
An Open-Source Soft-Microcontroller Implementation Using
an ARM Cortex-M0 on FPGA

Vitor Finotti1, Bruno Albertini1

1Escola Politécnica – Universidade de São Paulo (USP)
Avenida Prof. Luciano Gualberto, 380 – 05508-010 – São Paulo – SP – Brazil

{vfinotti,balbertini}@usp.br

Abstract. There is a myriad of projects that could be deployed on FPGA for
architectural exploration. However, open-source platforms are scarce, and
one with embedded software and operating system support to the application-
specific hardware could not be found in the literature. We present an open-
source soft-microcontroller architecture based on an ARM Cortex-M0, adapt-
able to different amounts of cores or new components, supporting an end-to-end
deployment from code compilation using arm-gcc to loading the binary into the
HDL memory cores. The proposed design is validated through simulation and
implementation on a KC705 development kit, demonstrating busy-wait polling,
DMA transfer, and deterministic real-time processing through FreeRTOS.

1. Introduction
Field-programmable gate arrays (FPGAs) reconfigurable nature, associated with IO high-
speed modules and specialized hardware present in modern FPGAs contributed to their
popularization as a solution for applications targeting low-latency, high-bandwidth, and
energy efficiency, from state-of-the-art projects [Contardo et al. 2015] to cloud datacen-
ters [Caulfield et al. 2016]. However, many routine procedures and algorithms that are
simple to implement using compiled machine instructions for general purpose processing
architectures such as central processing units (CPUs) would require overly complicated
state machines to be implemented in FPGAs using hardware description language (HDL).
This problem can be overcome by two different approaches: soft-core microcontrollers,
where a microcontroller is instantiated in FPGA fabric using reconfigurable blocks, and
System-on-Chip (SoC) platforms, where a hard-core microcontroller is included in the
same die as the FPGA. In both cases, a processor interprets machine instructions loaded
from memory to perform arithmetical and data transfer operations.

Because SoC processors circuits are optimized for running machine instruc-
tions, they can achieve higher clock rates than soft-cores alternatives, resulting in higher
speed [Jayakrishnan and Parikh 2019]. However, choosing a hard-core architecture im-
plies in reducing the flexibility and reconfigurability of the design, since the processor
is immutably printed at the silicon through photolithography. Besides, SoC solutions
are vendor- and platform-dependent, restricting in reusing parts of the design in other
projects.

Meanwhile, the choice of soft-cores is often limited to vendor-provided solutions,
solving only partially the issues of flexibility and code reuse.

With that concerns in mind, we propose an open-source generic architecture built
around an ARM Cortex-M0 processor, providing a vendor-agnostic HDL design that



can be used in several FPGA models. We based our project in the work developed by
[Martos and Baglivo 2011], where a Cortex-M0 processor runs a simple script that pe-
riodically blinks an LED. Although innovative, this work was limited to the interaction
between the processor, the memory, and a pattern detector. We extend that project’s con-
cept by introducing several elements essential to modern embedded systems design, such
as interconnect, direct memory access (DMA) controller, and real-time operating system
(RTOS) compatibility. We also replaced proprietary software whenever possible, prefer-
ring open-source cores and tools.

2. Related work

The two approaches for running compiled machine instructions in FPGAs are soft-
core microcontrollers and SoCs. The latter is comprised of architectures such as
Zynq [Xilinx 2021] or Intel SoCs [Intel 2021], which offer higher performance at the
cost of less flexibility and higher cost since the microcontroller is printed in the silicon
die as a fixed component. In addition to that, SoCs generally have a vendor-dependent
ecosystem for HDL design and programming.

When implementation flexibility and final costs are project constraints, soft-core
microcontrollers may be an interesting alternative to SoCs. While vendor-provided
soft-microcontrollers such as Microblaze [Xilinx 2020] or Nios II [Intel 2020] are
occasionally used in industry and academy, they share some of the SoCs’ restric-
tions in terms of development flexibility and vendor dependence. A few vendor-
agnostic projects such as aeMB [OpenCores 2021a], NEORV32 [Nolting 2020], or
ZipCPU [Gisselquist Technology 2021] could be used to overcome those restrictions.
However, they use non-standard instruction sets which may require some effort to
be learned and used. ARM-based soft-microcontrollers are either completely propri-
etary [ARM 2020], based on older instruction sets [OpenCores 2021b], or a proof of con-
cept with implementation restrictions [Martos and Baglivo 2011]. Our work presents an
infrastructure around a Cortex-M0 processor, providing good levels of HDL customiza-
tion while using a modern instruction set of the popular ARM architecture.

3. Main HDL cores

In this section, we detail the main HDL cores that build up our ARM soft-microcontroller.
We made an effort for keeping the project as much open-sourced as possible, using cores
made available by the HDL community and creating new ones when needed. The main
HDL language used was SystemVerilog, with occasional use of VHDL where advised
by the vendors due to implementation efficiency. The architecture of our platform is
illustrated in Figure 1.

3.1. ARM Cortex-M0 obfuscated core

As the soft-microcontroller central microcontroller unit (MCU), we chose the Cortex-M0
processor core made available by the ARM DesignStart program [ARM 2020]. Despite
other cores being offered at the program, the Cortex-M0 was chosen for being the small-
est processor available (decreasing the required FPGA size for its implementation and
increasing the number of platforms capable of supporting it). Besides, it is made avail-
able as an obfuscated core implemented using pure Verilog code. The other models, in



Cortex M0

AHB3-Lite Interconnect (Bus)

DMA

AHB3-Lite/Wishbone
Bridge

Pattern Detector

hrdata bus

ROM
(SRAM)

RAM
(SRAM)

Output to LED Interrupt

CORDIC0

CORDIC1

CORDIC2

CORDIC3

Memory0
(SRAM)

Memory1
(SRAM)

Figure 1. Schematic of our soft-microcontroller HDL design.

addition to occupying a larger space in FPGA due to their increased complexity, are imple-
mented using the Xilinx block design (.bd) format, making it incompatible with platforms
from other vendors and reducing portability and version control.

The Cortex-M0, as every other Cortex-M core, includes the CPU itself, which
is responsible for executing machine instructions, an interrupt controller (NVIC), and a
debugger interface. It communicates with the peripherals and memory through the in-
terconnect, which behaves like a bus matrix that connects master devices, such as the
MCU, to slave devices, such as the memories. In some cases, it allows simultaneous data
transfers to occur between master and slaves. The communication approach adopted in
this design is called memory-mapped I/O in which, from the perspective of a mas-
ter device such as the MCU, all peripherals and memories are addressed by pointers so,
when writing and reading from them, the master is writing to and reading from memory
addresses.

Unlike the Cortex-M3 and Cortex-M4 models, the Cortex-M0 works almost ex-
clusively with a 16-bit instruction set called ARM Thumb instruction set, which is widely
used in the embedded variants of the ARM 32-bit processor. In the original ARM pro-
cessors, all instructions were 32-bits (4-bytes), and, subsequently, the Thumb instruction
set was introduced as a 16-bit variant aiming to improve memory utilization. At first,
processors supporting Thumb instructions could switch (at the procedure level) between
Thumb and 32-bit instruction sets. More recently, ARM has introduced a family of “M”
processors that execute only Thumb instructions (plus a limited set of 32-bit instructions).
These “M” processors include the Cortex-M4, Cortex-M3, Cortex-M1, and Cortex-M0.
Of these, the Cortex-M0 has the smallest set of instructions. It is notable, that every ARM
processor is capable of executing programs written with the Thumb-M0 instruction sub-
set. For embedded applications, processors based on the ARM “M” core provide both
high-performance and low-cost [Brown and Himebaugh 2016].



Since not all ports were required for performing most applications intended for
this project, a wrapper was created to only externalize the relevant signals, setting the
remaining ports to either ground or VCC depending on the default expected value.

3.2. AHB3-lite interconnect
The MCU communicates with memory and peripherals through a bus matrix, which en-
ables data to be routed across a fixed set of connections. From the MCU or, in general, any
master device on the bus, there is no difference between peripherals and memories, since
both are addressed by pointers. These devices are referred to as memory-mapped since
all their interfaces are part of the memory address space of the master device. This model
is illustrated at Figure 2, where three main components - a generic processor (CPU), a
memory, and a generic I/O device - communicate using three different sets of signals:
N-bits of address, M-bits of data, and some number of control lines. Generally, the CPU
may initiate two different types of operations – read transfers and write transfers – with
either the Memory or the I/O device as specified by the address.

CPU Memory

I/O Device

Address
Data
Control

Figure 2. Memory mapped I/O model. Obtained from [ARM 2009].

In the case of the ARM Cortex-M0, address, data, and control signals are spec-
ified by the AHB3-lite protocol, which defines not only the signals but how they must
behave to perform read and write transfers. To implement the communication between
master and slave devices with AHB3-Lite protocol, we chose the Roa Logic AHB-Lite
Multi-layer Interconnect core [RoaLogic 2020b]. This core is a fully parameterized in-
terconnect fabric soft IP for AHB3-lite communications that target high performance and
low latency. It allows a virtually unlimited number of AHB3-lite bus master and slave
devices to be connected without the need for bus arbitration to be implemented by the bus
masters. Instead, slave-side arbitration is implemented for each slave port within the core,
providing support for priority and Round-Robin based arbitration when multiple bus mas-
ters request access to the same slave port. According to the vendor, arbitration is typically
completed within 1 clock cycle.

Through the interconnect, we define the base addresses and addresses masks, so
the interconnect can relate the address during a transfer initiated by a master core.

3.3. AHB3-lite general purpose SRAM
To infer the memory units, we used the AHB3-lite Memory core [RoaLogic 2020a] as a
base for our implementation. This core infers an static random-access memory (SRAM)
that supports read and write operations.

Despite technically being volatile memory, since it is an HDL coded core that
is loaded by a bitstream on the FPGA platform, we can also infer the initial configura-
tion of the SRAM, so that instructions for the MCU can be loaded into it. Since this



feature was not available in the original AHB3-lite Memory implementation, modifica-
tions were made to allow the loading of a text file with the initial values in each mem-
ory address during synthesis. The loading of this file and its format were implemented
following the FPGA manufacturer guidelines, and the modified core is available in the
soft-microcontroller project repository [Finotti 2020a].

3.4. Pattern detector

The pattern detector is a simple core that toggles its output bit when a specific pattern
appears at the input bus. We conveniently connect the input bus to the hrdata master data
bus, to provide an easy way of detecting when a pattern is read by the master. The idea
here is to define a routine in the program executed by the MCU in such a way that the
specific pattern to be detected is periodically read by the master, so the output bit can
drive an LED or another external component to indicate the program is running.

3.5. AHB3-lite CORDIC

CORDIC (for COordinate Rotation DIgital Computer) is a simple and efficient algo-
rithm used to implement several trigonometric functions, hyperbolic functions, square
roots, multiplications, divisions, exponentials, and logarithms. Its simplicity and effi-
ciency favor its use when computing efficiency is required or when hardware multipli-
ers are a scarce or inexistent resource. We used the sequential CORDIC core created
by [Thibedeau 2020] as a base for our implementation. For compatibility with the AHB3-
lite bus, we implemented a wrapper around the original core, creating a process to trans-
late the commands and signals used to operate the core into the AHB3-lite protocol.

In our design, we mainly use the CORDIC core as a dummy processing using
with the only purpose of doing some calculations to validate our system integration and
operation. To better interface with the available data and control registers, a structure in
C was written to behave as a driver, linking register names to the corresponding memory
offset from the base address of the core. Each CORDIC core instance will have one of
this structure beginning at the base address of the instance as specified at the AHB3-lite
interconnect.

3.6. AHB3-lite/Wishbone conversion interfaces

While AHB3-lite is the protocol used by the Cortex-M0 MCU present in our design,
several other protocols are available for in-chip communication, including the popular
Wishbone protocol, which purpose and applicability are similar to AHB3-lite protocol.
Given the similarity between these two protocols, we wrote a bridge between them in
a way to create a compatibility between Wishbone-exclusive and AHB3-lite-exclusive
cores. This bridge essentially translates the signal activation routine between the two
protocols, converting the two signal unidirectional flows: AHB3-lite-to-Wishbone and
Wishbone-to-AHB3-lite.

3.7. AHB3-lite DMA

The DMA controller is a specialized peripherals core that is under program control and
is accessed by reading from and writing to addresses in the peripheral address space.
DMA controllers can be programmed to transfer data between memory and peripher-
als synchronously with either external or temporal events, acting as a master device at



the interconnect bus. Since DMA controllers are quite flexible and versatile about their
operating modes, we may use them as a way of reliving the MCU from expensive mem-
ory transfer operations, leaving the MCU to perform more meaningful tasks or sleep to
reduce energy consumption while the transfer takes place. We implemented an AHB3-
lite compatible DMA controller [Finotti 2019a], using the Wishbone DMA developed
by [Usselmann 2001] as a base. Since the original implementation was non-functional,
we debugged and fixed it in a way to allow the expected behavior. Finally, to use the DMA
controller with the AHB3-lite protocol present in our design, we wrapped the wishbone
DMA controller with the AHB3-lite/Wishbone conversion interfaces detailed at Section
3.6.

4. Software components

4.1. ARM GCC, building options and Makefile

As detailed on Section 3.1, the ARM Cortex-M0 processor used in our soft-
microcontroller works almost exclusively with a 16-bit instruction set called ARM Thumb
instruction set. To convert a program written in a high-level language such as C into
a series of instructions understandable by the MCU, we need a set of tools which shall
translate the text files containing high-level code into object files, and then link them to-
gether into an executable file containing machine code. These tools, which are known as
compiler and linker, are generally provided by the MCU manufacturer, as there is a close
relationship between the MCU hardware architecture and the machine code instructions
supported by it. Furthermore, while a good compiler will result in efficient implemen-
tations of the high-level program, bad compilers will result in poor performance or even
in a non-functional program. For this project, the GNU ARM Embedded Toolchain were
be used for code compiling, linking, and debugging due to its comprehensive support to
ARM processor architectures, the popularity of GCC, and all the advantages present in an
open-source tool.

4.2. FreeRTOS

To keep up with the increasing complexity of the design, we decided to use a real-time
operating system (RTOS) to run the tasks to be performed by the processor. Among the
possible RTOS solutions available in the market, we chose to use FreeRTOS due to its
popularity, simplicity, and because it is distributed freely under the MIT open source li-
cense. FreeRTOS is a market-leading RTOS for microcontrollers and small microproces-
sors, designed to be small, simple, and easy to port to different architectures. The kernel
itself consists of only three C files, providing methods for multiple threads or tasks, mu-
texes, semaphores, software timers, and thread priorities management. Also, a tick-less
mode is provided for low power applications.

We created a FreeRTOS port compatible with our platform that can run tasks and
interface with the boards’ peripheral components.

4.3. Compiled code extraction for RAM initialization

Once the code is compiled and linked into an executable file, we must integrate it into our
HDL design in such a way that the MCU can access the program instructions and begin its
operations when the FPGA is powered up. That is accomplished by a python script that



reads the binary and converts every byte into ASCIIfied binary text, dumping it into a text
file. This text file is used to infer the initial values of the general-purpose SRAM detailed
in Section 3.3, which will be used as the ROM memory of the soft-microcontroller.

5. Experiments and results
This section presents the results obtained at the ARM Cortex-M0 soft-microcontroller
implementation. The HDL designs were designed to experiment with the essential fea-
tures of embedded devices. In each of them, a C program was compiled and loaded in the
appropriate memory addresses so that the Cortex-M0 could execute a routine to validate
the experiment in question. The program execution and the HDL hardware behavior were
validated through simulation in Vivado before the implementation in real-hardware on a
KC705 board. A utilization report of the resources usage after HDL implementation in
Vivado is shown in Table 1, while power characteristics are depicted in Table 2.

Table 1. Resources utilization report on a Kintex-7 (part XC7K160TFFG676-2).

Resource Utilization Available Utilization %

LUT 15432 101400 15.22
LUTRAM 8705 35000 24.87
FF 3287 202800 1.62
DSP 3 600 0.50
IO 11 400 2.75
BUFG 6 32 18.75
PLL 1 8 12.50

Table 2. Power report on a Kintex-7 (part XC7K160TFFG676-2).

Total On-Chip Power 0.233W
Junction Temperature 25.4 oC
Thermal Margin 59.5 oC (30.5 oC)
Effective ΘJA 1.8 oC/W

5.1. Bare-metal blinky experiment

This experiment proposes to execute a simple LED blinking program, where the sys-
tem periodically toggles a GPIO that drives an LED. The complete code is available
at [Finotti 2019b]. The simplicity of the experiment allows us to focus on the system
itself, validating all stages responsible for its operation. On the software side, we have the
compilation of the program in binary code, the linking with the startup and vector table
files, and the code extraction from the resulting ELF executable into an ASCII file, which
will be used to initialize the memory HDL core. On the synthesizable hardware side, we
have a Cortex-M0 processor, an AHB3-Lite interconnect, a RAM and ROM memories,
and a pattern detector responsible for identifying the pattern on the bus that will cause the
LED toggle.

The program coded for this experiment increments a variable until a manually
tuned value so that the toggle period is 2 seconds. Upon reaching the specified value, a



Figure 3. Blinky bare-metal code waveform running on ARM soft-microcontroller.
Notice led3 toggling during simulation.

second variable is assigned the pattern f0f0f0f0. As a consequence of this assignment,
the processor reads this pattern from ROM before writing it to an address on the RAM,
causing this pattern to appear on the read data bus. The pattern detector, when detecting
this value, toggles the LED. A code snippet with the main part of the program is shown
on Listing 1.

Listing 1. Code snippet of LED toggling routine.

while(1)
{
counter=0;
for(ii=0; ii<period; ii++)
{

counter++;
}
trap=LedToggle; // memory access pattern (toggle LED)
trap++; // force toggle value to change value

}

The simulated hardware waveform, which is depicted on Figure 3, shows the exact
moment when the pattern f0f0f0f0 appears on mst hrdata[0:0][31:0] (Mas-
ter read-data bus). This value is read by the pattern detector input data i[31:0]
and, in the clock cycle immediately after that, the pattern detector toggles its output
detected o, which goes to led value and led3. After that, the pattern also ap-
pears on mst hwdata[0:0][31:0], which corresponds to the write operation of the
variable assignment.

5.2. Bare-metal busy-wait experiment
In this experiment, the busy-wait functionality is demonstrated by configuring four
CORDIC cores to perform arithmetical operations and busy-waiting their conclusion be-
fore proceeding to the same routine specified at Section 5.1. The complete code is avail-
able at [Finotti 2019c]. The four CORDIC cores are created as slaves and connected to the
AHB3-lite interconnect in different hardware addresses. The busy-waiting is illustrated
by Listing 2, where a single CORDIC core is polled before proceeding to the conventional
LED toggling routine. In our simulation and implementation, four CORDIC cores are set
similarly.



Figure 4. Busy-wait bare-metal code waveform running on ARM soft-
microcontroller.

Listing 2. Code snippet where busy-wait is done for a single CORDIC core oper-
ation before proceeding to LED toggling routine.

// Calculate sine and cosine of pi/3
CONTROL_START0 = 0;
X0 = 1073741824; // 1 in Q1.30 notation
Y0 = 0;
Z0 = 715827883; // angle pi/3, since 2pi = 2ˆ32
CONTROL_START0 = 1;

// Wait for calculations results
while(CONTROL_DONE0 != 1)
{}

// count until period and put the pattern that toggles the LED on the
bus

counter=0;
for(ii=0; ii<period; ii++)
{

counter++;
}
trap=LedToggle; // memory access pattern (toggle LED)
trap++; // force toggle value to change value

After the simulation, which is shown on Figure 4, we can see how the four
different CORDIC cores proceed with their calculation before the toggle. Through-
out the simulation we can observe that, for each of the CORDIC cores, the signals
X result[31:0], Y result[31:0] and Z result[31:0] change from a stable
value and start varying at the same time Result Valid signal is set to False, indicat-
ing the moment the core begins its operation. On the waveform, it is notable the moment
each core begins its operations, with CORDIC0 starting first followed by CORDIC1,
CORDIC2, and CORDIC3. Immediately after the last core finishes its calculation, the
program proceeds to the LED toggle routine, which causes led3’s value to change be-
fore the program routine is executed again.

5.3. FreeRTOS DMA experiment

This experiment tested Direct Memory Access (DMA) data transfer using an AHB3-lite
DMA controller core between two generic memories while keeping CORDIC operations
and LED toggling. The complete code is available at [Finotti 2020b]. To keep up with
the increasing complexity of our experiments, FreeRTOS was introduced in the software



Figure 5. DMA operation on FreeRTOS waveform running on ARM soft-
microcontroller.

side of the application, translating the bare-metal routine into tasks to be managed by the
scheduler. A FreeRTOS port was also created to bridge the software side and the hardware
was implemented in HDL, therefore creating a complete workflow. The HDL design is
composed of the Cortex-M0 processor, four CORDIC cores, two memories, and a DMA
core.

To test a DMA transfer, we created a FreeRTOS task that starts all CORDIC cores,
toggles the pattern responsible for toggling the LED, and configures the DMA core to
transfer data from one RAM to the other. After that, the tasks wait for a defined period
and then consumes a semaphore, entering in a blocked state. This procedure is shown on
Algorithm 1.

Algorithm 1 Main FreeRTOS task routine that sets CORDIC cores, DMA transfer and
LED toggle.
1: loop
2: Configure and start CORDIC0 core
3: Configure and start CORDIC1 core
4: Configure and start CORDIC2 core
5: Configure and start CORDIC3 core
6: Assign toggle pattern to variable . Pattern detector toggles the LED here
7: Configure DMA . Transfer data from mem0 core to mem1 core
8: vTaskDelay(period) . Delay between LED blinks
9: xSemaphoreTake() . Semaphore that waits for DMA “done” interrupt

10: end loop

Once the main task finishes running, it waits indefinitely until the semaphore is
given, which happens in an interrupt task triggered by an interrupt generated once the
DMA core finishes its transfer operation.

The resultant waveform of this experiment is shown on Figure 5, where it is pos-
sible to see the moment where all 4 CORDIC cores begin and finish their operation, and
where the DMA core enters a busy state, indicating it began the memory transfer. We can
see where mem1 begins to receive the data “99999999hex” in mem1[1] and mem1[3], and
where it finishes, at mem1[254] and mem1[255]. Once the operations finish, the interrupt
is raised at bit irq vector[1], staying raised until it is cleaned by the interrupt task.



6. Discussions

This project presented an open-source generic architecture build around an ARM Cortex-
M0 processor, which can be easily adapted for different purposes and applications. We
implemented an end-to-end framework, from software compilation and linkage using
ARM GCC to the conversion to a binary compatible with the memory cores used in the
HDL design.

We validated the design both in simulation and synthesis in a comprehensive set
of experiments, covering relevant aspects for embedded system applications. This design
poses an alternative to vendor-specific solutions soft-microcontroller solutions, using the
popular ARM architecture instead, or to SoC platforms, where the fixed microcontroller
higher performance comes at a cost in flexibility and reconfigurability.

Our design might be used for FPGA applications demanding microcontroller func-
tionalities, without the commitment of using SoC architectures or vendor-exclusive soft-
cores. It might also be used in educational environments since, through simulation, one
might analyze the behavior of the hardware at the registers level, observing how the inter-
nal registers of the Cortex-M0 and any of the peripherals behave over time. The possibility
of compiling an elaborate program using our GCC-based framework, or using FreeRTOS
in the design represents an invaluable resource for a comprehensive understanding of em-
bedded systems, from software compilation to hardware execution.

References

ARM (2009). Cortex-M0 Devices Generic User Guide. https://developer.arm.
com/documentation/dui0497/latest/. Last accessed on Sep 07, 2020.

ARM (2020). ARM DesignStart Program. https://www.arm.com/resources/
designstart. Last accessed on Sep 07, 2020.

Brown, G. and Himebaugh, B. (2016). Computer Structures with the ARM Cortex-M0.
https://legacy.cs.indiana.edu/˜geobrown/c335book.pdf. Last
accessed on Sep 07, 2020.

Caulfield, A. M., Chung, E. S., Putnam, A., Angepat, H., Fowers, J., Haselman, M.,
Heil, S., Humphrey, M., Kaur, P., Kim, J.-Y., Lo, D., Massengill, T., Ovtcharov, K.,
Papamichael, M., Woods, L., Lanka, S., Chiou, D., and Burger, D. (2016). A Cloud-
Scale Acceleration Architecture. page 13.

Contardo, D., Klute, M., Mans, J., Silvestris, L., and Butler, J. (2015). Technical Pro-
posal for the Phase-II Upgrade of the CMS Detector. https://cds.cern.ch/
record/202088. Last accessed on Mar 01, 2021.

Finotti, V. (2019a). AHB3-Lite DMA core. https://github.com/vfinotti/
ahb3lite_dma. Last accessed on Sep 07, 2020.

Finotti, V. (2019b). Blinky C example code for Cortex-M0. https://github.com/
vfinotti/cortex-m0-blinky-c. Last accessed on Sep 07, 2020.

Finotti, V. (2019c). Busy-wait polling C example code for Cortex-M0. https:
//github.com/vfinotti/cortex-m0-busy-wait-c. Last accessed on
Sep 07, 2020.



Finotti, V. (2020a). Cortex-M0 implementation on a Kintex-7 FPGA. https://
github.com/vfinotti/cortex-m0-soft-microcontroller. Last ac-
cessed on Sep 07, 2020.

Finotti, V. (2020b). DMA example code with FreeRTOS for Cortex-M0. https://
github.com/vfinotti/cortex-m0-freertos-dma-c. Last accessed on
Sep 07, 2020.

Gisselquist Technology, L. (2021). ZipCPU: A small, light weight, RISC CPU soft core.
https://github.com/ZipCPU/zipcpu. Last accessed on Jun 03, 2021.

Intel (2020). Nios® II Processors for FPGAs - Intel® FPGA. https:
//www.intel.com/content/www/br/pt/products/programmable/
processor/nios-ii.html. Last accessed on Sep 07, 2020.

Intel (2021). Intel® FPGA Products - FPGA and SoC FPGA Devices and Solutions —
Intel. https://www.intel.com.br/content/www/br/pt/products/
details/fpga.html. Last accessed on Jun 03, 2021.

Jayakrishnan, V. and Parikh, C. (2019). Embedded Processors on FPGA: Soft vs Hard.
page 8.

Martos, P. I. and Baglivo, F. (2011). Implementing the Cortex-M0 DesignStart Processor
in a Low-end FPGA. page 4.

Nolting, S. (2020). The neorv32 risc-v processor. https://github.com/
stnolting/neorv32. Last accessed on Jun 03, 2021.

OpenCores (2021a). aeMB. https://opencores.org/projects/aemb. Last
accessed on Jun 03, 2021.

OpenCores (2021b). Amber ARM-compatible core. https://opencores.org/
projects/amber. Last accessed on Jun 03, 2021.

RoaLogic (2020a). AHB-Lite Memory. https://github.com/RoaLogic/
ahb3lite_memory. Last accessed on Sep 07, 2020.

RoaLogic (2020b). AHB-Lite Multilayer Switch. https://github.com/
RoaLogic/ahb3lite_interconnect. Last accessed on Sep 07, 2020.

Thibedeau, K. (2020). VHDL-extras Library. https://github.com/kevinpt/
vhdl-extras. Last accessed on Sep 07, 2020.

Usselmann, R. (2001). WISHBONE DMA/Bridge IP Core. https://opencores.
org/projects/wb_dma/. Last accessed on Sep 24, 2020.

Xilinx (2020). MicroBlaze Soft Processor Core. https://www.xilinx.com/
products/design-tools/microblaze.html. Last accessed on Sep 27,
2020.

Xilinx (2021). Zynq-7000 SoC. https://www.xilinx.com/products/
silicon-devices/soc/zynq-7000.html. Last accessed on Jun 03, 2021.


