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Abstract. Former works have already demonstrated how processing capacity 
models, such as Amdahl’s Law and Gunther’s Universal Scalability Law, can 
be generalized and extended from functions of the number of processors ‘p’ to 
functions of intrinsic microprocessor variables, such as: clock speed ‘c’ and 
hardware threads ‘t’, thus being able to predict performance.  These previous 
articles focused on adjusting the processor capacity models to a medium 
dataset, obtaining prediction errors of around 12%. The present paper focuses 
on adjusting these models and empirical modeling techniques to lower errors 
from 13% to 7% for an ERP system performance benchmark, and from 17% to 
10% for the SPECInt 2006 benchmark. 
Resumo. Trabalhos anteriores demostraram como modelos de capacidade de 
processamento, tais como a Lei de Amdahl e a Lei de Escalabilidade 
Universal de Gunther, podem ser generalizados e estendidos de funções de 
número de processadores ‘p’ para funções de variáveis intrínsecas do 
microprocessador, tais como: velocidade do clock ‘c’ e threads do hardware 
’t’, possibilitando a predição do desempenho.  Esses artigos focaram-se no 
ajuste de modelos de capacidade de processadores para um conjunto de dados 
mediano, obtendo erros de predição em torno de 12%. O presente 
artigo concentra-se no ajuste desses modelos e técnicas de modelagem 
empírica para reduzir os erros de 13% para 7% para um benchmark de 
desempenho de um sistema ERP, e de 17% para 10% para o benchmark do 
SPECInt 2006 rate. 

1. Introduction 
 In this paper, we take one of the models researched in [Cesta et al. 2012] and fit 
it to new challenging datasets while specifying the considerations that had to be made 
and methodologies that had to be applied. The new results obtained contribute to the 
amount of scientific evidence supporting these models and to the body of knowledge 
from performance engineering and performance modeling. 
 The main equation used in this paper is Eq. 25 from [Cesta et al. 2012], here 
referred to as Eq. 1: 
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 Equation 1 is a result of multiple generalizations from Amdahl’s Law 
and Gunther’s Universal Scalability Law. The steps for its elaboration were: 
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1. Initially, Amdahl’s Law was adjusted for an environment with different thread 
count and clock speeds. For this generalization it was considered that a thread is 
equivalent to a serial processor, and a clock speed variation will influence the 
speed-up, since the clock speed is usually different in the processors. These 
considerations can be performed by adding ‘t’, for thread, instead of ‘p’, for 
processor, in Amdahl’s Law; and by adding ‘c’, for clock speed, assuming it will 
speed up both serial and parallel program parts.  Eq. 2 shows speed-up by 
Amdahl’s Law (SA) on the left and the generalization for threads and clock speed 
on the right. 
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2. Finally, using the similar speed-up analysis demonstration techniques, but 
assuming that program tasks are not only serial and parallel, but instead: 1. serial 
and internal or 2. serial and bound by external resource speed; and 3. parallel 
and internally executed or 4. parallel but restricted by external resource speed; 
and considering t, c, es (external resource speed, which if unknown can be set to 
1) will influence each program part differently, we arrive at Eq. 1. 

 The Eq. 1 extends and generalizes Amdahl’s Law to cover heterogeneous 
processor cases. S(t, es, c) stands for the speedup from threads, external resource access 
speed and clock speed, respectively. The speedup can be equated to scalability and 
throughput [Gunther 2010]. The equation model adjustment parameters are: the average 
percentage of processor time spent in serial tasks from the program being modeled, ‘σ’; 
the average percentage of processor time spent in internal tasks that can benefit from 
clock speed increases since they do not rely on external resources’ access speeds, ‘i’; 
and the average percentage of processor time spent in parallelizable and internal tasks 
that benefit from both clock speed and thread count increases, iπ . 

2. Methodology 
A. Datasets 

  Dataset 1: a subset of all machines benchmarked for a well-known ERP system 
benchmark. Our subset comprised all 143 CISC machines with l2 caches on the core 
and l3 caches on the processor, for the period from January, 2006 to December, 2012. 
Five machines were discarded during residual analysis. 
 Dataset 2: all 3478 CISC machines benchmarked for SPECInt rate 2006 
[Henning 2006] using DDR3 memory with l2 caches on the core and l3 caches on the 
processor or not present. There were only two machines as influential observations 
during residual analysis.  

B. Models 
 In this paper we fitted predictive models to datasets ranging from highly 
heterogeneous to highly homogeneous ones. Our models were: mechanistic such as Eq. 
1 and computationally evolved equations in ANN models. 
 Notice that in order to fit an ANN with more than five variables to a dataset of 
only 143 machines, we had to resort to best practices for low-data situations.: 1. k-fold 
resampling techniques with an optimized k value; 2. hidden layer size optimization; and 
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3. network training and epoch choice guided by validation dataset-fitting error. The 
other features from our networks were the most commonly used ones: hyperbolic 
tangent function, back-propagation training, etc.  
 In order to attain more model generalization power in highly heterogeneous 
dataset cases, Eq. 1 was also complemented with additional empirical regression terms. 
These terms were the variables isolation such as l1 cache amount and processor 
generation 

C. Equations Format 
 In this paper, whenever mentioning fitting Eq. 1 or any other, except for ANNs, 
we mean fitting an MLR regression model of the following algebraic form: 
ŷ = β1 ⋅Eq1+ 0 . Notice how 0β is forced to zero as Eq. 1 has to pass through the origin 
(zero threads and clock will yield zero performance as in Amdahl, where zero 
processors will yield zero performance). Notice that before fitting this model through 
least squares, one has to assume certain values for Eq. 1 parameters ii πσ ,, (we used a 
brute force, combinatorial search to find the best values).    

3. Results 
Below, we present a table with results from fitting various equations to various datasets. 
The “Regression model” column lists regression equation.  The “Dataset” column shows 
which dataset was fitted by the model. It can be either the dataset from Methods Section 
(1 or 2) or a more homogeneous subset of datasets 1 and 2 (indicated by labels such as 
1.1, 1.2) and accompanied by an explanation on how to generate it.  The “Cardinality” 
column lists how many machines were present in the initial dataset.  The “% error” 
column represents the mean value for the absolute value from the regression residual 
divided by the actual observed or measured machine capacity.  This is a better indicator 
of regression quality than the standard error.  The adjR2  column indicates the model’s R-
squared adjusted value or the determination coefficient.  
 

Table 1.  Some combined variables used in result table 

Symbol Description 
l1_p_t The ratio of l1 cache available per thread. 
l2_p_t The ratio of l2 cache available per thread. 
l3_p_t The ratio of l3 cache available per thread. 
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Table 2.  All numerical results by fitting Eq. 1 to dataset 1, dataset 2 and subsets of 
them 

R
egression Eq. 
(c.f.Table 5) 

 
Dataset summarized 

description 
(all datasets are 

derived from datasets 
1 or 2) 

D
ataset 

C
ardinality 

 
%

error 

 
 

R2adj 

 
 
σ 

 
 
i 

 
 
iπ  

Eq.1 1 (c.f. Methodology for 
description) 

138 13.1% 0.9742 0.000631 0.526315 0.526315 

Eq.1 1.1 Only Intel E5- 
Generation, 
coincidentally all have 
the same l1_p_t, 
l2_p_t, but there are 
two values of l3_p_t 
and memory channels. 

16 5.8% 0.9192 0.000510 1.000000 1.000000 

ANN 1 138 5.6% - - - - 
Eq.1 2 (c.f. Methodology for 

description) 
3476 17.5% 0.9692 0.001518 0.600000 0.600000 

Eq.1 2.1  Only Intel E5- with 
l1_p_t =32k; l2_p_t = 
128k; l3_p_t = 320k or 
640k 

439 2.2% 0.9988 0.001132 0.945833 0.945833 

Eq.1 2.2 Only Intel E7-, with 
l1_p_t =32k; l2_p_t = 
128k;  300k < l3_p_t < 
384k 

71 2.6% 0.9992 3.00E-04 1 1 

Eq.1 2.3 Xeon E series, 
l1_p_t =32k; l2_p_t = 
128k; 512k < l3_p_t < 
768k. 

549 3.3% 0.9983 0.002539
1 

0.972916 0.972916 

Eq.1 2.4 Xeon X series, 
l1_p_t =32k; l2_p_t = 
128k; 512k < l3_p_t < 
1024k. 

814 4.1% 0.9975 0.004055
6 

0.978571 0.978571 

 

4. Discussion
 In order to validate our results further, we fitted an artificial neural network 
(ANN) to dataset 1. This ANN, which was the best ANN we could have created, 
achieved test dataset percent error of 5.6%, a value only slightly higher than the one 
obtained by our regression on Table 2 row 2.  By best ANN we could have created, we 
mean the network optimized for scarce data situations.  
 Notice that the Eq.1 regression percent error is 13% for generics processor 
models. Error rate much higher than presented by ANN. Our results, obviously, show 
high accuracy in predicting performance of Eq. 1 when applied to a datase more 
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homogeneous. It is noticed that for different generations of processors (Intel E5, Intel 
E7, Intel Xeon E series and X series) the accuracy achieved an error rate of 2% to 4%.  
 While being used by a sizing team to reduce experimental costs, this work is  
applicable currently for our team hardware sizing. We use specifics coefficients, 
coupled with the ANN, for their respective generations of processors. We achieved a 
satisfactory error rate, as the results show. 

5. Related and Future Works 
In [Cesta et al. 2011], [Cesta et al. 2012] and Eyerman’s article [Eyerman et al. 2011] 
provide a good review of the literature around processor performance prediction and 
around mechanistic, empirical and hybrid models. However, the model we propose has 
the differential of being top-down and based on Amdahl’s Law. Specifically, Eyerman’s 
models are bottom-up and based on variables that we cannot obtain from our benchmark 
datasets, operating at a much lower level.  These include variables such as cache misses 
and TLB misses, that can only be obtained by running micro-benchmarks.  
 As future work, it would be interesting to combine both approaches (Eyerman’s 
and the one introduced in this work) in order to find an even more powerful model. 

6. Conclusion 
This article confirmed our assumption from Section “Methodogy/B. Models” that 
extraneous variables not captured by Eq. 1, such as: the number of memory access 
channels or small design changes in microarchitecture were causing the increased errors 
when fitting Eq. 1 to highly heterogeneous datasets containing multiple machine 
generations. Such confirmation came mostly via the reduced errors verified when using 
Eq. 1 to model more homogeneous sub-datasets with variability forcedly concentrated 
on threads and clock speed.     
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