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Abstract. In recent years mobile devices have become an important part of our
daily lives and Deep Convolutional Neural Networks have been performing well
in the task of image classification. Some considerations have to be made when
running a Neural Network inside a mobile device such as computational com-
plexity and storage size. In this paper, common architectures for image classifi-
cation were analyzed to retrieve the values of accuracy rate, model complexity,
memory usage, and inference time. Those values were compared and it was pos-
sible to show which architecture to choose from considering mobile restrictions.

1. Introduction

Convolutional Neural Networks (CNNs) are a class of Artificial Neural Networks that
have been performing well in the area of image classification [Rawat and Wang 2017].
CNNs got popular for image classification ever since the 2012 ImageNet Large Scale Vi-
sual Challenge (ILSRVC), a competition that evaluates algorithms for object detection
and image classification at a large scale [Russakovsky et al. 2015]. The winner of the
2012 competition used a CNN called AlexNet [Krizhevsky et al. 2012] and got a differ-
ence of 11.1% on the top-5 test error rate compared to the runner-up. The top-5 error
rate is the percentage of test images for which the correct label is amongst the top 5 most
probable predictions made by the Neural Network. In the subsequent years, most entries
have been of CNNs [Rawat and Wang 2017].

There are a number of different architectures within the CNN class,
notable AlexNet [Krizhevsky et al. 2012], ZFNet [Zeiler and Fergus 2014], Incep-
tion [Szegedy et al. 2015], ResNet [He et al. 2016], and SENet [Hu et al. 2018], the win-
ners on the ILSRVC object classification challenge. In the midst of them, some topologies
have been following the tendency of adding more layers in the network to improve accu-
racy. However, this trade-off of layers/accuracy raises the computational complexity of
the network, since it requires more operations [Iandola et al. 2016]. To absorb this com-
putational cost, powerful computers and specialized hardware such as GPU and CPU
clusters are used.

Nonetheless, not all systems can deliver this high computational power. Mobile
devices, for example, are intrinsically restricted regarding memory, processing speed, en-
ergy consumption, among others, making it costly to run these multi-layered architectures.
Although mobile devices have the mentioned limitations, they have become an important
part of our daily lives. Also, it is believed that deep learning will play an important role
in the evolution of mobile applications [Chen et al. 2016]. So, in this paper, performance



parameters relevant for image classification inside mobile devices were identified and
compared between CNN architectures.

Section 2 gives a brief introduction about the following topics: running neural
networks on mobile devices, Artificial Neural Networks, Convolutional Neural Networks,
and transfer learning. Section 3 overviews other papers related to CNNs being used in
devices with limited resources. Section 4 describes the workbench and conditions for
training and collecting results from different CNN architectures that were studied in this
paper. Section 5 presents all obtained data from the CNNs training and benchmarks for
classification. Section 6 discuss which CNN architecture had the best results for each
parameter measured in this paper.

2. Background

2.1. Mobile Devices

Mobile devices have limited storage and computation capability [Chen et al. 2016],
mostly due to the power source nature (battery), which should be considered when de-
ploying a deep neural network on them. There are two different ways that a deep learning
inference can be done with a mobile phone: cloud-based (1) and on-device (2). Cloud-
based deep learning inference, also called Edge, is done by calling cloud-exposed APIs
that host a pre-trained model to run an inference algorithm. The latter is done by using the
mobile CPU and GPU to run the inference and its memory to store the model [Guo 2018].
A new trend is to use custom hardware or co-processor to accelerate machine learning,
which is present on new processors [Qasaimeh et al. 2021]. This paper focuses on low-
power devices without hardware acceleration support, which represents 2/3 of the current
market share [Haas and Davies 2020].

The advantages of on-device inference are: being able to work without internet
access, offering data privacy, and having no cloud hosting costs. However, mobile devices
are limited in resource capabilities compared to cloud servers, creating the necessity for a
lightweight neural network.

2.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are machine learning systems inspired by a biologi-
cal model of the brain composed of interconnected neurons. These neurons are stacked
into layers, often an input layer a hidden layer, and an output layer. ANNs can infer
rules for pattern recognition through examples, being able to do algorithmically difficult
tasks. One example of a difficult task is to recognize handwritten numbers through im-
ages [Nielsen 2015].

The way that ANNs can infer rules is by adjusting weights that are present in the
neurons. The weights are adjusted with examples of input and expected outputs through
a learning process. The neurons in the input layer transmit information from the input
to the neurons on the hidden layer. The hidden layer neurons receive a summation of
the input layer information transformed by an activation function. Then, the values are
multiplied by their respective neuron weight and transmitted to the output layer. The
values go through another summation applying an activation function resulting in the
final output [Garcı́a-Alba et al. 2019].



2.3. Convolutional Neural Networks

CNNs are a specialized class of artificial neural networks that are leading on most of the
tasks of image classification, detection, and recognition [Rawat and Wang 2017]. They
are similar to ANNs as they are made of interconnected neurons with adjustable (learn-
able) weights. The difference resides in a convolution operation that is used in at least
one of its layers, hence their name. The convolution is a mathematical operation that cre-
ates a function using two other functions as input. The convolution operation used in the
convolutional layer of a CNN extracts features from the input.

Compared to ANNs, CNNs take into consideration invariances of two-
dimensional shapes and require fewer free parameters [LeCun et al. 1998], benefiting
CNNs over ANNs for image classification tasks.

2.4. Transfer Learning

Transfer learning for Convolutional Neural Networks is when a model is trained on two
or more datasets, keeping the learned features (neuron weights) from the previous dataset
when training using the next one. It helps the next dataset to reach better results with less
training according to the degree of similarities between the datasets [Li et al. 2020].

This is possible due to the first layers behaving almost always the same way for
a specific input type, having very similar weights. For natural images, for example, the
first layers always resemble either Gabor filters or color blobs [Yosinski et al. 2014]. The
similarity on the first layers allows reducing the training time for a given dataset since
the weights have fewer adjustments to be done to the network to reach higher accuracy.
Hence, transfer learning is used for training smaller datasets and reducing the training
time for a given dataset.

3. Related Work

CNN Image Recognition on Mobile Phones

Recently, CNNs have been used for image recognition in mobile devices with
reasonable results, such as in [Qayyum and Şah 2018], [Rattani et al. 2018] and
[Elhassouny and Smarandache 2019], selected from a literature search due to their simi-
larity to this work.

In [Qayyum and Şah 2018] an IOS application for food image recognition was
developed. It was tested to identify 101 classes of different food types and the range of
accuracy obtained was from 86 to 97%. Inference time ranged from 5 to 7 seconds.

In [Rattani et al. 2018] CNNs were used for biometric authentication. A fusion of
biometric information from the left eye, the right eye, and the gender were used as input.
A total of 550 volunteers provided the input dataset and they were able to obtain a 96.9%
accuracy for the authentication using a custom-developed CNN.

Finally, in [Elhassouny and Smarandache 2019] a CNN architecture inspired in
MobileNet was trained with 7176 images with 10 different classes of tomato leaf diseases.
The trained CNN was used to create a mobile application to classify those diseases and
they were able to obtain a 90,3% accuracy.



4. Experimental Setup
In this paper, a dataset containing 829 butterfly images [Wang et al. 2009] was used to
train and test all CNN architectures provided by the Keras APIs [Chollet et al. 2015] in
TensorFlow (TF). Keras was used for its popularity as a framework that abstracts the
complexity of dealing directly with TF . It allows developers to create and run deep learn-
ing models without having to deal with all complex details of neural networks such as
mathematical operations.

These CNNs were all pre-trained with the ImageNet dataset and then the classi-
fication layers were replaced for layers that would support the classes from the butterfly
dataset. The rest of the layers were left frozen since the chosen dataset was small and
the number of parameters large, which would result in overfitting in case they were not
frozen [Yosinski et al. 2014].

The models were then trained through 20 epochs with a custom dataset and saved
into HDF5 format files since there were no custom objects created in these models. In
case there were custom objects, it would have been preferable to save the models into the
TF SavedModel format that has support for that. The HDF5 files contained the weight
values, model’s architecture, model’s training architecture, and the optimizer and its state
aggregated in a single file per model.

Once the CNNs were trained and saved, the accuracy, memory profile, model
complexity, inference time, and model size were measured for each different architec-
ture. Later on, the HDF5 files were converted to the TensorFlow lite (TFL) format
which has better compatibility with mobile devices, and all parameters were measured
again using TFL to enable the comparison with TF. Some of the parameters such as the
inference time and memory profile were measured with the TFL Android benchmark
app [Abadi et al. 2015a] natively on a mobile device. The specifics of how the study was
conducted are explained in the next subsections.

4.1. Dataset
As mentioned before, the selected dataset contains 829 images of butterflies
[Wang et al. 2009]. Within those images, there are 10 species of butterflies with a range
of 55 to 100 images of each. We partitioned the dataset so 664 (80%) images were
used for training and 165 (20%) images were used for validation. All images were re-
sized to a 128px square to fit almost all CNNs input layers architectures from Keras API
[Abadi et al. 2015b].

4.2. CNN Architectures
All available CNN architectures in the Keras API inside TF except for the NASNetLarge
and NASNetMobile were used: VGG16, VGG19, DenseNet121, DenseNet169, Icep-
tionResNetV2, InceptionV3, MobileNet, MobileNetV2, NASNetLarge, NASNetMobile,
ResNet50, Xception, EfficientNet. NASNetLarge and NASNetMobile were not evaluated
in this paper since their input format differs from all the other architectures. Changing the
input format would imply on not all models being tested under the same conditions.

4.3. Training
Each CNN was trained with the described dataset through 20 epochs with 32 size batches.
They were preloaded with ImageNet weights and had their classification layers at the top



of the network substituted for other ones to have the custom output for 10 butterfly species.
All layers except for the classification layers were frozen during the training following TF
’s recommendation for small datasets [Abadi et al. 2015c].

4.4. Performance Comparison

The metrics chosen for performance comparison were accuracy rate, model com-
plexity, memory usage, and inference time. These metrics can be found being
used in [Rattani et al. 2018], [Tan et al. 2019],[Cheng et al. 2017], [Zhang et al. 2018],
[Qin et al. 2018], [Howard et al. 2017], [Yanai et al. 2016] for CNN’s comparison under
an environment with memory, energy, and processing capacity constraints as shown in
Table 1. They can also be found in [Bianco et al. 2018] for CNN benchmarking.

Table 1. Measured parameters in related works
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Since we want to compare all feasible architecture, we decided to evaluate the
same metrics that we found in the literature. Some of those metrics are directly related,
so we choose a representative subset, explained in the following subsections.

Accuracy Rate

The accuracy rate measures the models’ accuracy for classifying images in a specific
category. It is the number of correct predictions divided by the total number of predictions.
In this study, the top-1 accuracy rate was measured with the test set. The top-1 accuracy
rate is the accuracy rate obtained considering the models’ answer is the expected answer.

Each one of the images from the test set was classified by both the TF and TFL
models. The result obtained is the number of images that were correctly classified divided
by the total number of images in the test set for each model.

The top-5 accuracy was not measured since the used dataset had only 10 classes.



The top-5 accuracy would be high since it is the percentage of times that the correct
answer is in the top five highest probable answers of the model’s output.

Model Complexity

The model complexity measures how much processing the model needs. It can be ob-
tained by counting the total amount of parameters, so the models’ file sizes were measured
in this study since they are directly related.

For a mobile device that has limited processing capabilities and battery, a smaller
file is better for less processing and memory usage.

Memory Usage

Memory usage measures the amount of memory needed for classifying an image. In this
study, the measured memory usage was the overall memory usage.

With the TFL model, the overall memory usage was measured with the TFL An-
droid benchmark app in a OnePlus 5 android mobile phone. As for the TF model the
memory usage was measured with the sum of what the Python [Fabian Pedregosa 2011]
measured through the use of the load model method and predict from the Keras
model API in TF [Abadi et al. 2015b] methods. The predict method was used with a
single image from the test set on a Windows 10 computer.

For a mobile device that has limited memory available, a smaller result is better.

Inference Time

Inference time measures how long the model takes to classify one image. In this study, it
was measured the average time to classify the whole image test set.

For the TFL model, the inference time was measured with the TFL Android bench-
mark app in a OnePlus 5 android mobile phone. As for the TF model, the inference
time was measured with timestamp difference between right before the predictmethod
from the Keras model API in TF and after right after. The predict method was used
with a single image from the test set on a Windows 10 computer.

A low inference time is better in a mobile application for a better user experience,
so the user does not have to wait a long time to obtain the classification.

4.5. Infrastructure Characterization

All metrics were obtained using either Python3.8.5 with the Keras framework API avail-
able in TF in a computer with an Intel(R) Core(TM) i7-4771 CPU @ 3.50GHz, NVIDIA
GeForce GTX 760 graphics processing unit, 16.0GB (RAM), running a Microsoft Win-
dows 10 (OS build 19041.508) Pro operational system or a OnePlus 5 mobile phone
with v10.0.0 OxygenOS, Qualcomm Snapdragon 835 CPU, Adreno 540 GPU and 8GB
LPDDR4X RAM.



Table 2. Results Table

CNN Top-1 Accuracy Inference Time (ms) Overall Memory Usage (MB) Model File Size (KB)
TF TFL TF TFL TF TFL TF TFL

DenseNet121 98.18 98.18 1746 168 214.8 46.25 28249 27289
DenseNet169 96.36 96.36 2251 208 298 67.87 50521 48949
DenseNet201 98.18 98.18 2727 252 393.3 90.37 72907 70889
EfficientNetB0 94.54 94.54 1127 145 74.3 26.68 16348 15721
EfficientNetB1 95.75 95.75 1607 197 146.6 37.82 26360 25511
EfficientNetB2 95.75 95.75 1581 210 130.6 45.16 31037 30145
EfficientNetB3 96.96 96.96 1589 273 180.2 62.62 42894 41830
EfficientNetB4 94.54 94.54 2311 396 268.5 92.44 69969 68570
EfficientNetB5 93.93 93.93 2760 556 452.4 139.47 112493 110685
EfficientNetB6 89.09 89.09 4142 725 606.7 192.39 161274 159048
EfficientNetB7 91.51 91.51 4975 946 905.7 280.25 251896 248989
InceptionResNetV2 92.72 92.72 2762 329 737 248.18 213611 212262
InceptionV3 89.09 89.09 1062 156 267.5 110.88 85904 85173
MobileNet 95.15 95.15 0415 182 40 29.76 12900 12547
MobileNetV2 94.54 94.54 0648 29 25 17.42 9271 8713
ResNet101 95.15 95.15 1545 335 546.2 191.25 167488 165986
ResNet101V2 93.93 93.93 1457 334 541.1 191.81 167343 166253
ResNet152 92.72 92.72 2342 464 783.3 247.92 229158 227051
ResNet152V2 92.12 92.12 2251 475 743.7 251.45 228978 227443
ResNet50 94.54 94.54 799 191 276.5 118.05 92703 91854
ResNet50V2 92.12 92.12 856 188 279 118.38 92599 91979
VGG16 91.51 91.51 208 508 166.7 175.74 57607 57510
VGG19 88.48 88.48 263 649 228.8 196.10 78357 78253
Xception 89.09 89.09 2451 201 269.8 124.23 81990 81309

Figure 1. Bubble chart of the TensorFlow CNN models



5. Results
Accuracy Rate
It is possible to see in Table 2 that the Top-1 accuracy rate remained the same through
the conversion between TF and TFL for all architectures, which was expected since a dif-
ference would mean implementation disparities, preventing the remaining metrics com-
parisons. Two models had the highest accuracy: DenseNet121 and DenseNet201 with
98.18%. We would like to notice that the accuracy is application-dependent, so a lower
accuracy does not mean that the architecture should be discarded.

Model Complexity
It was possible to identify MobileNetV2 as the model with the lowest complexity, an
expected result since it was developed to be efficient specifically for mobile and embedded
vision applications that have limited memory and computational power.

Overall Memory Usage
MobileNetV2 was the model with the lowest overall memory usage for running both TF
and TFL models. It is important to notice that this architecture is comparable only to two
EfficientNet variations, being the remaining architectures 5 to 10 times memory-eager.

Inference Time
Inference time was the only measured parameter that had a significant difference between
the TF model that was run on a desktop and the TFL model that was run on a mobile
device. The difference was due to architectural differences between the environments
creating a discrepancy between the latency of different operations. The TF model with
the lowest inference time was the VGG16 and the TFL model with the lowest inference
time was the MobileNetV2.

6. Conclusion
The analyzed parameters varied between the CNN models but between TF and TFL mod-
els of a single architecture, and the conversion between TF and TFL models did not
change the model file sizes in a significant way, thus it was possible to identify a few
similarities in the accuracy and computational complexity.

The inference time and overall memory usage varied a lot between the TF and TFL
models with the same architecture in terms of which ones had the lowest and highest re-
sults, however, the accuracy did not change between TF and TFL models within the same
architecture, as expected. Our results point out MobileNetV2 as the best model overall
for running in a mobile device, with the best results in inference time, overall memory
usage, and computational complexity. Although it did not have the highest accuracy, it is
acceptable for most image recognition tasks.

Future work should include a comparison with the next generation of machine
learning accelerators, being deployed as co-processors by major processor manufactur-
ers. Although MobileNet was developed with constrained devices as target platforms, we
believe that we still lack a framework specifically targeting low power devices, that could
not even count on a floating-point multiplier. Future works could also focus on low power
implementation, enabling devices such as wearables or extremely low power embedded
or mobile systems to benefit from image recognition.
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