Suno cluster (RAID arrays)

(b) Edel cluster (SSDs)

Figure 4. Time to profile disks with Parallel SeRRa - clusters with RAID arrays and SSDs

behavior). This is not expected, since it is a homogeneous cluster, but could happen due
to problems with the device. Since the same node is used to test the four access patterns,
this difference should not impact the measured sequential to random throughput ratios,
only the absolute estimated times. Further analysis is required to quantify this impact and
try to avoid it.

Table 4 presents the speedups observed in the results from Figures 3 and 4, com-
paring the best result from the parallel implementation with the sequential one. As pre-
viously stated, the best result for the parallel implementation is obtained with a different
number of processes to each number of benchmark repetitions. The speedup increases
with the number of benchmark executions because of more parallelism available, as pre-
viously discussed.

The speedup is not expected to be linear with the number of processes, since the
tasks distributed to the nodes are of different sizes: considering a fixed file size (as SeRRa
does), it takes longer to execute the tests with smaller request sizes. In other words, the



Table 4. Speedup provided by SeRRa’s parallel implementation (with the best number of
processes to each case).

Benchmark
repetitions Pastel (HDD) Graphene (HDD) Suno (RAID-0) Edel (SSD)

1 1.47 1.37 1.31 2.29
2 2.76 2.59 2.6 4.51
3 2.15 1.98 2.18 3.31
4 5.34 4.83 5.08 8.71

parallel implementation profiling time will be limited by the slowest test.

We can observe from Table 4 that speedups observed for the Edel cluster are the
highest. This happens because of the sequential to random throughput ratios of the tested
devices, presented in Table 5. Since Edel has the lowest ratios from the four clusters, the
difference between its tasks is smaller.

Table 5. Sequential do random ratio with 1200MB files for 8KB requests - measured vs.
estimated with SeRRa (4 repetitions).

Pastel (HDD) Graphene (HDD) Suno (RAID-0) Edel (SSD)

Write
Measured 21.29 15.12 8.17 0.66

SeRRa 22.62 15.21 8.42 0.67

Read
Measured 38.91 40.68 25.46 2.37

SeRRa 39.08 40.65 25.51 2.38

When storage devices present a high sequential to random throughput ratio, a
task which has to perform many small, random accesses to access a fixed-size file will
take much longer than a task which accesses a file of the same size with larger, random
or sequential requests. This will create a situation of task imbalance which can impair
speedup due to longer execution times.

The load imbalance explains why the best performance was achieved having a
number of processes which is half the number of tasks for Pastel, Graphene, and Suno;
and why this did not happen for Edel, where the difference between the tasks is smaller
due to lower sequential to random throughput ratios. Having more available tasks than
processes allows for better load balancing. Therefore, one possible solution to avoid the
imbalance problem would be to break the tests in smaller units.

6. Final Remarks
This paper presented a parallel implementation of a tool for storage devices profiling
regarding access sequentiality named SeRRa. It quantifies the difference between access-
ing files sequentially and randomly for a given device. In order to obtain this information
quickly, SeRRa executes the benchmarks on a small subset of the reported values and the
remaining ones are estimated through a linear model.

Decreasing SeRRa execution time is important because it facilitates its use by I/O
optimizations to dynamically adapt to storage devices’ characteristics. For this reason, we



have developed a parallel implementation with MPI following a master-slave paradigm.
This approach is adequate for homogeneous storage nodes.

We have evaluated our approach with four different clusters, using HDDs, RAID
arrays and SSDs. Our results show performance improvements (decreases in the profiling
time) of up to 8.71 times with the parallel implementation of SeRRa over the sequential
one, up to 895 times over not using SeRRa. We show that with the parallel implementation
it is possible to achieve results with better accuracy dedicating the same profiling time.

7. Acknowledgments

This research has been partially supported by CNPq and CAPES-BRAZIL under the
grants 5847/11-7 and Stic-Amsud 6132-13-8. The experiments presented in this paper
were carried out on the Grid’5000 experimental test bed, being developed under the IN-
RIA ALADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr). This
research was accomplished in the context of the International Joint Laboratory LICIA and
of the HPC-GA project.

References

[Agrawal et al. 2008] Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M.,
and Panigrahy, R. (2008). Design tradeoffs for ssd performance. In USENIX Annual
Technical Conference, ATC’08, pages 57–70, Berkeley, CA, USA. USENIX Associa-
tion.

[Boito et al. 2013] Boito, F. Z., Kassick, R., Navaux, P. O. A., and Denneulin, Y. (2013).
Agios: Application-guided i/o scheduling for parallel file systems. In International
Conference on Parallel and Distributed Systems (ICPADS), pages 43–50, Seoul, South
Korea. IEEE.

[Boito et al. 2015] Boito, F. Z., Kassick, R. V., Navaux, P. O., and Denneulin, Y. (2015).
Towards fast profiling of storage devices regarding access sequentiality. In Symposium
on Applied Computing (SAC), Salamanca, Spain. ACM.

[Bolze et al. 2006] Bolze, R., Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E.,
Jegou, Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Quetier,
B., Richard, O., Talbi, E.-G., and Touche, I. (2006). Grid5000: A large scale and highly
reconfigurable experimental grid testbed. International Journal of High Performance
Computing Applications, 20(4):481–494.

[Bucy et al. 2008] Bucy, J. S., Schindler, J., Schlosser, S. W., and Ganger, G. R. (2008).
The disksim simulation environment reference manual. Parallel Data Laboratory,
4 edition. Available at http://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-
101.pdf. Accessed in January 2015.

[Chen et al. 2009] Chen, F., Koufaty, D. A., and Zhang, X. (2009). Understanding intrin-
sic characteristics and system implications of flash memory based solid state drives.
In 11th International Joint Conference on Measurement and Modeling of Computer
Systems, pages 181–192, New York, NY, USA. ACM.

https://www.grid5000.fr


[Desnoyers 2012] Desnoyers, P. (2012). Analytic modeling of ssd write performance. In
Proceedings of the 5th Annual International Systems and Storage Conference, SYS-
TOR ’12, pages 12–1, New York, NY, USA. ACM.

[El Maghraoui et al. 2010] El Maghraoui, K., Kandiraju, G., Jann, J., and Pattnaik, P.
(2010). Modeling and simulating flash based solid-state disks for operating systems. In
Proceedings of the first joint WOSP/SIPEW international conference on Performance
engineering, pages 15–26, San Jose, California, USA. ACM.

[Kim et al. 2009] Kim, Y., Tauras, B., Gupta, A., and Urgaonkar, B. (2009). Flashsim: A
simulator for nand flash-based solid-state drives. In First International Conference on
Advances in System Simulation (SIMUL), SIMUL ’09, pages 125–131, Washington,
DC, USA. IEEE Computer Society.

[Norcott and Capps 2006] Norcott, W. D. and Capps, D. (2006). Iozone filesystem bench-
mark. Available at www.iozone.org. Accessed in March 2014.

[Rajimwale et al. 2009] Rajimwale, A., Prabhakaran, V., and Davis, J. D. (2009). Block
management in solid-state devices. In Proceedings of the USENIX Annual Technical
Conference, pages 279–284, San Jose, CA, USA. USENIX Association.

[Shan et al. 2008] Shan, H., Antypas, K., and Shalf, J. (2008). Characterizing and predicting
the i/o performance of hpc applications using a parameterized synthetic benchmark. In
Proceedings of the ACM/IEEE Conference on Supercomputing, SC ’08, pages 42–53,
Piscataway, NJ, USA. IEEE Press.

[Xu et al. 2014] Xu, W., Lu, Y., Li, Q., Zhou, E., Song, Z., Dong, Y., Zhang, W., Wei, D.,
Zhang, X., Chen, H., et al. (2014). Hybrid hierarchy storage system in milkyway-2
supercomputer. Frontiers of Computer Science, 8(3):367–377.

[Yoo et al. 2013] Yoo, J., Won, Y., Hwang, J., Kang, S., Choi, J., Yoon, S., and Cha, J.
(2013). Vssim: Virtual machine based ssd simulator. In IEEE 29th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1–14, Long Beach, CA, USA.
IEEE.

[Zhang and Bhargava 2008] Zhang, Y. and Bhargava, B. (2008). Self-learning disk schedul-
ing. IEEE Transactions on Knowledge and Data Engineering, 21(1):50–65.


	Introduction
	Related Work
	SeRRa: A Storage Device Profiling Tool
	Parallel SeRRa
	Performance Evaluation
	Tests Environments and Methodology
	Results with Parallel SeRRa

	Final Remarks
	Acknowledgments

