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Abstract. Protection effects (PFx) denote protective measures taken by individ-
uals (such as to wear masks and wash hands) upon their risk perception towards
an ongoing epidemic outbreak. The holistic force produced may fundamentally
change the course of a spreading, with respect to both its reach and duration.
This work proposes a model for PFx on network epidemics where nodes are
sites mobile-agents may visit. Risk aversion is encoded as random walks biased
to safe sites. Assuming the network is a complete graph, the model is ana-
lyzed and framed as a classical SIS. We find a regime under which PFx preclude
endemic steady-states upon arbitrarily large rates for both walk and transmis-
sibility. Simulation results support our theoretical findings.

1. Introduction
The understanding on how epidemics either evolve and die out is increasingly pur-
sued within various disciplines, for reasons such as to avoid potentially catas-
trophic impacts across society on its many spheres. In this context, protection ef-
fects (PFx) [Capasso and Serio 1978, Zhang et al. 2015], aka disease-behavior dynam-
ics [Wang et al. 2015], denote the set of measures individuals take as to avoid contagion
(such as to wear masks and wash hands), once aware that an epidemic unfolds nearby.

PFx fundamentally differ from interventions, which refer to epidemic-
containment policies driven by governments: whereas interventions are carried out
collective-to-individual (e.g. closure of schools, shops, restaurants, and flight cancel-
lations [Amante and Balmer 2020, Cauchemez et al. 2011]), PFx arise as a behavioral
product of individuals’ danger-awareness; an individual-to-collective process. Indeed,
intervention is typically encoded as a reduction in the number of contacts per unit time,
possibly leading the epidemic to die out. PFx, in turn, are generally regarded as a kind of
“saturation level” for the infection rate. Although conceptually different, both dynamics
often express nonlinear forces acting against the spreading.

Recent studies have investigated how PFx may impact the course of an epidemic
as predicted by traditional models. Most, however, elaborate over static, homogeneous-
mixing standpoints. While mean-field approaches prove resourceful at capturing and elu-
cidating many key aspects towards disease outbreaks, these also typically neglect, totally
or partially, the structure of the underlying network of contacts and its time-varying nature
as well.

This work investigates PFx in the context of network epidemics with mobile
agents. Network nodes play the role of sites agents may visit, and protective behavior



comes from biasing their random-walks so these are prone to safe sites. Key-factors
for modeling epidemics on mobile-agent setups include their spatio-temporal expressive-
ness. Indeed, to encode networks as topological structures mobile-agents transit upon
is a natural way of capturing real-world mobility patterns [Draief and Ganesh 2011].
Models of this flavor have already been considered [Lam et al. 2012, Ibrahim 2012,
Draief and Ganesh 2011, Tavares 2018]. To the best of our knowledge, however, PFx
has hitherto never been investigated under such schemes; a gap filled in this paper.

Our main contributions are summarized as follows.

• A simple network epidemic model with mobile agents performing time-dependent
biased random-walks to represent PFx. Agents’ protective-behavior depends on
their epidemic state—either susceptible (S) or infected (I).
• Assuming the network is a complete graph, a theoretical analysis using differen-

tial equations and the connection with the classical SIS model are both provided.
The model predicts the onset of epidemics, and describes the endemic level as a
function of model parameters.
• Characterization of the protective regime that leads to a disease-free steady state

as a function of the model parameters. Moreover, even when the walk rate and
transmissibility rate are arbitrarily large, a regime that precludes the epidemic is
identified as a function of the other parameters.
• Design and implementation of a network epidemic simulator whose numerical

results validate our model predictions.

The remainder of this paper is organized as follows. Section 2 discusses some
representative works on PFx. Section 3 describes the proposed network epidemic model.
PFx is then formalized in Section 4 and analyzed in Section 5. Section 6 support our
analyses with simulation results. Finally, we conclude the paper with a brief discussion
in Section 7.

2. Related Work

The compartmental approach proposed by Kermack & McKendrick
(KMK) [Ogilvy et al. 1927] almost a century ago provided fundamental insights
on the dynamics of susceptible-infected-recovered (SIR) epidemics, and inspired
many models to be crafted on top of other compartment setups, notably SI, SIS and
SIRS [Newman 2010].

Past roughly 50 years, [Capasso and Serio 1978] provided a generalization of
KMK’s model, replacing the (fixed) infection rate by an infection function g(·), thus cap-
turing more complex—nonlinear—interactions between susceptible and infected agents.
They show g(·) can play two different roles, namely intervention or protection effects.
Their work is among the pioneers in considering such concepts as key-ingredients for
predicting an epidemic’s outcome.

Disease-behavior dynamics has ever since been investigated from many different
perspectives [Wang et al. 2015, Funk et al. 2010]. For example, [Hyman and Li 1997]
considers SIS epidemics of sexually-transmitted diseases. The authors formulate a mean-
field model that segments population into risk-level groups, and conclude that behavioral
changes (such as reducing contacts and partner formations) may decrease the infection



level. [Tchuenche et al. 2011] turns attention to the influence of local media on popula-
tion’s adaptive behavior to an ongoing outbreak, and conclude that media coverage does
not necessarily help promoting epidemic containment. An intervened SIRS epidemic (i.e.
a SIRS epidemic with intervention forces) [Cai et al. 2015] and a SIS epidemic with PFx
(induced by media coverage) [Guo et al. 2018] were both investigated under Stochastic
Differential Equations models. In both cases, it is shown that, even when the determinis-
tic model predicts endemic regimes, the disease may still be suppressed in the presence
of large random fluctuations. They hence conclude stochastic fluctuations may decisively
change the course of such epidemics.

Risk awareness has also been analysed in the context of multiplex networks. For
example, in [Granell et al. 2013] a network of physical interactions—through which an
SIS epidemic spreads—is coupled to a (virtual) social-network wherein the same actors
disseminate awareness in a fashion similar to an SIS epidemic. The authors show that the
propagation of awareness may delay or even preclude epidemics that would, otherwise,
yield large outbreaks. [Mao and Yang 2012] propose a framework for modelling PFx in
multiplex networks and draw particular attention to the fact that real-world infection rates
may be significantly larger than those predicted by models not encoding PFx.

When the time-varying nature of real-world contact patterns is taken into ac-
count, outbreaks may yield dynamics that both mass-action and static-network mod-
els fail to capture [Volz and Meyers 2007, Eames et al. 2012]. Within this paradigm,
[Robinson et al. 2007] provides evidence that Great Britain’s policies at the time adopted
to restrict cattle movement between animal holdings in order to avoid disease outbreaks
had gradually lost efficiency. Remarkably, the pointed reason is the self-organizing net-
work induced by behavioral changes from farmers, who came to intensify cattle move-
ment across the network’s giant strong component. [Lee et al. 2012] shed light to the
central role of temporal information for more efficient immunization strategies; PFx
is not considered however. Particularly intriguing, [Zhou et al. 2012] provide insights
on the protective dynamics that could possibly explain seasonal epidemics. Finally,
[Yang et al. 2018] study the impacts of emigration as a protective maneuver. In their
model, mobile agents are free to walk in any direction within a square region and move
only upon imminent risk—choosing a new location uniformly at random. They conclude
that protective actions performed sufficiently early may avoid endemic steady states.

None of these prior works, therefore, addresses PFx in epidemics where agents
move within a network and locally avoid one another.

3. SIS epidemics with mobile-agents
We shall now describe the coupling of SIS epidemics with a mobile-agent environment,
as considered in this paper. The following analysis—which still does not consider PFx—
follows closely the work of [Ibrahim 2012] but has been modified in order to capture
infections that depend on the exposure time interval. Table 1 lists the main symbols to be
used throughout the text.

Mobility and contact pattern. Consider an undirected network G = (V,E) with
node and edge set given by V and E, respectively, where n = |V | denotes its size. Con-
sider a set K of k = |K| agents, and let vj(t), j = 1, . . . , k denote the location of agent
j in time t ≥ 0. Note that vj(t) ∈ V as agents can only be found in network nodes. At



Table 1. Symbols & terminologies
S-agents Susceptible agents.
I-agents Infected agents.

SI-contact Contact (i.e. encounter) between an S-agent and an I-agent.
G = (V,E) Undirected network wherein mobile-agents walk.

n Network size, such that n = |V |.
N(v) Set of neighbors of node v.
K, k Set of agents, such that k = |K|.

S(t), I(t) Set of S/I-agents at time t. S(t) ∪ I(t) = K, S(t) ∩ I(t) = ∅.
S, I |S(t)| and |I(t)|, respectively, thus S + I = k
s, i S/k and I/k, respectively, hence s+ i = 1.
i0 Fraction of initially-infected agents, i.e. when t = 0.
τ Disease transmissibility.

λ, β, γ Walk rate, infection rate and recovery rate, respectively.
σ Infection probability, such that σ = τ/(2λ+ τ).
α SI-contact rate.
C A constant, such that C = (τkλ)/((2λ+ τ)n).
ws S-agent’s tolerance to SI-contacts, 0 < ws < 1.
wi I-agent’s tolerance to SI-contacts, 0 < wi < 1.

time zero, the location of an agent is chosen uniformly at random from V . Agents move
according to continuous time random walks, where the residence time in any given node
is exponentially distributed with rate λ > 0 (the walk rate). Once the agent has to move,
it chooses its next node uniformly at random from the neighboring nodes (including its
current node). Such transitions are assumed to occur instantaneously. Any two agents j
and l are considered to be in contact one another iff both of them are located at the same
node, vj(t) = vl(t). Note that this leads to a dynamic network of contacts that is time-
varying and can be characterized by a forest where every connected component is either
a clique (representing those agents at one same site) or an isolated vertex (a single agent
in a given spot).

Epidemic state and infection. Besides residing in a node, every agent has an epi-
demic state, denoted by “S” (susceptible) or “I” (infected). Let cj(t) ∈ { “S”,“I” } denote
the epidemic state of agent j at time t ≥ 0. Also, let S(t) = {j ∈ K|cj(t) =“S”} and
I(t) = {j ∈ K|cj(t) =“I”} denote the set of susceptible and infected agents at time t,
respectively. Note that S(t) ∪ I(t) = K and S(t) ∩ I(t) = ∅ for all t. Disease spreads
through direct contact between an S-agent and an I-agent, with infection probability pro-
portional to the duration of such a contact. The decision on whether or not an S-agent
becomes infected is taken the moment it leaves its current node, as follows. Let te denote
the total time an S-agent a remained exposed to one or more I-agents while residing in
some node. Considering an exponential random variable Y with parameter τ > 0, the
probability that a becomes infected is simply P [Y < te]. The disease transmissibility
thus depends on τ , such that within some fixed exposure interval an agent is more likely
to become infected as τ gets larger.

Recovery. Note that agents can only become infected when taking a step, mov-



ing to some node. Once infected, an individual remains so for a certain time window,
recovering right after. During such a period, however, the walker may infect others. The
elapsed time until an agent recovers is assumed to be exponentially distributed with rate
γ > 0—the recovery rate—, and independent of any other events.

As with other proposed random walk models [Draief and Ganesh 2011,
Ibrahim 2012], a sparse scenario is assumed, where the number of nodes is much larger
than the number of agents. In addition to being a good approximation for real-world
sparse cases, this also allows the model to be simplified by assuming that only pairwise
encounters occur, as the probability of having three or more agents in the same node
becomes negligible. This assumption is fundamental for the following analysis.

3.1. Modeling the epidemic dynamics

The following deterministic model predicts the expected epidemic dynamics under the
assumption that the network is a complete graph (i.e. a clique). As with the classical
models, it relies on ODEs to capture the change in the population of S-agents and I-agents.
In particular, dI/dt, the rate at which the number I = |I(t)| of infected agents changes
over time, depends on five different quantities (assuming S = |S(t)| is the number of
susceptible agents), as follows.

1. The rate at which two agents meet. Since G is a complete graph, this rate can
easily be shown to be 2λ/n, since their joint walk rate is 2λ and in one step they
can reach any node v ∈ V .

2. The number of possible encounters among the agents. Since the sparse regime is
assumed, only pairwise encounters are possible (with high probability), and thus
there are a total of

(
k
2

)
possible encounters;

3. The probability of an SI-contact. This is assumed to be number of possible SI-
contacts at time t divided by the total number of possible contacts, and thus
SI/

(
k
2

)
;

4. The probability of infection given an SI-contact, denoted by σ. This depends on
the transmissibility τ and the total time the S-agent remained exposed, i.e. the
duration of the SI-contact. Since both the contagion and the walking are governed
by exponential random variables, it can be shown that

σ =
τ

2λ+ τ
. (1)

5. The total rate at which I-agents recover and become S-agents, which is simply
given by γI , by independence among the agents in the recovery process.

Thus, the infected population dynamics is given by:

dI

dt
=

(
k

2

)
2λσSI

n
(
k
2

) − γI =
2λτ

n(2λ+ τ)
SI − γI, (2)

which in terms of i = I/k (and noting that S = sk), becomes

di

dt
=

2λ

n

τ

2λ+ τ
ksi− γi = βsi− γi, (3)

where the rightmost term exhibits the classical SIS form, with β = 2λτk
(2λ+τ)n

.



4. Protection effect model

We consider the protective behavior induced by how agents elect each next-hop during
their random walks. Decisions are made locally, based on information from neighboring
nodes only. Yet, agents may not have perfect knowledge about the epidemic state of
near locations, or might need to visit such places anyway. Thus, PFx are represented as
biased random walks: every agent a has its random walk biased so that hostile nodes—
the ones to yield SI-contacts, should a move into these—are avoided. From the I-agents’
perspective, such walks may be considered as to encode their concern on not becoming
disease-vectors themselves.

Let ws and wi denote S-agents’ and I-agents’ biases to avoid SI-contacts, respec-
tively, where 0 ≤ ws, wi ≤ 1. Consider the location of an S-agent j at time t, namely
v = vj(t) ∈ V . When j moves, it no longer chooses among v’s neighboring nodes uni-
formly, but avoids hostile nodes with a bias ws. Let t now denote the moment at which j
walks. The probability that j moves to a node u ∈ N(v) is{

ws/Wv,t , if there is at least one I-agent in node u ∈ N(v) at t;
1/Wv,t , otherwise.

(4)

where Wv,t is the normalizing constant that depends on v and t. In particular, let Hu,t

denote the event “node u ∈ N(v) is hostile at time t”. Then

Wv,t =
∑

u∈N(v)

wI(Hu,t)
s (5)

where I(·) is the indicator function. Note that the step probability of the agents now
depend on the instantaneous state of neighboring nodes. The PFx of I-agents follows
accordingly, substituting ws for wi in the above formulation. Thus, the probability that an
I-agent at node v moves to u ∈ N(v) at time t is given by{

wi/Wv,t , if there is at least one S-agent in node u at time t;
1/Wv,t , otherwise.

(6)

where Wv,t is the appropriate normalizing constant.

Note that when ws = wi = 1 the model behaves as before (agents choose their
next location uniformly), which implies no PFx. Conversely, if ws = wi = 0 then S-
agents (resp. I-) never step into nodes where an I-agent (resp. S-) is made present. This is
the strongest possible PFx, which is likely to end any epidemic. Clearly, ws and wi may
significantly impact the epidemic’s outcome, as discussed next.

5. Theoretical analysis

The PFx model proposed is now coupled with the epidemic model presented in Section 3
in order to evaluate key-aspects, namely (i) the SI-contact rate (a fundamental model
parameter), (ii) dynamics of infected population, and (iii) the basic reproduction number
R0. Again, the network is assumed to be a complete graph.



5.1. SI-contact rate
The SI-contact rate now depends on the PFx parameters ws and wi. This rate can be
represented as the sum of two rates: the rate with which S-agents step into locations with
I-agents, and vice-versa. These two cases are considered separately, starting with the
S-agents, as follows.

Consider an S-agent at the moment it takes a step. The probability it enters a
location where an I-agent resides can be computed as follows. Recall that there are I
infected agents, each occupying a different location (due to sparsity assumption). Each
such location is avoided with bias ws. There are n− I other locations, each taken with a
bias of 1. Thus, the probability that an S-agent provokes an SI-contact is simply

p =
Iws

Iws + n− I
=

Iws
I(ws − 1) + n

. (7)

Analogously, consider an I-agent at the moment it takes a step. The probability
that it enters a location where an S-agent resides can be computed as follows. Recall
that there are S susceptible agents, each occupying a different location (due to sparsity
assumption). Each such location is avoided with bias wi. There are n−S other locations,
each taken with a bias of 1. Thus, the probability that an I-agent provokes an SI-contact
is

q =
Swi

S(wi − 1) + n
. (8)

The SI-contact rate will thus depend on the number of S/I-agents walking at rate λ each,
and their respective SI-contact probabilities, such that

α = λSp+ λIq = λSI

(
ws

I(ws − 1) + n
+

wi
S(wi − 1) + n

)
. (9)

Note that α is a fundamental parameter for the model, and is the main modification re-
quired in the models presented in Section 3.

5.2. Evolution of infectives
Under the PFx perspective, the SI-contact rate from Section 5.1 must be accommodated
into the model. Note, however, that the probability σ of contagion remains the same for
an SI-contact, as well as the recovery rate γ. Thus, the change in the number of I-agents
becomes dI/dt = ασ − γI , i.e.

dI

dt
=

τλ

2λ+ τ

(
ws

I(ws − 1) + n
+

wi
S(wi − 1) + n

)
SI − γI. (10)

We may rewrite Equation 10 in terms of i = I/k and s, noting that S = sk. Thus

di

dt
=

τλk

2λ+ τ

(
ws

i(ws − 1) + n
+

wi
sk(wi − 1) + n

)
si− γi (11)

wherein the infection rate β now becomes dependent on i, such that

β(i) =
τλk

2λ+ τ

(
ws

i(ws − 1) + n
+

wi
sk(wi − 1) + n

)
(12)



and hence di/dt = β(i)si − γi. Note, however, that β’s dependence on i is actually
negligible. Indeed, −1 ≤ i(ws − 1) ≤ 0, and hence i(ws − 1) + n ≈ n. Likewise, the
premise of sparsity imposes k � n, and consequently sk(wi − 1) + n ≈ n. Therefore, a
good approximation for Equation 12 is

β =
τλk(ws + wi)

(2λ+ τ)n
, (13)

and for the particular case wherein ws = wi = w, Equation 13 becomes

β =
2τλkw

(2λ+ τ)n
. (14)

Finally, rewriting Equation 11 in terms of Equation 13 gives

di

dt
=
τλk(ws + wi)

(2λ+ τ)n
si− γi . (15)

5.3. Reproduction number

The basic reproduction number R0 = β/γ is a classical metric which considers the
pathogen’s capacity of spreading, and is used to indicate whether the epidemic will die
out shortly (R0 < 1) or long-last among population (R0 > 1) [Newman 2010]. Within
the context of PFx, a natural question arises: is there a range of values for ws and wi as a
function of other model parameters that ensures R0 < 1? In order to answer, let us first
consider a constant C defined as

C =
τkλ

(2λ+ τ)n
(16)

so that β = C(ws + wi) when ws 6= wi, and β = 2Cw when ws = wi = w. Trivially,
2C/γ < 1 =⇒ R0 < 1 for any {ws, wi}, i.e. the epidemic is led to extinction even in
the absence of protective efforts. Conversely, if 2C/γ ≥ 1, then

R0 < 1 ⇐⇒ β

γ
< 1 ⇐⇒ C(ws + wi)

γ
< 1 ⇐⇒ ws + wi <

γ

C
, (17)

and for the particular case wherein wi = ws = w,

R0 < 1 ⇐⇒ w < γ/2C. (18)

Equation 17 exposes that both ws and wi, alone, deliver limited protection in the case
the other assumes a fixed value. For instance, if infected agents induce no protection
(wi = 1) then R0 < 1 =⇒ ws < (γ − C)/C, which is not possible when γ − C < 0
since 0 ≤ ws ≤ 1. On the other hand, Equation 18 shows that there always exists some
w > 0 that forces R0 < 1, i.e. the S/I-agents joint engagement may positively prevent
endemic steady-states. Note, however, that the value for w to satisfy Equation 18 depends
on both λ and τ . A particularly interesting question is thus whether there exists a regime
for w under which R0 < 1 even in the case λ (resp. τ ) is arbitrarily large, for a fixed τ



(resp. λ). This regime can be identified by considering the asymptotic behavior of λ and
τ , one at a time, on the infection rate β (Equation 14). Indeed,

lim
λ→∞

β = lim
λ→∞

2τλkw

(2λ+ τ)n
=
τkw

n
= β

′
, (19)

which yields a basic reproduction number R′
0 = β

′
/γ. Clearly, β ′

< γ =⇒ R0 < 1.
Thus,

R0 < 1 ⇐⇒ w <
γn

τk
. (20)

Interestingly, any w satisfying Equation 20 will manage to extinguish the epidemic irre-
spective of the walk rate. Indeed, larger walk rates, on the one hand, increase SI-contacts
per unit time; on the other, they reduce the S-agents’ exposition time as well. In similar
fashion, as τ → ∞ (for a fixed λ), β converges to β ′

= (2λkw)/n. Here, β ′
< γ is met

case w < (γn)/(2λk).

6. Numerical results

In what follows we present simulation results that validate the theoretical analysis
from Section 5. A discrete-event simulator [Ross 2013] was designed and imple-
mented [de Souza 2020] in order to generate performance metrics concerning the impacts
of PFx and other model parameters. All results to follow assume i0 = 0.5 and simulation
time limit T = 105.

Figure 1(a) shows the fraction of infected agents over time for different levels of
PFx. Each given w yields two different curves in the plot: the numerical simulation from
one single run and the model prediction, as in Equation 15. Note that the model succeeds
in capturing the average dynamics for each protection level. Moreover, the value for w
decisively changes the epidemic’s outcome. In particular, the protective level w = 0.14
has managed to hinder the epidemic, leading to a disease-free steady state in a short time.
Indeed, from the given parameters, and from Equation 18, w = 0.14 < γ/2C = 0.1425,
thus implying R0 < 1.

Figure 1(b) shows how R0 varies as a function of w for two different population
sizes, namely k = 400 and the 5x-larger k = 2000. Note that R0 grows linearly for both
cases, but has higher slope when k is larger. The point highlighted in green—for which
R0 is slightly below 1—indicates the protective level of w = 0.14 shown in Figure 1(a).

The epidemic’s average duration in function of k and λ are shown in figures 2(a)
and 2(b), respectively. Each dot from each curve averages upon 30 runs. For the simu-
lation time limit being fixed at T = 105, such average is made over two possibilities for
each run: (i) the epidemic being finished at t < T (thus |S(t)| = k), or (ii) the time limit
T being reached. Each curve refers to a different epidemic scenario, in terms of either the
network size n and the protection level w. Note that to increase either k or λ leads to a
phase transition on the epidemic duration (from ephemeral to long-lasting). More impor-
tantly, Figure 2(a) illustrates how PFx may drastically increase the epidemic threshold. In
particular, by comparing the two epidemics for n = 105, note that w = 0.6 right-shifts
the phase transition observed for w = 1 (starting around k = 300) by approximately
200 agents. This means that upon increasing risk avoidance by 40%—by changing the



(a) Fraction of infected agents over time (k = 2000). (b) Basic reproduction number as a
function of w.

Figure 1. Fraction of infected agents as a function of time for different sce-
narios (left), and the reproduction number R0 (right) as a function of w when
k = {400, 2000}. For both figures, τ = 1; γ = 1.9 · 10−3;λ = 1; n = 105.

(a) Average duration of different epidemics in function
of k (λ = 1).

(b) Average duration of different epidemics in function
of λ (x-axis log-scaled; k = 250).

Figure 2. Average duration of different epidemics in function of the number k of
agents (left) and the walk rate λ (right). For both figures, τ = 1; γ = 1.9 · 10−3.

behavior from fully-tolerant (w = 1) to 60% tolerant (w = 0.6)—the system has man-
aged to preclude epidemic outbreaks for a population about 67% larger (from k = 300 to
k = 500).

Figure 2(b) (x-axis log-scaled) illustrates the impact of the walk rate λ on an epi-
demic’s average duration. Note that 3 out of the 4 curves show scenarios wherein an
increase in the walk rate leads to a phase transition (very long duration). In turn, for the
curve “n = 105, w = 0.6” the duration increases slowly even when λ reaches 20. It could
be the case of a phase transition still being reached for some even larger λ. However, from
Equation 19, as λ→∞ the infection rate β converges to β ′

= (τkw)/n. For the given pa-
rameters, it yields a basic reproduction numberR′

0 = β
′
/γ = 0.0015/0.0019 = 0.79 < 1.

This means that the protective level of w = 0.6 will manage to impede long-lasting epi-
demics upon any walk rate λ, in sharp contrast with the scenario where w = 1.

7. Conclusion
This work proposed and analysed a parsimonious PFx model for network epidemics with
random walks. The simple model uses biases in random walk mobility to embody pro-
tection from both S-agents and I-agents. Through ODE-based analysis, we have iden-
tified key-aspects from the resultant dynamics, such as the average number of infected
agents over time. It has also been shown the connection of our model to the classical



SIS, with fundamental predictions being provided. In particular, we have identified the
risk-avoidance regime under which the epidemic vanishes irrespective of either the walk
rate and the transmissibility rate.

While the analyses in this paper have focused on complete graphs, the proposed
model can contribute to further investigations of PFx upon network epidemics with mobile
agents. Indeed, the relationship between network structure and the influence of PFx is a
natural theme for future investigation.
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