GPU Acceleration of Clustering Meta-feature Extraction
using RAPIDS

Lucas L. Silval, Ricardo Franco', André Carvalho?, Wellington Martins'

nstituto de Informatica — Universidade Federal de Goids (UFG)
Goiania — GO — Brazil

Instituto de Ciéncias Matematicas e de Computag¢do — Universidade de Sdo Paulo
Sao Carlos — SP — Brazil

Abstract. Although machine learning algorithms have been successful when ap-
plied to several tasks, the selection of the most suitable for a given dataset is not
straightforward. The recommendation of machine learning algorithms can be
automated through the use of meta-learning, but this requires efficient methods
for the characterizations of datasets, i.e. meta-features extraction. In this work
we propose to accelerate the extraction of clustering-based meta-features on
GPUs, taking advantage of the optimized libraries and API from the RAPIDS
framework. We parallelized a well-known meta-feature extraction tool (MFE)
via RAPIDS to accelerate the clustering meta-features extraction process. Our
experiment shows that significantly less time is required to complete the extrac-
tion, up to 10x faster than the MFE implementation. These results are promi-
sing and suggest greater feasibility for large-scale experiments involving meta-
learning.

1. Introduction

With the increasing use of machine learning (ML), the selection of the most suitable
algorithm for a given dataset is a challenging problem [Rice 1976]. This problem has
been approached as a learning task, commonly referred to as Meta-Learning (MtL).
MLtL has been used to recommend the most suitable ML algorithm for a specific data-
set [Lemke et al. 2015]. For such, a ML algorithm is applied to a meta-dataset, where
each example has as predictive attributes characteristics extracted from a dataset, named
meta-features, and, as the target attribute the algorithm that had the best predictive perfor-
mance when applied to this dataset.

Meta-features can be categorized into six groups [Rivolli et al. 2022], which are
simple, statistical, information-theoretic, model-based, landmarking, and others. All me-
asures are calculated using the entire dataset, and their computational complexity in-
creases polynomially with the number of instances in the dataset [Rivolli et al. 2022,
Paiva et al. 2022]. Simple, statistical, and information-theoretic meta-features are typi-
cally easy (linear) to extract. Model-based and landmarking are more computationally
demanding, usually requiring linearithmic time. However, meta-features from the others
group can be quite time-consuming (quadratic), particularly those that involve distance
calculations between all pairs of instances. This is the case for the extraction of clus-
tering meta-features cause they require both local (compactness) and global (separation)
calculations of all clusters [Zerabi et al. 2020].

The extraction of clustering-based meta-features can be very time consuming, es-
pecially when the size of the dataset is large [Ncir et al. 2021]. To address this issue, we
propose utilizing the RAPIDS framework [Team 2018], which includes optimized libra-
ries and API, to speed up the process. The main contribution is the implementation that
consists of integrating the MFE with RAPIDS. Specifically, we parallelized the extrac-
tion tool MFE [Alcobaga et al. 2020] through RAPIDS, resulting in significantly faster
extraction times. Our experiments, which were conducted using standard ML datasets,
demonstrate that our implementation achieved up to a 10x speedup compared to the origi-
nal MFE implementation. These results are promising and suggest greater feasibility for
large-scale experiments involving MtL.

This article is organized as follows. Section 2 describes existing work in the do-
main of parallel extraction of meta-features. Section 3 gives an overview of both the MFE
package and the RAPIDS framework. The proposal for parallelizing meta-feature extrac-
tion for clustering using the RAPIDS framework for MFE is outlined in Section 4. The
experimental analysis and the obtained results are presented in Section 5. The last Section
provides conclusions and directions for future work.

2. Related Work

The difficulty in clustering-based meta-features, especially for large datasets, has led the
proposal of alternative ways of performing this task. Two approaches, not necessarily in-
dependent, have been investigated: use of parallelism to accelerate the extraction of these
meta-features, and the extraction of approximate values of these measures. The work by
[Zerabi et al. 2020] proposes two parallel, distributed models for clustering internal vali-
dation indices (Silhouette and Dunn), which are designed to handle the growing volume
of the datasets. The proposed models were tested considering the Hadoop MapReduce
framework. The work by [Luna-Romera et al. 2016] takes advantage of Spark’s agility,
which, unlike Haddop, works with data in memory. They present a new Spark implemen-
tation of the Silhouette and Dunn indices and highlight the potential of these indices to
handle big data. The work by [Ncir et al. 2021] also uses Spark, but focuses on calcula-
ting the Dunn index. Their solution is improved by a sampling technique that proved to
be scalable through an approximate calculation of the Dunn’s index.

The works described make use of horizontal scalability, that is, they use several
machines interconnected through high-speed networks. The proposal of the present work,
however, focuses on increasing performance through vertical scalability, that is, adding
computational power (GPUs) to a single existing machine. Furthermore, we compute
more meta-features (eight) and do so exactly without any approximation.

3. MFE and RAPIDS

The literature on MtL often provides a superficial coverage of meta-features, only offering
a general outline of the standard groups. In a recent work, [Rivolli et al. 2022] present a
comprehensive list and detailed description of existing meta-features, and a taxonomy to
effectively categorize and characterize meta-features. Additionally, they summarized a
list of meta-feature extraction tools, with particular attention given to the Meta-Feature
Extractor (MFE) tool [Alcobaca et al. 2020] that incorporates most of the meta-features
and summarization functions described in the paper.

The MFE package computes eight meta-features for clustering using both Python
and R programming languages. These meta-features are classified into two subgroups:
the basic measures (sc - number of clusters, nre - normalized relative entropy, pb - point
biserial coefficient, int - int index) and the validation measures (vdu - Dunn Index, vdb
- Davies and Bouldin Index, sil - silhouette score, ch - Calinski and Harabasz index) -
for more details we refer the reader to [Rivolli et al. 2022]. The latter are popular cluster
internal validation indices, and are based on the information intrinsic to the data alone.
Unfortunately, they have a high computation complexity, most with quadratic complexity,
because they consider all the data points within the cluster structure [Deborah et al. 2010].

RAPIDS [Team 2018] was developed by NVIDIA as a set of open source data
analysis tools, with the purpose of accelerating the process of analyzing large volumes
of data using GPUs. With a wide range of features including data manipulation, visu-
alization, machine learning, and statistical analysis, RAPIDS aims to provide a high-
performance alternative to traditional data analysis packages. Built on the Python pro-
gramming language and the CUDA data processing framework, the RAPIDS framework
aims to enhance the processing capacity of GPUs allowing for more accurate and faster
analysis of vast data sets, facilitating the extraction of valuable information.

While the MFE tool is capable of extracting a variety of meta-features, it can be
time-consuming when dealing with large datasets, particularly when extracting clustering
meta-features. To address this issue, we aim to leverage the processing capabilities of
GPUs using RAPIDS to accelerate the computation. This is facilitated due to the common
use of Python language in both the MFE package (PyMFE) and the RAPIDS framework.

4. Clustering Meta-feature Extraction using RAPIDS

In this section, our proposal for parallelizing meta-feature extraction for clustering using
the RAPIDS framework for MFE is outlined. We take advantage of the fact that the MFE
package is based on the Scikit-learn library [Pedregosa et al. 2011], and that RAPIDS
CuML offers a similar API to Scikit-learn. In addition, we make use of RAPIDS CuPy
that shares the same API set as NumPy and SciPy. CuPy [Nishino and Loomis 2017]
provides support for multi-dimensional arrays, sparse matrices, and a variety of numerical
algorithms implemented on top of them.

By performing several initial pre-computations of routines shared across multiple
measures, the MFE tool avoids re-execution of code and accelerates the computation of
meta-features. As these routines can take some time, we have accelerated them with
the help of the RAPIDS CuPy library. We made use of the following pre-computation
operations of CuPy: cupy.unique, cupy.sqrt, cupy.sum, cupy.equal, cupy.minimum, cupy-
maximum, and cupy.asnumpy that moves data back to the host (CPU). Some of these
operatioins are illustrated on the code snippet 1 of the precompute_clustering_class. In this
method, cp.unique is used to compute, in parallel, the distinct classes and their frequencies
from the y input array - line 4. The resulting classes and class_freqs arrays are then
converted back to NumPy arrays using cp.asnumpy, and moved back to the host - lines 5
and 6.

After the pre-computation phase, the eight meta-features for clustering are
extracted using both the CuPy and CuML libraries. The Silhouette score (sil)
is implemented on the CuML and thus is accelerated by a direct call to the

precomp_vals =
if y is not None and
not "classes", "class_freqgs".issubset (kwargs) :
classes, class_fregs = cp.unique(y, return_counts=True)
precomp_vals(["classes"] = cp.asnumpy (classes)
precomp_vals["class_freqgs"] = cp.asnumpy(class_freqgs)
classes = kwargs.get ("classes", precomp_vals.get ("classes"))
if y is not None and "cls_inds" not in kwargs:
cls_inds = _utils.calc_cls_inds(y, classes)
precomp_vals["cls_inds"] = cls_inds
return precomp_vals

— OO 00 JN W A LN =

—_—

Code Snippet 1: precompute_clustering_class

cuml.metrics.cluster.silhouette_score method. The other meta-features have to be cal-
culated by making use of different CuPy calls so that the calculation of the desired value
is accelerated by the GPU. The code Snippet 2 illustrates how the vdu - Dunn Index was
accelerated. The function initializes a variable _min_intercls_dist to infinity and loops th-
rough all the values in pairwise_norm_intercls_dist to find the minimum distance between
any two instances of different clusters. It then computes the Dunn Index by dividing the
minimum inter-cluster distance by the maximum intra-cluster distance, and returns the
result as a float - lines 7 to 10. Both cupy-maximum and cupy.minimum are performed in
the GPU, and are the most expensive part of the calculation.

if pairwise_norm _intercls_dist is None:
pairwise_norm_intercls_dist = cls._calc_pwise_norm_intercls_dist (
N=N, y=y, dist_metric=dist_metric, classes=classes, cls_inds=cls_inds,)
if intracls_dists 1is None:
intracls_dists = cls._calc_all_intracls_dists(N=N, y=y,
dist_metric=dist_metric, classes=classes, cls_inds=cls_inds,)
_min_intercls_dist = np.inf
for vals in pairwise_norm_intercls_dist:
_min_intercls_dist = min(_min_intercls_dist, cp.minimum(vals)
vdu = float (_min_intercls_dist / cp.maximum(intracls_dists))
return vdu

—_ OO0 00NN AW =

—_—

Code Snippet 2: Dunn Intex calculation

The use of the CuPyx library was also important in parallelizing the code. With
it, it was possible to speed up the calculation of entropy (cupyx.scipy.stats.entropy), the
distances between pairs of two collections (cupyx.scipy.spatial.distance.cdist) and the cal-
culation of Pearson’s correlation coefficient. The complete RAPIDS modified code can
be found at github.com/poxalukas/clustering/

5. Empirical Performance Analysis

Four extensively-used public data sets from UCI repository [Frank 2010] were employed
in the experiments. The statistical summary of these data sets is as follows: Iris with
150 instances, 4 features and 3 classes; Digits with 1797 instances, 64 features and 10
classes; Breast Cancer with 35000 instances, 4 features and 3 classes; and Electric with
45000 instances, 8 features and 2 classes. The experiments were run on an Intel 17 8700k,
with 32GB DDR4, SSD 1TB NVMe Gen4, GPU NVIDIA GTX 1080T1I, and the Ubuntu
18.04.6 LTS operating system. To ensure that all data transfer costs are taken into account
in our experiments, we report the wall times on a dedicated machine. The performance
metric used is the speedup, which is calculated by dividing the time before (MFE) by the
time after (RAPIDS). The reported numbers are the average of 10 independent runs.

The comparison between the runtime (in seconds) for extracting all clustering
meta-features using the MFE tool and the proposed approach using the RAPIDS library is
shown in Figure 1. The performance gain of the RAPIDS implementation was statistically
superior with 95% confidence; we omit confidence intervals for the sake of clarity of the
graph. For the Iris dataset (upper left), the MFE execution took 0.05449 seconds, while
the proposed approach using RAPIDS took 0.005601 seconds, resulting in a speedup of
9.727914. That means that the RAPIDS implementation was almost ten times faster than
que MFE implementation.

Iris Digits

0,9
08
07
0,6
05
04
03
0,2
0,1

/7 i

RAPIDS MF

_

RAPIDS

m

Breast Electric

200 300
180
160
140
120
100
80
60
40
20

250
200

150

>
Z 0

RAPIDS MFE RAPIDS

N

=2
=
m

Figura 1. MFE vs RAPIDS - Runtime in seconds

As can be seen from Figure 1, the RAPIDS implementation maintains its advan-
tage over the MFE tool for all other datasets, with the following speedus: 3.68 for Digits,
2.53 for Breast Cancer, and 2.84 for Electric. We note that the gain decreases as the
size of the dataset increases. We speculate that this is due to the various data movements
between the CPU and the GPU. Since we utilize independent RAPIDS calls, the system
is not required to manage the memory more efficiently between the two address spaces.
It is worth mentioning that the MFE tool makes heavy use of the Scikit-learn package
[Pedregosa et al. 2011] and this has been optimized to utilize multiple CPU cores. In
fact, we found that the MFE ran in multicore mode for some functions, one of them being
the nearest neighbor search using a kd-tree.

6. Conclusions

In this work, we have leveraged the parallelism capabilities of GPUs within the RAPIDS
framework to reduce the time required for extracting clustering meta-features. Experi-
ments were performed using the original MFE package, and its modified version with
RAPIDS calls. Processing standard datasets, we were able to obtain gains of up to ten
times compared to the original implementation of MFE, even with modest hardware con-
figurations. We noted that a better data management may be required for larger datasets

so as to keep the data into the GPU memory between the RAPIDS calls. Another impro-
vement would be to develop CUDA code optimized for the cluster validation indices. As
future work, we plan to attack these points using larger datasets.

Referéncias

Alcobaca, E., Siqueira, F., Rivolli, A., Garcia, L. P, Oliva, J. T., and De Carvalho, A. C.
(2020). Mfe: Towards reproducible meta-feature extraction. The Journal of Machine
Learning Research, 21(1):4503-4507.

Deborah, L. J., Baskaran, R., and Kannan, A. (2010). A survey on internal validity mea-
sure for cluster validation. International Journal of Computer Science & Engineering
Survey, 1(2):85-102.

Frank, A. (2010). Uci machine learning repository. http://archive.ics.uci.edu/ml.

Lemke, C., Budka, M., and Gabrys, B. (2015). Metalearning: a survey of trends and
technologies. Artificial intelligence review, 44:117-130.

Luna-Romera, J. M., del Mar Martinez-Ballesteros, M., Garcia-Gutierrez, J., and
Riquelme-Santos, J. C. (2016). An approach to silhouette and dunn clustering indices
applied to big data in spark. In Advances in Artificial Intelligence: 17th Conference of
the Spanish Association for Artificial Intelligence, CAEPIA 2016, Salamanca, Spain,
September 14-16, 2016. Proceedings 17, pages 160—169. Springer.

Ncir, C.-E. B., Hamza, A., and Bouaguel, W. (2021). Parallel and scalable dunn index for
the validation of big data clusters. Parallel Computing, 102:102751.

Nishino, R. and Loomis, S. H. C. (2017). Cupy: A numpy-compatible library for nvidia
gpu calculations. 31st confernce on neural information processing systems, 151(7).

Paiva, P. Y. A., Moreno, C. C., Smith-Miles, K., Valeriano, M. G., and Lorena, A. C.
(2022). Relating instance hardness to classification performance in a dataset: a visual
approach. Machine Learning, 111(8):3085-3123.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in python. the Journal of machine Learning research, 12:2825-2830.

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers, vo-
lume 15, pages 65-118. Elsevier.

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J., and de Carvalho, A. C. (2022).
Meta-features for meta-learning. Knowledge-Based Systems, 240:108101.

Team, R. D. (2018). Rapids: collection of libraries for end to end gpu data science.
NVIDIA, Santa Clara, CA, USA.

Zerabi, S., Meshoul, S., and Boucherkha, S. C. (2020). Models for internal clustering
validation indexes based on hadoop-mapreduce. International Journal of Distributed
Systems and Technologies (IJDST), 11(3):42-67.

