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Abstract. Epidemics of certain viruses in a population can have major impact
effects, as is the case in the recent global pandemic caused by the COVID-19
virus. Identifying infected individuals during the course of an epidemic is ex-
tremely important for measuring spread and designing more effective control
measures. However, in some epidemics infected individuals do not exhibit clear
symptoms despite being infected and contributing to the contagion of others
(called asymptomatic). This work addresses the problem of identifying asymp-
tomatic individuals in network epidemics based on the observation of infected
(symptomatic) individuals. The main contribution of this work is the evalua-
tion of different centrality measures to identify asymptomatic individuals when
a fraction of the infected nodes in a network epidemic is observed at a given mo-
ment in time. In particular, a variation of the betweenness centrality measure is
proposed in this work. An evaluation using different network models and differ-
ent asymptomatic rates shows that the proposed centrality measure outperforms
other centrality measures in many scenarios. Furthermore, the performance of
centrality measures increases as the fraction of asymptomatic decreases, show-
ing an interesting trade-off.

1. Introduction
Large-scale epidemics of novel viruses in the human population are often generated by the
contact of humans with uninhabited and isolated environments [Quammen 2012]. Such
epidemics can spread fast through the population, triggering serious health and economic
crises, such as the recent COVID-19 pandemic. To contain the spread of such epidemics, it
is imperative to accurately identify infected individuals, either for quarantine or treatment.
Moreover, public policies are also often crafted based on the observation and number
(fraction) of infected individuals.

However, in many epidemics - including COVID-19 - it is customary that a frac-
tion of the infections do not exhibit any symptoms and, without testing, such asymp-
tomatic individuals remain hidden [Inui et al. 2020]. Despite not showing symptoms,
such individuals continue to be a health risk, as they continue to infect other individuals,
and their invisible epidemic state only worsens the situation [Arons et al. 2020]. Thus,
identifying asymptomatic individuals is fundamental to building more effective epidemic
containment and public policies.

One approach to identifying asymptomatic individuals is through mass testing,
where individuals without symptoms are tested regularly for the virus. However, such



policies can be expensive [Seguı́ et al. 2021], as tests must be performed continuously
across the population. Therefore, it is important to develop mechanisms that can accu-
rately infer asymptomatic individuals without testing.

Network epidemic models offer a powerful framework to model social contacts
and epidemic processes in order to design and evaluate mechanisms for identifying
asymptomatic individuals from partial observations [Keeling and Eames 2005]. In par-
ticular, the classic SI (Susceptible-Infected) epidemic model in networks considers the
propagation of the epidemic through network nodes where susceptible nodes (S) can get
infected by neighboring infected nodes (I). In this model, nodes are either susceptible (S)
or infected (I), and once infected the node remains infected.

Using this classic model, this work defines a simple and random observation pro-
cess that reveals a random set of the infected population. Such individuals have symptoms
that can be directly observed. Unobserved infected individuals correspond to asymp-
tomatic cases.

However, there are no differences between susceptible nodes and asymptomatic
nodes. Therefore, the objective of this work is to develop an algorithm capable of iden-
tifying asymptomatic nodes using the network structure and the set of observed infected
nodes. The main idea is to use centrality measures for nodes that have not been observed
as infected where a high-ranked node should correspond to asymptomatic nodes. The
main proposal is an adaptation of the betweenness centrality measure, which considers
only infected vertices as final vertices (more details in Section 3). Intuitively, the met-
ric explores the properties of the random infection process, which generally spreads over
shortest paths.

The proposed method is evaluated through simulation of the epidemic process on
different network models and different scenarios (such as the asymptomatic probability).
The results are also compared with other centrality measures, such as the vertex degree
and the fraction of neighbors observed as infected. The true positive and false negative
rates are used to evaluate and compare the different centrality measures. The results
indicate that the proposed method is more efficient than the others in both metrics and in
many different scenarios, showing that the identification of asymptomatic individuals is
possible and effective.

This paper is organized as follows: Section 2 presents the fundamental concepts
of network epidemics and centrality measures, and also some related works; Section 3 de-
scribes the method used to generate asymptomatic individuals and the proposed methods
to infer them; Section 4 describes the evaluation methodology and presents the results;
finally, Section 5 offers a discussion of what we have done.

2. Fundamentals and related works

2.1. Networks

Traditionally, there are several methods to mathematically describe real-world systems.
Translating natural phenomena into equations is essential for us to understand our sur-
roundings. But there is one method in particular that allows us to capture the intrinsic
and hidden relationships between individual objects: networks. Deeply and increasingly
studied and developed since the second half of the 90s, there are network models that are



very well described mathematically. Some of them will be used in this work and therefore
deserve a presentation.

A classic model for generating random graphs developed by Erdős and Rényi in
the 1950s is also used in the study of complex networks. Given a fixed number of vertices
n, each possible edge between pairs of vertices occurs with probability p. Its structural
properties have already been deeply analyzed mathematically based on its parameters. A
shortcoming of this model when we intend to represent real networks is that its degree
distribution follows a binomial distribution while many real systems have a heavy-tailed
degree distribution.

Barabási and Albert’s revolutionary model allowed the construction of a growing
network through the gradual introduction of vertices [Albert and Barabási 2002]. Ex-
tremely important to explain the appearance of hubs (highly connected nodes) and the
lack of normality between the vertices’ degrees, it has a power-law degree distribution,
which is heavy-tailed. The model starts with a small network and at each instant of time,
a new vertex is added with m edges (m is a model parameter) that will connect to the pre-
viously existing vertices. But this choice of vertices to connect is not uniform, it follows
a preferential attachment that prioritizes vertices of higher degree and that’s how it allows
the existence of hubs.

With the aim of studying short distances between two individuals and sparsity in
real complex systems - a phenomenon we call small-world - Watts and Strogatz developed
a network model that manages to harmonize topological aspects that seem antagonistic:
high clustering, short paths, and high sparsity [Watts and Strogatz 1998]. We start with a
regular lattice of n vertices in which each vertex has edges to its neighbors at a distance k
or less, and each of these edges has its endpoints repositioned uniformly with probability
p.

2.2. Network centrality

Different notions of importance can be assigned to nodes as a function of the network
structure, and this is known as node centrality. The degree centrality is arguably the most
simple metric: the centrality of a vertex is given by the number of neighbors it has. Thus,
Cv = dv for a node v ∈ V . This metric can be normalized by the maximum degree of any
node, and thus Cv = dv

n−1
yields a centrality metric that can be used to compare nodes in

different networks. Note that Cv captures a local property of v with respect to the network
structure (namely, its relative degree).

The betweenness centrality [Freeman 1977] seeks to assign greater importance to
vertices that are in the shortest paths between pairs of vertices. For each pair of vertices of
a connected component of the network, there is one or more shortest paths between them.
The betweenness of a vertex reflects the number of times this vertex is on the shortest
path of all pairs of nodes. Vertices with a high betweenness have a greater influence
on the flow of information through the network, as many shortest paths traverse them.
Mathematically, betweenness is defined as:

Cv =
∑

s,t∈V ;s,t ̸=v

σ(s, t|v)
σ(s, t)

, (1)



where σ(s, t) is the number of shortest paths between vertices s e t, and σ(s, t|v) is the
number of such shortest paths that pass through v.

2.3. Network epidemics

In recent years, networks have been used to model the spread of contagious diseases. Tak-
ing the vertices as a representation of individuals, the network’s edges can model different
forms of contact, which allows us to use this structure for the most diverse diseases.

Compartmental epidemic models are utilized jointly. Each individual is assigned
to a single epidemic state: Susceptible, Infected, Recovered, Exposed, etc., and as the
epidemic progresses, individuals transition through classes. Here, we focus on the SI
model, composed only of the Susceptible (S) and Infected (I) compartments, and in which
the only transition occurs from S to I , that is, healthy individuals can be infected, and once
infected they no longer transition through epidemic states.

Consider a discrete-time SI model with t = 0, 1, . . . in a connected and undirected
network (graph) G = (V,E), where V and E denote the vertices set and the edges set. Let
S(t) and I(t) be the set of susceptible vertices and infected vertices at time t, respectively.
Note that S(t) ∩ I(t) = ∅ and S(t) ∪ I(t) = V because every vertex has exactly one
epidemic state at each time step.

We will consider a probabilistic epidemic model, with parameter β > 0 that de-
notes the infection probability through an edge, that is, the probability that an infected
vertex infects a susceptible neighbor. The contagion event is independent for each edge
and each time step. More precisely, the epidemic evolves as follows: for each vertex
u ∈ S(t), the probability that u belongs to I(t+ 1) is given by

P [u ∈ I(t+ 1)|u ∈ S(t)] = 1− (1− β)ru(t), (2)

where ru(t) is the number of infected neighbors of u at time t,

ru(t) =
∑
v∈Nu

1(v ∈ I(t)), (3)

where Nu is the set of neighbors of u and 1(·) is the indicator function. Notice that the
probability in Eq. 2 is the complement to the event of vertex u not being infected in time
t, that is, none of its neighbors infect it.

Notice that all the vertices that have at least one infected neighbor also have a pos-
itive probability of being infected at each time step. In that way, eventually, the epidemic
will spread through the network and all vertices become infected for some sufficiently
(but finite) large t, considering that the network is connected.

We will assume that the epidemic starts with only one infected vertex, chosen ran-
domly and uniformly among all network vertices. That is, I(0) = {v} with v uniformly
chosen from V , and S(0) = V \ {v}.

While the techniques proposed in this work focuses on the SI epidemic model, a
brief discussion of other epidemic models is presented in Section 5.



2.4. Related works

Networks have been widely used to trace infection routes and contacts in epidemic sce-
narios as well as in finding epidemic sources, and it is a main challenge to propose social
interventions through the analysis of network epidemics [Pellis et al. 2015]. Many works
have already taken advantage of vertex centrality measures to infer the origin of dis-
semination in networks. [Comin and da Fontoura Costa 2011] uses degree, betweenness,
closeness, and eigenvector centrality for this purpose. [Shah and Zaman 2011] developed
a ‘rumor centrality’ to find the initial vertex of an SI epidemic.

[Huang et al. 2023] utilize dynamical equations to model transitions between dif-
ferent epidemic compartments and combines it with contact network topology and data
on the observed infection history to infer asymptomatic hidden nodes. The state transition
of each node is modeled as a Markov process in which the probability transitions are de-
termined by the infection status of known nodes at previous time steps. Infection histories
of infected nodes are known, helping in tracking the asymptomatic nodes.

[Chen et al. 2023] proposes a prediction algorithm based on a Machine Learning
algorithm: TrustRank. This algorithm is a semi-automatic classification method that ranks
objects based on their trust level, and thus it is a good framework to infer asymptomatic
individuals. They use the information obtained from machine learning as a key metric to
rank the nodes and determine how much propagation a node has. The prediction results
are then used to propose isolation measures.

The Degree and Contact methods (detailed in Section 3) are used as compara-
tive methods in works with the same proposal as ours: finding asymptomatic individu-
als in a network epidemic. [Zhang et al. 2023] use Bayesian inference methods to infer
unobserved cases of infection, with backward temporal propagation processes and cross-
ensemble covariability. An important difference in the process is that the techniques are
used by them at each time step, while here the entire inference method is carried out only
at the end of the epidemic dynamics.

3. Asymptomatic individuals identification

Consider an epidemic unfolding on a network as described by the model presented in
Section 2.3. Consider also that the epidemic is observed only at a time step t. For this time
step, the epidemic state of each vertex is revealed to the observer. However, asymptomatic
vertices will be observed as susceptible (healthy).

We will consider the following model to define which vertices are asymptomatic.
At time step t, each infected vertex belonging to the set I(t) will be asymptomatic with
probability p, independently from the other vertices. Notice that p determines the fraction
of asymptomatic vertices in the population.

In this way, we can define the set of observed vertices O(t) in the following way:
for each vertex v ∈ I(t), v ∈ O(t) with probability 1−p. Finally, the set of asymptomatic
vertices is defined by A(t) = I(t) \O(t). Notice that the set V \O(t) are all the vertices
observed as susceptible.

Figure 1 illustrates a network epidemic at time t and the vertices observed as
infected at this time step. Notice that the asymptomatic vertices (those not observed as



infected) are indistinguishable from susceptible vertices. The aim of this work is exactly
to identify the asymptomatic vertices from this observation, that is, to recover the set A(t).

In what follows, we will define centrality measures to rank network vertices that
are not observed as infected with the aim of revealing the asymptomatic ones. Intuitively,
vertices that appear at the top of the ranking should have higher chances of being asymp-
tomatic.
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Figure 1. Network diagrams with true nodes’ labels. Figure (a) shows in blue the
susceptible nodes and in red the infected ones. In Figure (b) we have this
same color classification but from an observation point of view, so S and
A are indistinguishable.

3.1. Degree-based method

The higher the degree of a vertex, the higher the chance of having an infected neigh-
bor and, thus, of becoming infected. This centrality measure does not take into account
the epidemic state of any vertex in the network and assigns to the vertices their degree
centrality.

cd(v) = |Nv|, (4)

Nv is the set of neighbor nodes of v.

3.2. Contact method

This centrality measure modifies the degree centrality to add information on vertices ob-
served as infected. The importance of a vertex is no longer given only by its degree; but
by the fraction of observed infected neighbors, that is:

cc(v, t) =
|Nv ∩O(t)|

|Nv|
. (5)

Intuitively, the more infected neighbors a vertex has, the greater the chance of this
vertex also being infected.

3.3. Betweenness method

The change we make here regarding betweenness centrality seeks to focus the analysis
on the shortest paths between pairs of vertices that have been observed as infected. The



centrality of a vertex v (that has not been observed as infected) will be the fraction of
shortest paths between vertices belonging to O(t) that passes through v.

cb(v, t) =
∑

x,y∈O(t)

σ(x, y|v)
σ(x, y)

, (6)

where σ(x, y) is the number of shortest paths between vertices x and y, and σ(x, y|v) is
the number of these paths that pass through v.

The above betweenness centrality can be computed by running a breadth-first
search (BFS) for each node observed as infected. Assuming a connected graph, the BFS
has running time complexity Θ(|E|). Assuming a total of |O(t)| observed infected nodes
at time t, the total running time of this centrality metric is Θ(|O(t)||E|).

Given that the infection process occurs through the network edges, a vertex that is
midway between several pairs of infected vertices will have a greater chance to be infected
than another vertex that belongs to just a few of these shortest paths, intuitively. This
method aims to take advantage of the network’s structural information (shortest paths)
and the infection process.

3.4. Estimating the asymptomatic individuals

Using the centrality measures, we will define the set of vertices considered asymptomatic.
In particular, vertices not observed as infected will be ranked decreasingly according to
each centrality measure defined above. We will consider the first k vertices from the
ranking as being asymptomatic, defined as

Âx(k, t) = {v | v ∈ top-k nodes in x centrality ranking given O(t)}, (7)

where x is the degree, contact, or betweenness centrality. Notice that k is a parameter
from the model to identify asymptomatic individuals. Intuitively, the higher the value of
k, the greater the number of asymptomatic vertices at the set, however, the greater the
number of susceptible vertices as well. In this way, there is a trade-off to the value of k,
as discussed hereafter.

4. Metrics and results

4.1. TPR, FPR, and AUC

Traditional classification metrics will be considered to evaluate the accuracy of different
centrality measures in identifying asymptomatic vertices. The true positive rate (TPR)
represents the fraction of correct positives returned by the centrality measure, given by

TPRx(k, t) =
|Âx(k, t) ∩ A(t)|

|A(t)|
, (8)

where x is the degree, contact, or betweenness measure. The false positive rate (FPR)
represents the fraction of incorrect positives returned by the centrality measure, given by

FPRx(k, t) =
|Âx(k, t) ∩ S(t)|

|S(t)|
. (9)



For each time step t and parameter value k, we have a set of true positive nodes
(those belonging to Âx(k, t) that are asymptomatic) and false positive cases (those belong-
ing to Âx(k, t) that are susceptible) and thus the above metrics can be directly calculated.

Given a fixed t, for each value of k, we have a value for TPR and another one for
FPR. By increasing k, we generate a curve with these pairs of values (that increase with
respect to k) that characterizes the performance of the centrality measure. Note that when
k assumes its largest possible value, namely k = |S(t)| + |A(t)| both TPR and FPR are
equal to one.

In order to measure and compare different centralities without using the value of k,
we compute the area under this curve, called AUC. The closer this value is to 1, the better
the efficiency of the centrality in identifying correctly the asymptomatic individuals.

4.2. Evaluation methodology
With the aim of evaluating the centrality measures in networks with different structures,
we use different network models with the following parameters to generate networks with
the same expected degree:

• Watts-Strogatz: k = 8 e p = 0.3;
• Barabási-Albert: m = 4;
• Erdős-Rényi: p = 8/3000.

The three networks have n = 3000 vertices and all have average degree equals to 8 (see
parameters details in Sec 2.1).

To start the network epidemic, a single node is chosen uniformly at random to be
infected. Then, the epidemic process is simulated on the generated network by randomly
infecting neighboring nodes at each time step according to the SI epidemic model pre-
sented in Section 2.3. The simulation ends when the fraction of infected vertices reaches
20% of all vertices, at time step t20, or 60%, at time step t60 (different simulations for each
case). At this time, the infected vertices are chosen to be observed, with the following ob-
servation rates, p: 5%, 10%, 25%, 50%, 75%, 90%. The infected vertices not chosen by
the observation process are the asymptomatic nodes.

For each network model and each observation rate, we rank the vertices that were
not observed as infected (i.e., asymptomatic and susceptible) using the three centrality
measures. Using the top-k ranking vertices as asymptomatic, we evaluate the performance
of each centrality measure with the AUC metric.

Since both the network model and the epidemic model are random, a total of
ten independent simulations have been performed for each network and each observation
time. The performance metrics have been calculated for each simulation, but in what
follows the mean and standard deviation over the ten runs are presented.

4.3. Results
Figure 2 shows the FPRxTPR curves for the three methods in different scenarios. In
these graphs, the plotted diagonal represents what the performance of a random inference
model would be, whose AUC is equal to 0.5.

In a network generated by the Watts-Strogatz (WS) model, for any observation
rate in both the scenario with 20% infected nodes and the scenario with 60% infected
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Figure 2. (a) WS network with 20% of infected nodes; (b) BA network with 20% of
infected nodes; (c) ER network with 60% of infected nodes.

nodes, the Degree method presents very little difference in performance when compared
to a random model that cannot distinguish between positive cases and negative cases. This
can be checked by the AUC values very close to 0.5 in Table 1. The Degree method was
unable to achieve AUC metrics greater than 0.6 in any configuration for this network,
which indicates a low-quality performance.

When we have 20% of infected individuals, the Betweenness method already
performs acceptably well from an observation rate of 10% (AUC greater than 0.7) and
presents excellent results with AUC greater than 0.8 for observation rates greater or equal
to 50%. Also for 50% or higher observations, the Contact method has a notable perfor-
mance improvement and can be competitive with Betweenness, even slightly outperform-
ing the latter.

Stop at t20
Obs. 5% 10% 25% 50% 75% 90%

Betw. 0.63 ± 0.02 0.71 ± 0.02 0.78 ± 0.02 0.83 ± 0.01 0.85 ± 0.01 0.86 ± 0.02
Cont. 0.56 ± 0.03 0.62 ± 0.02 0.73 ± 0.02 0.8 ± 0.02 0.85 ± 0.01 0.88 ± 0.03
Degr. 0.57 ± 0.01 0.56 ± 0.01 0.55 ± 0.02 0.56 ± 0.02 0.56 ± 0.02 0.55 ± 0.03

Stop at t60
Obs. 5% 10% 25% 50% 75% 90%

Betw. 0.63 ± 0.02 0.66 ± 0.01 0.7 ± 0.01 0.73 ± 0.02 0.74 ± 0.02 0.74 ± 0.02
Cont. 0.6 ± 0.03 0.61 ± 0.02 0.66 ± 0.01 0.73 ± 0.02 0.78 ± 0.02 0.81 ± 0.02
Degr. 0.58 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 0.58 ± 0.02 0.59 ± 0.02

Table 1. AUC results for the three methods in each epidemic scenario for a WS
network (average and standard deviation).

For a BA network, Degree and Contact present very similar AUC metrics, and in
some cases Degree can even achieve slightly better results, but neither of them reaches any
AUC value greater than 0.7. In this network, the Betweenness method is constantly better
than the other two and is also the only one to return results that are completely distant from
a random methodology, with AUC values above 0.7. It is very interesting to note that,
except for the Betweenness method, the others do not show a performance improvement
when we increase the observation rate. Between their lowest and highest efficiency values,
they vary no more than 0.08 for Contact and 0.02 for Degree, while Betweenness improves



its values up to 0.09 more than what we have for the lowest observation rate (5%).

Stop at t20
Obs. 5% 10% 25% 50% 75% 90%

Betw. 0.69 ± 0.02 0.69 ± 0.01 0.72 ± 0.01 0.76 ± 0.01 0.77 ± 0.02 0.78 ± 0.02
Cont. 0.66 ± 0.03 0.63 ± 0.03 0.63 ± 0.02 0.63 ± 0.03 0.65 ± 0.02 0.65 ± 0.03
Degr. 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.66 ± 0.01 0.65 ± 0.03 0.67 ± 0.03

Stop at t60
Obs. 5% 10% 25% 50% 75% 90%

Betw. 0.67 ± 0.01 0.67 ± 0.01 0.7 ± 0.01 0.73 ± 0.02 0.75 ± 0.02 0.76 ± 0.01
Cont. 0.63 ± 0.01 0.59 ± 0.02 0.55 ± 0.02 0.55 ± 0.02 0.58 ± 0.01 0.59 ± 0.02
Degr. 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.02 0.66 ± 0.03

Table 2. AUC results for the three methods in each epidemic scenario for a BA
network (average and standard deviation).

In an ER network, for low observation values (5% and 10%), the Degree method
can perform better even than Betweenness (see (c) in Figure 2), but not on its own merits.
In fact, the first one exhibits almost constant behavior as we increase the observation rate,
and never shows AUC values above 0.7. Betweenness, on the other hand, starts with
slightly worse results at low observation rates but quickly starts to perform well and even
reaches excellent results, AUC close to 0.8.

It is interesting the difference of velocity in improvement as we increase the ob-
servation rate for Betweenness and Contact in both scenarios. The Betweenness method
has very similar values when we look at the results with a 5% observation rate (0.62 in
both cases), but if we look at the values with a 90% observation rate, the method reaches
considerably better results in the 20% infected nodes scenario - when compared to the
60% of infected nodes (0.79 and 0.73). The same happens with Contact, 0.55 and 0.53
for the lowest observation rate, and 0.77 and 0.69 for 90% observation rate.

Stop at t20
Obs. 5% 10% 25% 50% 75% 90%

Betw. 0.62 ± 0.02 0.66 ± 0.02 0.73 ± 0.02 0.76 ± 0.01 0.78 ± 0.01 0.79 ± 0.03
Cont. 0.55 ± 0.01 0.58 ± 0.01 0.65 ± 0.02 0.71 ± 0.02 0.75 ± 0.01 0.77 ± 0.03
Degr. 0.6 ± 0.01 0.6 ± 0.02 0.6 ± 0.02 0.6 ± 0.01 0.61 ± 0.02 0.62 ± 0.03

Stop at t60
Obs. 5% 10% 25% 50% 75% 90%

Betw. 0.62 ± 0.01 0.66 ± 0.01 0.69 ± 0.02 0.72 ± 0.01 0.72 ± 0.01 0.73 ± 0.02
Cont. 0.53 ± 0.01 0.56 ± 0.01 0.58 ± 0.01 0.63 ± 0.02 0.67 ± 0.02 0.69 ± 0.02
Degr. 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.66 ± 0.01 0.65 ± 0.01 0.65 ± 0.02

Table 3. AUC results for the three methods in each epidemic scenario for a ER
network (average and standard deviation).

It is worth noting that Betweenness and Contact are not as efficient in the scenario
with the largest spread of the epidemic (60% of infected nodes) as they are with 20%
of infected nodes, having a drop in efficiency of up to 14% when compared to the stop
scenario at t20. However, Degree is not affected by this. It is also very little affected by
the increase in the observation rate, and as already mentioned, it has very low variation in



its AUC values. The same happens with Contact on the BA network. The Betweenness
method, on the other hand, shows continuous improvement as we increase the observation
rate in any network and any epidemic scenario.

5. Conclusion

This work considered the problem of identifying asymptomatic nodes in a network epi-
demic when a fraction of the infected population is randomly observed (the non-observed
infected nodes correspond to the asymptomatic nodes). The classic SI epidemic model is
considered and the random observation of infected individuals occurs at some instant of
the epidemic process (all at once). Different centrality metrics were used to rank the nodes
that had not been observed as infected and top-ranked nodes were taken as asymptomatic.

The proposed method based on betweenness centrality consistently outperforms
other centrality metrics, especially in scenarios with low observation of infected individu-
als (observation rate equal to or less than 25%). Moreover, the performance of this metric
improves as the fraction of unobserved individuals decreases, for all network models.

This suggests an advantage in using it in scenarios where it is difficult to carry
out mass testing or when there is some suggestion of a predominance of asymptomatic
individuals over those who show symptoms. As it is a method that takes advantage of
the contagion logic of the epidemic in a network, it can achieve high AUC values, even
though it is based only on the topological structure of the network and is much simpler
than other proposals that use probabilistic tools such as Bayesian inference.

However, in scenarios where the epidemic has spread more (when 60% of nodes
are reached), there is a drop in performance in the betweenness-based estimator with
respect to its performance at 20% of infected nodes. The large number of observed nodes
generates a considerable number of shortest paths that end up encompassing the majority
of the remaining nodes. This phenomenon increases the number of false positive cases
and the betweenness centrality does not obtain the best results in this scenario.

It is surprising that degree centrality, even without having any epidemic informa-
tion, manages to perform better than contact centrality in some scenarios, especially on
BA networks. But if we think about the case of a hub, for the degree method it will be
positioned very high in the ranking, but given its large number of connections, the frac-
tion of infected neighbors ends up being dissipated. If this hub is indeed asymptomatic,
degree centrality will identify it more easily.

5.1. Extension to other epidemic models

While this work has focused on the SI epidemic model, other classic models like SIR or
SIS could be considered. The methodology here proposed could be directly applied to the
SIR epidemic model. In this case, a node observed in the “Recovered” state indicates that
it was previously infected. Moreover, a node in R that was not observed can be treated as
an asymptomatic node. Evaluations of this scenario are beyond the scope of this work.

As for the SIS model, the proposed methodology is not directly applicable since
only infected nodes at time t are observed. An infected node that has returned to the
Susceptible state but possibly infected others would never be observed, and this could
make the problem of identifying asymptomatic nodes more difficult. A possible approach



would be to observe the epidemic multiple times during its evolution in different instants
of time since this would allow us to observe more infected nodes (including ones that later
became susceptible). However, evaluations of this scenario are beyond the scope of this
work.
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