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Abstract. Autonomous driving requires machine learning models to be trained
at the edge for improved efficiency and reduced communication latency. Fed-
erated learning (FL) allows knowledge sharing among all devices, but Not In-
dependent and Identically Distributed (non-IID) scenarios with biased device
data distributions can lead to statistical heterogeneity and lower classification
accuracy. This paper proposes an entropy-based client selection approach for
vehicular federated learning environments that aims to address the challenges
posed by non-IID data in vehicular networks. The proposed method is compared
to a random selection mechanism in both IID and non-IID scenarios, as well as
in a scenario with random client drops. The results show that the entropy-based
selection method outperforms the random selection method in all compared met-
rics, particularly in non-IID scenarios.
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1. Introduction
The market for Connected and Autonomous Vehicles (CAVs) is anticipated to reach 166
billion dollars by 2025, and some sources indicate that it may transcend 200 billion dol-
lars. In order to increase their safety, vehicles are increasingly reliant on advanced tech-
nologies such as processing, sensors, and communication [Damaj et al. 2021]. CAVs are
designed to enhance driving safety, traffic efficiency, and the utilization of public re-
sources such as roads, highways, and public transportation, as well as CAVs become a
interest topic for both academia and industry [Pilz et al. 2021]. CAVs also issue warn-
ings or take action during risky events or maneuvers, allowing drivers to be relieved
of the stressful task of driving and providing them with physical and mental relaxation
[Lobato et al. 2023].

CAVs are equipped with a set of onboard sensors, such as high-resolution
cameras, RADAR, Light Detection And Ranging (LIDAR), Global Positioning Sys-
tem (GPS), Inertial Measurement Unit (IMU), and ultrasonic sensors [Shladover 2021,
Schiegg et al. 2020]. However, regardless of the technology used, onboard sensors are
limited by the CAV’s Field-of-View, and by obstacles from other moving vehicles or
roadside objects. Notwithstanding, extensive sensor data sharing raises alarming privacy
concerns, as these data reveal confidential information about the vehicle, the driver, and
the occupants. Furthermore, when data is uploaded to the cloud, it may be intercepted
and misused by malicious parties [Barros et al. 2021, Lobato et al. 2022].
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Federated Learning (FL) gained popularity in the context of CAVs applications
due to its privacy-preserving property, since this method allows CAVs to conduct ma-
chine learning tasks without compromising the privacy of sensitive data, making it an
attractive option for those applications [Du et al. 2021]. FL ensures the privacy of ve-
hicle data by only transmitting local models to the cloud for aggregation, CAVs use FL
to share their model parameters rather than their sensor data, and the models are aggre-
gated at cloud servers to produce an accurate global model [AbdulRahman et al. 2020,
Wahab et al. 2021]. This allows for real-time analysis of sensor data and predictions to
be made without the need for transmitting sensitive data to a cloud server, not only in-
creasing the efficiency of models accuracy and predictions but also ensuring the privacy
of the data being collected [Agarwal et al. 2021].

However, while FL enables the sharing of knowledge among all devices while
ensuring the privacy, FL applied in CAVs is subject to several challenges related to non-
IID data scenarios, where data from different sources are not independent or have dif-
ferent statistical distributions. The diverse CAVs behaviors and sensing data, as well as
large heterogeneity in different CAVs’ local sensor data lead to statistical heterogeneity
of datasets, resulting in lower classification accuracy [Luo et al. 2021]. Additionally, the
number of model aggregation required in FL can cause high communication overhead
[Liu et al. 2022]. Often only a subset of clients could be selected to put into training
in each round due to the communication bottleneck, which is called the client selec-
tion problem. A client is considered significant or relevant if the data it has, and con-
sequently the local model updates it shares, enhance the functionality of the global model
[Nagalapatti and Narayanam 2021]. In order to effectively use FL applied in CAVs is cru-
cial to address these challenges by developing novel techniques that can handle non-IID
data without compromising classification accuracy [Nguyen et al. 2022].

To address the challenges of non-IID data and high communication overhead in FL
for CAVs applications, we propose an entropy-based client selection mechanism where
the participant CAVs are selected based on their data distribution heterogeneity. Entropy
measures the randomness or unpredictability of a system, while heterogeneity refers to the
diversity or variability of data across different sources. The mechanism prioritizes CAV
with more diverse and representative data, by only selecting a subset of CAV that have the
better suited data for model training. The proposed mechanism only selects the clients that
have a higher than a threshold entropy score while ensuring high classification accuracy.
Compared to baseline mechanism that rely on random CAV selection, our entropy-based
selection mechanism provides a more targeted and effective selection of CAV for local
model training, leading to a improved global model accuracy in 5%. Furthermore, the
proposed mechanism handles with non-IID data by prioritizing devices with more diverse
data, resulting in more representative models that can better handle CAVs applications.

The remainder of this paper is structured as follows. Section 2 discuss the related
works. Section 3 presents the operation of the proposed client selection mechanism. Sec-
tion 4 shows a comparative study about different client selection mechanisms in the CAV
scenario. Finally, Section 5 describes the conclusion of this paper and present some future
work directions.
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2. Related Work

Li et al. developed an effective and privacy-preserving sample selection solution for FL to
obtain models with high accuracy and fast convergence speed when there are low-quality
or even erroneous data [Li et al. 2021]. The proposed solution considers multiple factors
that influence the model performance and both the clients’ data privacy and the server’s
task privacy. The authors proposed a set of novel techniques to first select relevant clients
before training and then dynamically select clients and their samples with greater impor-
tance to the global model, with the aims to reduce the cost for data selection. However,
the authors consider only the static scenario.

Huang et al. proposed a stochastic client selection algorithm, which jointly con-
siders the cumulative effect of participants and selection fairness to obtain a trade-off
between the convergence time and accuracy [Huang et al. 2022]. The authors also pro-
posed a client selection sub-problem in a solvable form based on empirical observations.
Empirically, numerical and real data-based experiments are conducted to substantiate the
effectiveness of the proposed solutions.

Liu Yi et al. proposed a novel FL model called FedGRU that uses Federated Aver-
aging (FedAvg) as the core of the secure parameter aggregation mechanism to collect gra-
dient information from different organizations, the filtering of clients participating in the
training is not considered for this algorithm. Therefore, the client selection still remains an
open challenging in the vehicular field. The proposed model only discussed the reduction
of communication overhead without considering the quality of the data [Liu et al. 2020].

Shi et al. demonstrated that accurately quantifying the quality features of training
samples and their impact on the model is crucial for optimal sample selection in federated
learning. To achieve this while maintaining data privacy, private set intersection (PSI) is
a powerful cryptography technique that can be used. However, integrating PSI into feder-
ated learning algorithms requires careful implementation and tuning due to its increased
computational time, communication overhead, and complexity [Shi and Li 2022].

Cho et Al. demonstrated a novel framework called Power-Of-Choice, a com-
munication and computation-efficient client selection framework that flexibly spans the
trade-off between convergence speed and solution bias. The work achieves 3 times faster
convergence and 10% higher accuracy [Jee Cho et al. 2022]. Yonetani and Nishio pro-
posed a new FL protocol called FedCS that addresses the issue of training inefficiency
when some clients have limited computational resources or poor wireless channel condi-
tions. FedCS allows the server to aggregate as many client updates as possible to accel-
erate performance improvement in ML models. However, the authors only address the
mobile scenario [Nishio and Yonetani 2019].

We deduced from the schemes mentioned above that a client selection mechanism
is necessary to fully enable the CAV scenario’s. The analyzed mechanisms did not con-
sider the quality of the data collected by the CAVs, which could compromise the selection
of the most relevant clients and those that best represented the model. In addition, some
approaches rely on a more controlled and specific environment to operate satisfactorily,
and most of the approaches not considered client selection in a vehicular scenario.
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3. Entropy-Based Client Selection
This section describes the entropy-based client selection mechanism, which uses the data
entropy value of each CAV for client selection. The cloud server chooses the best ranked
CAV in the total pool of participants and executes the training utilizing their local models.
At the end of each global round, the edge server aggregates the local models and transmits
the updated global model to all vehicles.

3.1. System Model

Entropy-based client selection has the potential to significantly impact the effectiveness
of FL in vehicular networks across multiple applications. In traffic prediction, selecting
clients based on their data entropy can improve the accuracy of models by ensuring that
the training data is representative of the entire vehicular network. For intelligent and au-
tonomous driving systems, selecting clients with high entropy can enhance the safety and
efficiency of the system by capturing the heterogeneity of driving behaviors and condi-
tions. Anomaly detection can benefit from entropy-based client selection by identifying
vehicles with rare and unusual patterns in the network. Finally, for network optimization,
selecting clients with high entropy can improve the efficiency and reliability of network
performance by capturing variations in connectivity and latency. Thus, entropy-based
client selection is a critical research challenge that can have significant impacts on the
development of FL in vehicular networks.

Entropy is a fundamental concept in information theory to measure the degree of
randomness or disorder present within a system. It also serves as a metric of uncertainty
or unpredictability in a message or data stream. Entropy is quantified in bits, provid-
ing a means of assessing the amount of information contained within a message. The
entropy of each client’s can be calculated as a measure of randomness or uncertainty in
the data. The use of entropy-based client selection can enable FL algorithms to identify
the most relevant and diverse data for learning models that capture the heterogeneity of
vehicular networks. By selecting clients with high entropy, FLs algorithms can ensure
that the learned models are representative of the entire network and capture the variations
in driving behavior, traffic patterns, and network connectivity. Therefore, entropy-based
client selection is a critical research challenge that can impact the development of FL in
vehicular networks.

H(X) = −
∑
x

P (x) logP (x) (1)

To calculate the entropy, we use the formula described in Equation 1, where H(X)
is the entropy of the dataset, P(x) is the probability of observing a particular value x in
the dataset, and log is the natural logarithm. Clients whose datasets have a high level of
entropy are selected because they contain diverse and informative data that can improve
the performance of the federated learning model.

3.2. Mechanism Operation

To implement the entropy client selection, we introduce a parameter θ that controls the
minimum entropy score that a client must have in order to be included in the selected
subset. The θ value is obtained by calculating the median or mean entropy score across
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Algorithm 1: FedAvg with Entropy-Based Client Selection
Input : Ct: the fraction of clients participating in round t, K: the total

number of clients, θ: the entropy threshold, T : number of rounds,
E: number of local epochs

Output: Global model w∗

1 Initialize global model w0;
2 for t = 1 to T do
3 Entropy-Based Client Selection;
4 Compute entropy scores for all clients using validation set;
5 Sort clients in descending order of entropy scores;
6 Select top m = ⌊Ct ·K⌋ clients whose entropy scores exceed θ;
7 Local Model Training;
8 for i ∈ SelectedClients do
9 wi ← LocalUpdate(wt−1, i, E);

10 Global Model Aggregation;
11 wt ← FedAvg({wi}i∈SelectedClients);

12 return w∗ = wT ;

all clients. We also assume that the entropy scores for each client have already been
computed using a held-out validation set or other method. Algorithm 1 illustrates the
operation of the mechanism. At the start of the training, we compute the entropy scores
of all clients’ models and select the top m clients with the highest entropy scores to
participate in training, where m is determined based on the fraction of clients Ct and
the total number of clients K. However, if a client’s entropy score is below the threshold
θ, it will not be included in the selected subset.

With the selected clients, we can now train the FL model using the chosen clients’
data. The weights of the model are updated after each round of training. Once the model
is trained, it is evaluated on a test dataset to determine its performance. The evaluation
results can be compared with the performance of the model trained using other selection
criteria, such as random selection or selection based on data size.

We designed the entropy-based client selection model diagram involving entropy
calculation, local training and testing of the model and aggregation and update of the
global model, as illustrated in Figure 1. It is assumed that each vehicle (client) in the
network will get a random subset of the data, mainly distributed in two ways, IID or non-
IID. Each communication round consists in 5 steps. The procedure consists in sending
the current global model state to the clients involved, receiving the entropy of the data
in each client and only training the local models in the clients that meet the θ threshold.
Then, the server will aggregate the local updates provided by the selected clients into a
updated global model.

The process starts when the global model is broadcasted to all participants by
the server (1). After each client received the global model, all clients will send their
calculated entropy of their own data (2) to the server, which will select the best-suited
ones by ranking from best to worst. In this experiment, the dataset in non-IID scenario



6

was split using the Dirichlet distribution. The entropy calculation was done using the
scipy library in Python. Then, the selected ones will do the local training (3), which
may take different times for different clients, depending on local training data, and when
finished they will send the local models to the server to be aggregated (4). Finally, the
server generates the new global model based on aggregating the collected local models
and sends the updated global model (5).

In this model, we implemented the predominantly used FL algorithm for aggre-
gation called FedAvg. The aggregation is made in (3), as shown in Figure 1, where the
server receives the minimum number of models from different clients and averages the
local models to compute the updated global model.FedAvg assumes that all clients are
willing to join each communication round for FL training.

While our entropy-based client selection approach shows promising results in mit-
igating the impact of non-IID data on vehicular FL, it is essential to acknowledge the
potential challenges associated with the proposed mechanism. Firstly, the mechanism as-
sumes that clients are honest and will accurately report the entropy of their data. However,
in a real-world scenario, some clients may be malicious and intentionally report incorrect
entropy values, which could affect the selection process and compromise the overall ac-
curacy of the model. Finally, it requires a threshold value to determine the percentage of
clients selected for training, and this value may need to be adjusted based on the specific
characteristics of the dataset and the network environment.

Figure 1. Entropy-Based Client Selection Model

4. Evaluation

This Section presents the evaluation of the proposed entropy-based client selection mech-
anism for FL in CAVs environments. The simulations were performed using a PyTorch-
based framework1 and the Fashion-MNIST (FMNIST) dataset2. In addition, we describe
the scenario, including IID, non-IID, and random client drop. We also discuss the ob-
tained results regarding the train loss, accuracy, and Area Under the Curve (AUC) score.

1https://github.com/TsingZ0/PFL-Non-IID
2https://deepobs.readthedocs.io/en/stable/api/datasets/fmnist.html
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4.1. Simulation Description and Evaluation Metrics

we conducted simulations using a Pytorch-based framework to evaluate the effectiveness
of the proposed client selection. The framework is based on Pytorch, which contains
the FedAvg algorithm with the FMNIST dataset and a CNN model. The dataset was
partitioned between 20 clients in two modes, standard IID and non-IID using Dirichlet
distribution, allowing for varied and heterogeneous data distributions among clients. We
compared the entropy-based selection with a random selection method of clients in the Fe-
dAvg algorithm. The random selection serves as a baseline method that does not consider
the quality or diversity of clients’ data, and simply selects a random subset of clients to
participate in each round of training. By comparing the performance of the two methods,
we can assess the impact of the entropy ranking on the convergence speed and accuracy
of the global model. Although the original dataset used is related to the state-of-the-art
(FMNIST), the concept behind entropy-based client selection can be applied to various
types of data, including sensor data and driving behavior data in vehicular scenarios.

Parameters Value
Total Participant Clients 20 vehicles

Percentage Selected 25%
Number of Rounds 50 Rounds

Learning Rate 0.001
Rate of Client Dropout 20%

Number of Epochs 5
Network Model CNN

Batch Size 10
θ 0.25

Table 1. Simulation parameters for entropy-based selection model

Each client in the vehicular FL environment sends its own data entropy informa-
tion to the server. Based on the calculated data entropy, the server selects the top 25%
of clients to participate in the model training process, based on the θ threshold defined
earlier. Consequently, this choice balances model representativeness and communication
overhead, which ensures a diverse representation of data while keeping the communica-
tion costs manageable. This selection method is designed to reflect a real scenario and
prevent the selection of clients with little data variation. The resulting train loss, accuracy,
and AUC score are collected and compared to evaluate the performance of the proposed
method. The AUC score is a suitable evaluation metric as it provides a comprehensive
view of classifier performance, considering the trade-off between true positive rate and
false positive rate across all classification thresholds, and is insensitive to class imbal-
ance.

The simulation ran on a machine equipped with an Intel Core i7-9700 @ 3.00
GHz. For the FedAvg with entropy selection, the learning rate was fixed in 0.001, batch
size defined to 10 and 50 global rounds each with 5 epochs. For the client dropout sce-
nario, the rate of the client dropout was set at 0.2, so 20% of the selected clients will
randomly drop out of the training.
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4.2. Simulations Results

In non-IID scenarios represented in Figure 2, the proposed method achieved a higher
accuracy and AUC score compared to the random selection approach, which can be at-
tributed to the fact that our method selects clients with diverse data distributions, thereby
reducing the impact of biased data on the training process. This suggests that selecting
clients based on data entropy can effectively address the challenge posed by non-IID data
in vehicular FL environments. The lower train loss also indicates that the proposed ap-
proach can achieve better convergence during training. However, it is worth noting that
the proposed method may require more communication overhead to collect entropy in-
formation from all clients, which may be a limitation for large-scale federated learning
systems. Overall, the results obtained highlight an important finding for vehicular net-
works, particularly in scenarios where non-IID data is prevalent.

Table 2. Performance metrics of random client selection mode.
Metric IID Client

Dropout
IID

Non-IID Client
Dropout
non-IID

Test Accuracy 0.7159 0.7091 0.7026 0.6849
Train Loss 1.0693 1.1628 0.9972 1.0443
AUC Score 0.9380 0.9064 0.9380 0.9064

Tables 2 and 3 further demonstrates the advantage of the entropy-based selection
method over random selection. In particular, the entropy-based selection method achieves
a higher score than random selection in all three metrics measures, even in the scenarios
with client dropout.

Table 3. Performance metrics of entropy client selection mode.

Metric IID Client
Dropout

IID

Non-IID Client
Dropout
non-IID

Test Accuracy 0.7323 0.7301 0.7121 0.7103
Train Loss 0.7862 0.8081 0.7862 0.8081
AUC Score 0.9841 0.9840 0.9485 0.9474

The large oscillations in the metrics during the rounds in non-IID scenarios, both
in normal and random client dropout, for the random selection approach are due to the fact
that the randomly selected clients have highly unbalanced and diverse data distributions.
As a result, some clients may have much better data quality than others, leading to large
variations in the training performance during each round. This can cause the model to
overfit on some clients while underfitting on others, resulting in unstable and inconsistent
performance over time. The entropy-based selection approach helps to mitigate this issue
by selecting clients with more diverse and balanced data distributions, which leads to
more stable and consistent performance during training.
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(a) AUC Score Normal Scenario (b) AUC Score Dropout Scenario

(c) Accuracy Normal Scenario (d) Accuracy Dropout Scenario

(e) Train Loss Normal Scenario (f) Train Loss Dropout Scenario

Figure 2. Accuracy, Train Loss, and AUC score in Non-IID data scenario

Regarding the random client drop scenario, the entropy-based selection method
also performs better than the random selection method, following a similar pattern to the
normal scenario. The entropy-based selection method consistently achieves better metrics
and converges faster than the random selection method in all cases, especially in non-IID
data scenarios, which are crucial for vehicular networks.

These findings show that the suggested entropy-based selection strategy can im-
prove performance and stability while working with non-IID data, indicating that the
proposed client selection could greatly improve the performance of vehicular federated
learning by selecting higher quality data for the training of the model. In the IID scenario,
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(a) AUC Score Normal Scenario (b) AUC Score Dropout Scenario

(c) Accuracy Normal Scenario (d) Accuracy Dropout Scenario

(e) Train Loss Normal Scenario (f) Train Loss Dropout Scenario

Figure 3. Accuracy, Train Loss, and AUC score in IID data scenario

presented in 3, both selection methods perform similarly across all three metrics, with
a slight advantage for the entropy-based selection method when dealing with data that
follows an IID distribution.

5. Conclusions and Future Work
We described an entropy-based client selection mechanism for FL in CAVs environments.
The proposed mechanism aims to enhance the performance and accuracy of the global
model by selecting CAVs with high-quality data. The client selection mechanism based
on the entropy of their data indicates the diversity of information, which can improve
the overall performance of the global model. Simulation results show that the proposed



11

entropy-based selection mechanism outperforms other client selection mechanism, such
as random selection in terms of model performance by 34% lower train loss, 6% higher
AUC score and increased accuracy by 5%.

As future work, we plan to investigate the application of our mechanism in in
more complex vehicular federated learning scenarios. Additionally, we aim to integrate
our method into existing federated frameworks, such as Flexe 3, to evaluate the network
capabilities of the client selection mechanism.
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