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Abstract. Network epidemics is a general modeling framework useful to rep-
resent dynamic processes over networks, such as the spread of a virus on a
computer network or information dissemination on a social network. Within
this framework, network seeding is the problem of determining which network
nodes should be selected to start an epidemic. Intuitively, the success of an epi-
demic under some performance metric (ex. number of reached nodes) largely
depends on the set of initially infected nodes. Prior approaches to effective net-
work seeding have treated nodes identically in terms of their respective cost to
start an epidemic. However, we argue that such assumption is inadequate in
many cases and thus consider network seeding under variable node cost. We
propose a degree-based cost function and evaluate the performance of four dif-
ferent network seeding strategies over two different network models. Our results
show that no seeding strategy is consistently superior under identical budgets.
In particular, we identify a tradeoff between strategies that select (hire) a larger
number of cheap nodes (low degree) and strategies that select few expensive
nodes (high degree). Our results shed light on the importance of taking into
account variable node cost, a more realistic assumption in many applications.

1. Introduction
Epidemics on networks is a powerful model to capture the spreading dynamics of var-
ious phenomena on structured context, such as a computer virus spreading through
a computer network, influenza on human population, and information in social net-
works [Figueiredo 2011, Newman 2010]. In the classical approach to network epidemics,
network nodes have a state such as “infected” (I) and “susceptible” (S), coupled with
some specific model to determine how states of nodes change over time (e.g., how does a
node become infected). An important criterion in such models is the set of infected nodes
when the epidemic starts at time zero, known as the seeding nodes. Intuitively, the set
of seeding nodes can determine if an epidemic will die out quickly, infecting very few
nodes, or be long lasting, infecting a very large number of nodes. Figure 1 illustrates this
intuition: seeding nodes 1, 2, 3 is likely to generate a larger epidemic than seeding nodes
nodes 10, 11, 12, under a reasonable infection model.
∗This work was funded in part by research project grants from CAPES, CNPq and FAPERJ.
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Figure 1. Example of a network and a seeding strategy that selects three nodes.

A natural and fundamental problem emerges from this scenario: which nodes
should be seeded in order to maximize some property of an epidemic? This problem,
known as epidemic seeding, has applications in various contexts, such as opinion forma-
tion, spread of innovation, and marketing. Although many approaches to tackle epidemic
seeding have been proposed in the recent literature (see Section 5), the problem is still un-
solved in many practical formulations, mostly due to its combinatorial nature and strong
dependence on various parameters, most notably the network structure.

In general, epidemic seeding is constrained by some resource, such as a fixed
budget in terms of number of nodes. Thus, only a limited number of network nodes
can be selected for seeding, that is, can be set to infected at time zero. For example, in
Figure 1, only three nodes can be chosen for seeding. Intuitively, this constraint represents
the fact that there is an intrinsic cost associated with infecting a node at time zero, a cost
to start an epidemic.

Prior works have considered seeding budgets in terms of number of nodes (e.g.,
three nodes as in Figure 1), implying that every network node has a fixed and equivalent
cost. Thus, the cost of starting the epidemic is the same, regardless of nodes chosen.
We argue that in many contexts this assumption is inadequate, since network nodes are
different and would naturally have different costs due to different reasons. For example,
consider an online social network and a marketing campaign for a given product. Intu-
itively, more popular individuals on the network are likely to charge much more to start a
campaign than less popular ones. In fact, this is exactly the case today with Twitter (and
other social media services), where popular individuals (celebrities) are paid differently
to tweet a marketing message to their followers [Kornowski 2013]. Thus, a more realis-
tic seeding problem formulation should consider nodes with variable costs, in particular
costs proportional to their popularity.

In this paper, we consider the epidemic seeding problem when nodes have variable
costs. We use node degree as a proxy for node popularity and consider different cost func-
tions, in terms of degree dependence. We evaluate three different degree-based seeding
strategies (and one random strategy) over two models for network topologies. Intuitively,
given a fixed budget, the largest degree strategy can seed the epidemic with a small num-
ber of high degree nodes, while the smallest degree strategy can seed the epidemic with
a large number of small degree nodes. Which strategy is better? By considering a fixed
budget (in terms of average node costs), we show that no single strategy is consistently
superior than others in terms of epidemic spread. In particular, the largest degree strat-
egy, which usually shows good performance when nodes have identical costs, can have
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a worse performance than smallest degree strategy. Our results thus indicate the variable
node costs play a fundamental role when determining an effective seeding strategy.

The remainder of this paper is organized as follows. In Section 2, we present
the network and epidemic models under consideration. Section 3 presents the seeding
strategies that will be evaluated. The evaluation of various scenarios is presented and
discussed in Section 4. Related work is presented and discussed in Section 5, while final
considerations are given in Section 6.

2. Network and Epidemic Models
The dynamics of classical network epidemics require the characterization of two funda-
mental aspects: (i) the network topology over which the epidemic unfolds; and (ii) the epi-
demic model which determines the transition rules between epidemic states for network
nodes. In this section, we present models for each of such aspects that are investigated in
this paper.

2.1. Network Models

Networks are represented as graphs consisting of a set of nodes (or vertices) denoted
by V and a set of edges denoted by E, thus G = (V,E). We assume the set of edges
E represents a symmetric relationship (such as co-authorship in papers), thus leading to
undirected graphs. Moreover, let n = |V | and m = |E| denote, respectively, the number
of nodes and edges of the network. Note that the average degree of the network is given
by d = 2m/n.

We consider two random network models in our study: Erdős-Rényi model
(aka., G(n, p) model) and Barabási-Albert model (aka. preferential attachment
model) [Figueiredo 2011, Newman 2010]. The classical G(n, p) model consists of a
graph with n labeled vertices where each possible edge is present with probability p,
independently of all other edges. The degree of a randomly chosen node follows a Bi-
nomial distribution, Bi(n − 1, p). Thus, the degree of nodes tends to occur around its
average value, given by d = (n − 1)p. Note that the probability that a node has degree
more than five times the average is negligible.

The preferential attachment is a random network growth model where nodes are
added in sequence to the network. At each time step, a single node is added and s edges
incident to the arriving node are added to other nodes already present in the network.
Therefore, each node brings s edge points that are randomly placed in the existing network
according to the following rule. Consider a node u present in the network at time t and let
du(t) denote the degree of this node at time t. The probability the arriving node v at time t
chooses node u to receive an edge point is given by pu(t) = du(t)/

∑
v∈V (t)

dv(t). Note that

the probability of selecting a node is thus proportional to its degree. As a consequence,
larger degree nodes are more likely to receive incoming edges, making them even more
likely to receive future edges, giving rise to the name “preferential attachment”. The
growth process starts with a small clique network at time t = 0. Note that the average
degree is d = 2s for t large enough.

Unlike G(n, p), the degree distribution of the Barabási-Albert model follows a
power-law of the form pk ≈ k−2 (where pk denotes the probability that a randomly chosen
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node in a large network has degree k). Under this distribution, nodes with very large
degree occur in the network with non-negligible probability, which is the case for several
real networks, such as the AS Graph (Internet) and online social networks (e.g., Facebook
or Twitter).

In our evaluation, we will consider networks generated from these two well-known
models as they lead to fundamentally different structures while being employed as primi-
tives for many real network models. Furthermore, since such networks have very different
degree distributions, intuitively they will lead to different behaviors in terms of seeding
and epidemic spread. Indeed, we will soon illustrate these behaviors.

2.2. Epidemic Model

A network epidemic model determines the rules for transitions between epidemic states of
network nodes. Two epidemic states that compose any epidemic model are susceptible (S)
and infected (I). The most simple epidemic model has a single possible transition: a
network node in the susceptible state can become infected, giving rise to what is known
as the SI model [Newman 2010]. In this work, we consider a discrete time SI model and a
simple transition rule that depends only on the state of neighboring nodes. Thus, infection
occurs over the network edges.

In particular, consider a network G = (V,E) and let S(t) and I(t) denote, respec-
tively, the set of nodes in the susceptible (S) and infected (I) state at time t. Note that each
node v ∈ V must be either in S(t) or I(t) for all t ≥ 0. A transition from S to I occurs
as follows: if node v ∈ S(t) has θ > 0 or more infected neighbors at time t, then node v
becomes infected at time t+1, and thus v ∈ I(t+1). Note that θ represents the threshold
parameter of the epidemic model, which is identical for every node in the network. More
formally, for all t > 0 we have:

∀v ∈ V, v ∈


I(t) if v ∈ I(t− 1),
I(t) if |N(v) ∩ I(t− 1)| ≥ θ,
S(t) otherwise,

(1)

where N(v) denotes the set of neighbors of node v. Note that θ and I(0), i.e. the set
of nodes infected at time zero, are the sole parameters of the model. In particular, this
epidemic model is known as the threshold model [Kempe et al. 2003, Newman 2010].

Figure 2 illustrates the spread of an epidemic under this model with θ = 2 and two
(seeding) nodes infected at time 0 (shown in yellow). Note that at each time step, one or
more susceptible nodes (shown in white) may become infected (indicated by red edges).
Moreover, the epidemic stops when there are no changes to the set I(t) in consecutive
time steps. Finally, note that the epidemic may stop without all network nodes becoming
infected, as illustrated. This occurs because the remaining susceptible nodes have less
than θ infected neighbors, and thus do not become infected.

Finally, Algorithm 1 shows the SI epidemic dynamics for the considered threshold
model. Note that epidemic state of nodes at time t influences the states of nodes only at
time t + 1. The algorithm returns the set of nodes infected at each time step, namely, the
vector of sets I(·).
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Figure 2. Example of an SI epidemic using threshold model with θ = 2: Yellow
indicates nodes infected at time zero (seeding nodes); white indicates suscep-
tible (S) nodes; red indicates infected (I) nodes. Red edges indicate nodes that
meet the threshold and will thus become infected in the next time step.

Algorithm 1 SI epidemic dynamics on a network using the threshold model.
Require: G = (V,E), I(0) ⊆ V, θ > 0
S(0)← V − I(0)
t← 0
repeat
I(t+ 1)← I(t)
S(t+ 1)← ∅
for all v ∈ S(t) do

if |N(v) ∩ I(t)| ≥ θ then
I(t+ 1)← I(t+ 1) ∪ {v}

else
S(t+ 1)← S(t+ 1) ∪ {v}

end if
end for
t← t+ 1

until I(t− 1) = I(t)
return I(·)

3. Seeding Strategies
A seeding strategy consists of a policy to determine the set of seeding nodes, i.e. the set of
nodes that will be infected at time zero to start the epidemic process, denoted by I(0) in
Section 2.2. Of course, the seeding strategy is usually constrained in the sense that not all
nodes of the network can be selected as infected at time zero. A classical approach is to
constrain the seeding strategy by imposing a fixed limit on the number of nodes that can
be selected. This approach implicitly assumes that every node in the network has the same
cost to be infected at time zero. We consider a different approach, where nodes have a
variable cost to be infected at time zero. In particular, we assume that the cost of selecting
(or hiring) node u to start an epidemic is proportional to its degree, du. This seems more
reasonable in various contexts, including advertising in online social networks, such as
Twitter where node dependent costs are already happening [Kornowski 2013].

Thus, we assume that the cost of selecting (hiring) node u to start an epidemic is
given by:

c(u) = (du)
α (2)

where α > 0 is a constant that controls the cost dependency on node degree. Note that this
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function is fairly generic as α controls the sensitivity on degree, a feature that intuitively
represents node popularity. As α→ 0 the cost depends less and less on degree, and in the
limit becomes constant, independent of node degree. In contrast, as α increases beyond
one, node cost depends more and more on degree, to the point that the highest degree
node may cost more than the entire network. In Section 4 we present and discuss results
with various values for α.

The seeding strategy will be constrained by a budget that determines the amount
of wealth available to cover the cost of nodes to start the epidemic. In order to allow
comparison between different networks and different node cost functions, the budget is
given as the cost of a fraction of nodes assuming average node cost. Thus, let k be a
fraction of nodes, such as 1%. Note that the average node cost is given by the cost of the
average degree, and thus, (d)α. The budget is then given by:

b = kn(d)α (3)

where n is the number of network nodes. Note that the budget increases with any of its
parameters: network size n, average degree d, or sensitivity to node degree α.

Finally, we consider three different degree-based seeding strategies and one ran-
dom strategy. For each strategy, the budget is spent until it becomes insufficient to cover
the cost of any other network node. In what follows, each seeding strategy is presented,
where O denotes the set of nodes selected by the strategy:

• Largest degree (LA): This seeding strategy selects nodes by their descending or-
der of degree. Thus, the largest degree of the network is selected first, budget
permitting, then the second largest, and so on, as long the budget permits. If a
node cannot be selected due to its high cost compared to the remaining budget,
the node is simply skipped and the process continues. Algorithm 2 presents this
seeding strategy.
• Smallest degree (SH): This seeding strategy selects nodes by their ascending order

of degree. Thus, the smallest degree is selected first, then the second smallest, and
so on, until the remaining budget can no longer cover the cost of a node. Note that
the cost increases as nodes are considered in increasing order, and thus the process
can stop as soon as a node cannot be selected. This seeding strategy is described
in Algorithm 3.
• Median degree (ME): This seeding strategy selects nodes around the median de-

gree distribution. In particular, the median node degree is first selected, budget
permitting. The node following the median in the ordering is then selected, bud-
get permitting, and then the node prior to the median, budget permitting, and so
on. Thus, the algorithm selects nodes alternately, after and before the median.
A node is simply skipped if its cost is larger than the remaining budget. This
seeding strategy is described by Algorithm 4. Note that index j plays the role of
alternating around the median, while nodes are sorted in ascending order.
• Random degree (RA): This seeding strategy selects nodes at random, budget per-

mitting. The order considered by the strategy is random and disconsiders node
degrees. As before, a node that has a cost higher than the remaining budget is
simply skipped. Algorithm 5 presents this seeding policy.
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Algorithm 2 Largest degree seeding strategy.
Require: G = (V,E), b > 0
V ← sortDescendingBasedOnDegree(V )
O ← ∅
for i = 1, . . . , |V | do

if c(vi) ≤ b then
O ← O ∪ {vi}
b← b− c(vi)

end if
end for
return O

Algorithm 3 Smallest degree seeding strategy.
Require: G = (V,E), b > 0
V ← sortAscendingBasedOnDegree(V )
O ← ∅
for i = 1, . . . , |V | do

if c(vi) > b then
break

end if
O ← O ∪ {vi}
b← b− c(vi)

end for
return O

Algorithm 4 Median degree seeding strategy.
Require: G = (V,E), b > 0
V ← sortAscendingBasedOnDegree(V )
O ← ∅
for i = 1, . . . , |V | do
j ←

⌈
|V |
2

⌉
+
(⌊

i
2

⌋
× (−1i−1)

)
if c(vj) ≤ b then
O ← O ∪ {vj}
b← b− c(vj)

end if
end for
return O

Algorithm 5 Random seeding strategy.
Require: G = (V,E), b > 0
V ←shuffle(V ) //{Random permutation of the nodes}
O ← ∅
for i = 1, . . . , |V | do

if c(vi) ≤ b then
O ← O ∪ {vi}
b← b− c(vi)

end if
end for
return O
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4. Evaluation
In this section, we present the evaluation of the four different network seeding strategies
using extensive simulations. Different scenarios have been considered but due to space
limitation in the following we present and discuss only the most interesting ones.

We consider networks generated by the G(n, p) and Barabási-Albert models of
size n = 10000 with different values for average degree (d). We also consider scenar-
ios with a different fraction of nodes to determine initial budget (k), epidemic threshold
parameter (θ), and cost dependency on node degree (α), as defined in Section 3. Each
parameter instance determines a simulation scenario for which the four seeding strategies
are evaluated. For each scenario, we perform 30 independent simulation runs and report
on the sample average and 95% confidence interval for the different statistics (error bars
on plots). Note that both network models are random and each run considers a realiza-
tion of the model, thus yielding a different network structure. Moreover, this is the only
random component in our evaluation since the epidemic threshold model is deterministic,
given the set of nodes initially infected.

We consider the values of θ = {2, 3, 4} and α = {0.5, 1.0, 2.0} which have been
selected to illustrate their strong influence on the epidemic. Note that α controls the node
cost dependency on its degree, and the three chosen values represent a sub-linear, linear
and quadratic dependency, respectively. For Barabási-Albert networks we consider d = 4
and k = 0.05 while for G(n, p) networks d = 8 and k = 0.01, unless otherwise stated.
Our goal is not to compare the two network models directly, but to understand how an
epidemic unfolds within them with respect to some parameters. Thus, the parameters
considered for average degree (d) and fraction of nodes to determine the initial budget (k)
for the two models are different. They were chosen to better illustrate for each network
representative behaviors for each seeding strategy.

We start by reporting the degree distribution of seeders. Note that each seeding
strategy will select a different set of nodes which in turn will induce a degree distribu-
tion. This allows us to understand what kind of nodes, with respect to their degree, the
seeding strategy is selecting as seeders. Results are shown in Figure 3 for both network
models with different plots corresponding to different values for α. Each plot presents the
degree distribution for each seeding strategy. Note that for Barabási-Albert networks (Fig-
ure 3(a)-(c)), the SH and ME seeding strategies always select the minimum node degree
(which is 2), independent of α. This occurs because this model generates networks that
follow a power-law degree distribution with the vast majority of its nodes exhibiting the
minimum degree (about 80%). Moreover, note that the number of nodes selected depends
on α, since a larger α yields a larger budget (see Equation 3). Thus, since only nodes of
minimum degree are selected, the exact number of nodes selected by these strategies is
given by b/dα0 = kn(d/d0)

α, where d0 denotes the minimum degree. For the scenarios
shown, this corresponds to 707, 1000 and 2000 nodes, for each value of α, respectively.
Note this number is smaller than network size, n = 10000. Table 1 shows the number of
nodes selected by each seeding strategy obtained through simulation results.

In the RA seeding strategy, since nodes are selected at random (budget permit-
ting), the degree distribution of seeders should be similar to the degree distribution of the
network (with a bias towards smaller degrees, due to budget restrictions) which does not
depend on α, as observed in Figure 3(a)-(c). However, the LA seeding strategy shows a
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Table 1. Size of seeding set (|I(0)|) for different scenarios.
G(n, p) Barabási-Albert

Strategy α = 0.5 α = 1 α = 2 α = 0.5 α = 1 α = 2
LA 69.03 46.70 22.13 144.13 4.97 3.80
SH 193.97 319.47 631.70 707.00 1000.0 1999.00
ME 100.00 100.00 100.00 707.00 1000.0 1988.57
RA 101.57 99.83 92.30 564.10 509.93 268.77

(a) α = 0.5 (b) α = 1 (c) α = 2

(d) α = 0.5 (e) α = 1 (f) α = 2

Figure 3. Degree distribution of seeders: Barabási-Albert (top) e G(n, p) (bottom)
networks. Parameters: n = 10000; θ = 2.

very interesting behavior, since the set of selected nodes is greatly influenced by α. Note
that when α = 0.5, LA selects a bunch of high degree nodes, as well as some small
degree ones (144.13 nodes on average, see Table 1). This occurs because under such cir-
cumstance (α = 0.5), high degree nodes can be considered cheap if compared to α = 1.0
or α = 2.0. As α increases, LA selects very few high degree nodes and shows a mostly
uniform distribution. This occurs because high degree nodes become much more expen-
sive and a large fraction of the budget is spent on them. As a result, a very small number
of nodes is selected, on average 3.80 for α = 2 (see Table 1). Intuitively, this will have a
strong influence on the epidemic, as we soon illustrate.

The degree distribution of seeders for the G(n, p) networks for different seeding
strategies are shown in Figure 3(d)-(f). Table 1 also shows the number of nodes selected
by each strategy. Note that SH and ME are quite different, since ME selects only nodes
with the same degree (in this case 8, which is the average), while SH selects nodes of
degree smaller than 4. In fact, assuming only nodes with average degree are selected by
the ME strategy, the number of nodes selected is given by b/(d)α = kn, independently of
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α. This corresponds to 100 nodes in the scenario considered (as confirmed by simulation
results, see Table 1). This assumption is reasonable because the network nodes follow a
Binomial degree distribution, which is greatly concentrated around its average. The RA
seeding strategy shows a degree distribution that is similar to that of the entire network
(also with a bias, but smaller since nodes follow Binomial degree distribution), and is not
dependent on α. Finally, the LA strategy selects most of high degree nodes of the network
and then drops to a few small degree nodes, due to budget constraint. Note that most high
degree nodes are selected, since they are not many and not very expensive (high degree
is not very high compared to average degree). In any case, the number of nodes selected
also drops significantly as α increases, as illustrated in Table 1.

(a) α = 0.5 (b) α = 1 (c) α = 2

(d) α = 0.5 (e) α = 1 (f) α = 2

Figure 4. Fraction of infected nodes over time: Barabási-Albert (top) and G(n, p)
(bottom) networks. Parameters: n = 10000; θ = 2.

In order to evaluate the epidemic, we consider the fraction of infected nodes over
time, namely I(t)/n, as defined by Algorithm 1. Figure 4 illustrates the results for the
different scenarios considered. The differences in performance for the different seeding
strategies as a function of α is striking, for both network models considered. Note that LA
is superior to all other strategies when α = 0.5, for both network models. This occurs be-
cause when node costs are relatively inexpensive, selecting more high degree nodes yields
a stronger epidemic. However, the story is quite different when node costs are high, in the
case α = 2. Despite the larger budget, the LA strategy exhibits worst performance than
all other strategies for both network models. In the G(n, p) model the epidemic spread to
just a very small fraction of nodes, stopping after just a few iterations. Interestingly, in
such regime the SH strategy is superior to all other strategies in both models. When nodes
are expensive, selecting a very large number of low degree nodes pays off. Note that the
ME strategy has identical performance to SH strategy in Barabási-Albert networks since
these two strategies select the same set of nodes, as shown in Figure 3(a)-(c). Moreover,
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note that the fraction of nodes infected at time zero increases significantly for SH and ME
strategies in Barabási-Albert networks (from 5% to 20%) for different α values, as dis-
cussed above. Finally, note that the SH strategy on G(n, p) networks for α = 0.5 infects
a negligible fraction of the network stopping very early, but is the only strategy to infect
the entire network for α = 2 and very fast. Also interestingly, no strategy is capable of
consistently infecting 100% of nodes for G(n, p) networks when α = 1. In this case, SH
and ME have comparable performance with SH terminating earlier, but infecting around
85% of the nodes. Note that results for this scenario have very large confidence intervals
(compared to other results) indicating the sensitivity of the seeding strategies to specific
network structure (which is random realization of the G(n, p) model). Again, we observe
the tradeoff between fraction of nodes selected and degree of nodes selected.

Figure 5 shows the fraction of infected nodes at the end of the epidemic for dif-
ferent seeding strategies and different epidemic thresholds θ in Barabási-Albert networks.
For each strategy, three values for θ are shown. Note that varying θ does not affect the
budget or the set of nodes selected as seeders by any of the strategies. Intuitively, a larger
θ induces a more constrained epidemic and therefore should yield a smaller fraction of
infected nodes when it terminates. The results clearly indicate that the epidemic is very
sensitive to θ values while also depending on seeding strategy and initial budget. Note
that when α = 0.5 less than 15% of nodes are infected when θ > 2, for any strategy.
When α = 2 less than 40% of nodes are infected when θ > 2. Note that a larger budget
allows for selecting a larger number of nodes for the SH and ME strategies, which ex-
plains their better performance for α = 2. Again, we observe that SH and ME strategies
have identical performance, as discussed. Moreover, their performances are superior or
identical to other strategies for all cases shown.

(a) α = 0.5 (b) α = 2

Figure 5. Fraction of infected nodes for different strategies and epidemic thresh-
olds θ for Barabási-Albert networks.

Figure 6 illustrates an interesting phenomenon known as epidemic phase transi-
tion, where a small change in network parameters can yield very large change on epi-
demic contagion [Newman 2010]. We show that this phenomenon also depends on seed-
ing strategies when node costs are variable. The figure shows the fraction of infected
nodes over time for G(n, p) networks for two different average degrees: d = 8 (Figure
6(a)) and d = 9 (Figure 6(b)). While the SH strategy already induces a supercritical epi-
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demic (100% nodes infected) in both cases, the story is quite different for other strategies.
For ME we see a change from less than 10% to almost 100% infected, and at the same
time the epidemic duration reduced by more than half. It is worth to note that the epidemic
does not reach 100% of susceptible nodes because there is a small fraction of nodes in the
G(n, p) network which has degree smaller than θ = 2. The RA strategy changed from less
than 10% to around 45% infected, with a large confidence interval. Thus, ME has clearly
reached the epidemic phase transition threshold while the RA has not. Interestingly, the
LA strategy has very poor performance in both cases, and also in terms of duration (very
short epidemic). This indicates the epidemic phase transition threshold for LA requires
a much larger average degree. Again, this indicates the importance of seeding strategies
when nodes have variable costs, as the epidemic phase transition thresholds also depend
on this characteristic as illustrated.

(a) d = 8 (b) d = 9

Figure 6. Epidemic phase transition in G(n, p) networks. Fraction of infected
nodes over time for two different average degrees keeping constant all other
parameters (α = 2.0; θ = 2; k = 0.05).

5. Related Work
The problem of epidemic seeding (or network targeting) consists in determin-
ing the relatively small set of nodes to start an epidemic that will most suc-
cessfully spread over the network. Under different formulations, finding an op-
timal set of nodes that maximizes some epidemic criteria is an NP-hard prob-
lem [Kempe et al. 2003, Arthur et al. 2009]. Thus, several heuristics have been pro-
posed over the past decade targeting both different models for network structure and
different epidemic models [Kempe et al. 2003, Arthur et al. 2009, Kitsak et al. 2010,
Chen et al. 2009, Hinz et al. 2011, Aral et al. 2013]. For example, in the seminal work
of [Kempe et al. 2003], a greedy heuristic is shown to approximate the optimal solution
to a constant factor and is empirically superior to the high degree heuristic when eval-
uated with real networks. In another example, [Chen et al. 2009] provide degree-based
heuristics that are computationally inexpensive, exhibiting low execution time and good
performance. More recent works have considered other network characteristics (such as
node homophily) and more realistic epidemic models to determine the influence of the
seeding node set [Aral et al. 2013, Kostka et al. 2008]. All these previous works, how-
ever, implicitly assume that the cost of selecting a given node for seeding is the same for
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all network nodes, since the constraint is simply the number of nodes that can be selected
for seeding.

The work of [Arthur et al. 2009] is more related to ours in the sense that node
costs are not fixed or identical across the network. Nevertheless, they consider a very
different problem formulation where nodes purchase a given product at a node-dependent
price and receive cashback for making recommendations to neighbors. The goal is to set
prices and cashback rewards in order to maximize revenue with the offered product.

Finally, epidemic spread is far from being well understood in real so-
cial networks [Leskovec et al. 2007, Aral et al. 2013, Cha et al. 2010]. For exam-
ple, [Cha et al. 2010] explore various indicators for the size of epidemic cascades in Twit-
ter, indicating that degree is not necessarily the best predictor. This suggests that cost
policies adopted by network nodes should take into consideration other network charac-
teristics, a topic we leave for future research.

6. Conclusion
Network seeding is a fundamental problem in network epidemics since the set of nodes
selected to start the epidemic strongly determines its outcome. We have considered net-
work seeding under the assumption that nodes have costs that are proportional to their
degrees, a more reasonable assumption in many applications, in particular viral market-
ing in online social networks, where popular nodes tend to be celebrities. We extensively
evaluate the performance of a SI epidemic driven by a simple threshold model consider-
ing four different seeding strategies. Although the seeding strategies considered are not
optimal, they are adopted either directly or as part of other heuristics when determining
the seeding set, and serve to illustrate the importance of explicitly considering node costs.

Our main results show a fundamental tradeoff between selecting a larger num-
ber of cheap nodes (low degree) and a smaller number of expensive nodes (high degree).
While both features are important, neither extreme is desirable: having many but smallest
degree nodes or having very few high degree nodes may hinder an epidemic. In particu-
lar, we show that no single seeding strategy considered is consistently superior in terms
of inducing a larger epidemic. Such results hold for the Erdős-Rényi and Barabási-Albert
network models, despite having network structures that are fundamentally different. Fi-
nally, our work indicates the need of considering variable node costs in network seeding
as this plays a fundamental role while also being a more reasonable assumption regarding
many real networks. On such scenarios, the seeding strategy behavior may vary signifi-
cantly according to both the cost function and the network structure.

As future work, we plan to investigate optimal (or near optimal) seeding strategies
under variable node costs, in particular, strategies that automatically explore the tradeoff
we have identified and can fare well independent of node costs and network structure.
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