
Scheduling Based on Process Behavior Analysis

Paulo H. R. Gabriel1 and Rodrigo F. de Mello1

1Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação

Av. Trabalhador são-carlense, 400 – São Carlos – SP – Brazil

{phrg,mello}@icmc.usp.br

Abstract. Process scheduling researches attempt to understand the dynamics of
applications in order to improve resource allocation policies. Recent studies in
this area have analyzed the behavior of single processes without considering
how they interact with each other. This drawback motivated this paper, which
proposes a new process scheduling approach based on how applications interact
when competing for resources. This approach is based on concepts of dynamical
systems theory which state that stabler organizations can be reached by means
of perturbations in system components. First, we analyze process occupation
variables to obtain behavioral states which represent a system component here.
Next, we combine the execution of processes by prioritizing the one with higher
estimated CPU load. The execution of processes is then interleaved accord-
ing to their predicted workloads and the system tends to be stabler. Here, the
term system refers to the combination of behavioral states of all processes. To
validate this approach, we consider simulated scenarios representing different
workloads of a computational environment, obtaining shorter execution times
and, therefore, higher performance as result.

Resumo. Pesquisas náarea de escalonamento têm procurado entender a dina-
micidade de aplicaç̃oes, a fim de melhorar polı́ticas de alocaç̃ao de recursos.
Estudos recentes analisam o comportamento de processos individuais sem con-
siderar como eles interagem entre si. Essa limitação motivou este trabalho,
que prop̃oe uma nova abordagem de escalonamento de processos com base na
maneira como as aplicações interagem quando competindo por recursos. Essa
abordagemé baseada em conceitos de sistemas dinâmicos segundo os quais
organizaç̃oes est́aveis podem ser alcançadas por meio de pertubações nos com-
ponentes do sistema. Foram analisados processos com diferentes ocupações a
fim de obter estados comportamentais que representam um componente do sis-
tema. Em seguida, combinou-se a execução de processos, priorizando os de
maior carga estimada de CPU. Intercala-se, portanto, a execução de processos
de acordo com suas cargas de trabalhos preditas, o que tende a um sistema
mais est́avel. No contexto deste artigo, o termo sistema se refereà combinaç̃ao
de estados comportamentais de todos os processos. Para validar a abordagem,
considerou-se cenários simulados representando diferentes cargas de um ambi-
ente computacional obtendo, como resultado, tempos de execução menores, ou
seja, maior desempenho.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2033

1. Introduction

The interaction of multiple systems is a major research topic for different scientific ar-
eas [Kennedy et al. 2001, Alligood et al. 1996, González-Miranda 2004]. In Physics, for
example, the synchronization of multiple out-of-phase harmonic oscillators has been stud-
ied and formalized. In Astronomy, Kepler equations are part of several studies to analyze
the influences of planets’ orbits on satellites, comets, etc. In Biology, the relationship of
predators and preys can be described by Lotka-Volterra equations. Still in Biology, the
behavior of swarms, such as birds migration and organization of ant and bee colonies has
been studied in an attempt to understand emergent characteristics.

More recently, different branches of Computer Sciences have looked for inspi-
ration in such studies. For example, bio-inspired meta-heuristics, like ant colony and
particle swarm, have been successfully applied to solve several optimization and compu-
tational intelligence problems [Kennedy et al. 2001]. Still in this area, process scheduling
researches have been attempting to understand the dynamics of applications to improve
resource allocation policies [Mello and Yang 2009, Dodonov and Mello 2010]. The main
studies in this subject consider the monitoring and analysis of application occupation vari-
ables (e.g., CPU load, memory accesses, and hard disk utilization over time) in order to
characterize behavioral states and, based on those, improve resource allocation. However,
these studies analyze single processes and, consequently, there is no particular study to
understand how they interact with each other1.

The possibility of understanding the behavior of individual processes and also
their interactions and influences has motivated this paper, which proposes a new pro-
cess scheduling approach based on how applications interact when competing for re-
sources. This approach is based on dynamical systems theory [Alligood et al. 1996,
González-Miranda 2004] and considers how the behavior of different processes can be
rearranged or combined over time in order to obtain stabler dynamical systems2. By
finding a stabler representation for the combination of multiple processes, we attempt to
optimize resource allocation over time. For example, by having two or more processes
competing for the same CPU, we analyze occupation variables for every one and, thus,
obtain behavioral states associated with each process. Such states represent, for instance,
amounts of CPU, memory and hard disk consumed. Afterwards, we attempt to inter-
leave the execution of both processes by prioritizing the one with higher estimated CPU
load. This strategy tends to a stabler system, resulting in shorter execution times, meaning
higher performance. All these steps are performed by our scheduling policy.

The remainder of this paper is organized as follows: Section 2, presents some re-
lated work, focusing on how predictions improve scheduling decisions; Section 3 address
concepts of dynamical systems; Section 4 details our approach, presents experimental
results and also the analysis; Conclusions and future directions are reported in Section 5.

1This interaction is related to how processes compete to obtain resources and modify one each others
behavior.

2It is important to make clear that ‘stabler’ is a term related to dynamical systems which means there is
less behavioral variation. Such variations could jeopardize system forecasting.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2034

2. Related Work

Several studies have confirmed that application knowledge can improve scheduling de-
cisions. Many of these researches confront features provided by a set of computational
resources in order to optimize allocation and minimize the response time of processes. In
this venue, [Ferrari and Zhou 1988] performed an experimental study considering some
load balancing algorithms proposed in the literature. It starts looking for clues to confirm
the costs related to resource allocation and decision making. Using analytical models
and simulation, [Sevcik 1989] demonstrated that it is possible to substantially improve
scheduling decisions using knowledge about applications.

Following this same research venue, [Devarakonda and Iyer 1989] developed one
of the first studies employing a pattern recognition technique to predict the utilization of
resources, such as CPU processing, input/output operations and memory accesses. They
employed ak-means algorithm to identify states of resource occupation in a monoproces-
sor UNIX system. The authors, however, did not consider communication and synchro-
nization costs. On the other hand, their study motivated further works focused on the use
of historical information.

[Feitelson and Nitzberg 1995], for example, showed that the execution time of
parallel applications can be estimated from repeated executions, indicating that histori-
cal behaviors of applications can be used to improve future scheduling decisions. The
authors also analyzed production data and confirmed that approximately two thirds of ap-
plications are executed multiple times. In another study, [Feitelson et al. 1997] noticed
that repeated executions of the same application tend to present similar patterns of re-
source utilization.

Other researchers, like [Gibbons 1997], [Smith et al. 2004] and [Downey 1997]
focused their studies on the prediction of response times of parallel applications based
on previous executions. [Gibbons 1997] made predictions examining categories of appli-
cations while [Smith et al. 2004] used search techniques, such as greedy search and ge-
netic algorithms, to find historical information based on application similarity. They used
such information to characterize and predict the behavior of new applications. The same
methodology was followed by [Krishnaswamy et al. 2004], who proposed algorithms to
estimate the process execution times.

On the other hand, [Downey 1997] estimated process execution times by mod-
eling cumulative distribution functions for every application category. The author
employed them to approximate the behavior of future applications. More recently,
[Schopf and Berman 1999] proposed the use of stochastic processes to parametrize per-
formance characteristics, such as bandwidth, available CPU, message size and operation
accounting. Later, [Lee and Schopf 2003] adopted regression models to establish rela-
tionships between performance characteristics and execution times of past applications.

Still in terms of historical information, [Dinda 2001] studied the scheduling prob-
lem considering a different point of view: the resource behavior instead of the process
one. The author assumed an auto-regressive model with sixteen coefficients to estimate
the CPU load of computers. According to his policy, processes are allocated on computers
at lower predicted loads. He concluded that this policy improves load balancing, which
was also later confirmed by [Chunlin and Layuan 2009].

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2035

Looking for a more precise prediction, [Mello and Yang 2009] and
[Dodonov and Mello 2010] considered dynamical systems concepts and nonlinear
prediction techniques to model and predict process behaviors. [Mello and Yang 2009]
monitored processes occupation variables over time and evaluated their similarity and
recurrence of behavioral patterns. They calculated the required number of past variable
observations to efficiently forecast their future occurrences (e.g., CPU load, memory oc-
cupation, etc.). The authors presented a theoretical proof of efficiency for the estimation
of the embedded and separation dimensions using real-world application traces. Such
estimations are applied to Takens’ immersion theorem [Takens 1980] in order to predict
future process occupations. The study was extended by [Dodonov and Mello 2010], who
proposed a framework to provide an on-line and adaptive behavior prediction mechanism
for an efficient application scheduling based on the anticipation of communication events.
Results obtained in heterogeneous environments confirm the efficiency of the prediction
mechanism, which outperforms conventional scheduling policies.

All these studies have highlighted the relevance of using application knowledge
in process scheduling. However, even works that attempt to obtain more precise pre-
dictions [Mello and Yang 2009, Dodonov and Mello 2010] are limited to the analysis of
individual processes and do not consider the interaction of multiple processes and how
it can affect the scheduling. In order to overcome this drawback, we here study and
consider adaptations in the interaction of multiple processes to reach a stabler resultant
system. Such stability, derived from dynamical systems [Alligood et al. 1996], improves
the predictability of behavioral states. The next section describes the dynamical systems
concepts considered in our approach.

3. Dynamical Systems

A dynamical system is composed of a set of possible states and a rule that determines
its current state in terms of past ones. Mathematically, a dynamical system is described
by xn+1 = f(xn), wheren ∈ B (B ⊂ R) denotes time,x : B → R represents the
state of the system andf : R → R is the rule or evolution law [Alligood et al. 1996]. In
this case, the rule defines the next state in function of past ones, therefore this system is
characterized as deterministic. Besides deterministic systems, there is also another class,
named stochastic, in which rules also involve random terms [Alligood et al. 1996]. In
addition, such dynamical systems also rely on initial conditions. These conditions define
the input values for the rule which, consequently, affect system outputs.

In order to illustrate a dynamical system, let us consider the Logistic map pre-
sented in Equation 1, which is traditionally used to model population growth over time.
Let this map start with the following initial conditionsb = 3.8 and x0 = 0.5, for
t ∈ [0, 500] iterations.

xt+1 = b · xt · (1.0 − xt) (1)

Figure 2(a) shows the Logistic map outputs given the presented conditions. By
conducting a detailed analysis, one can conclude this function presents low recurrence,
chaoticity and behavior instability [Alligood et al. 1996]. Therefore, it is difficult to pre-
dict such a system by using statistical methods. However, one can reconstruct this system

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2036

in order to observe internal regularities and simplify its understanding. This reconstruc-
tion supports the estimation of the rule, which indicates how the system evolves over time.
Consequently, by reconstructing a given set of outputs, one may obtain that particular sys-
tem rule, understand and predict it.

[Whitney 1936] observed the possibility of reconstructing data in multidimen-
sional spaces, applying the concept of differential manifolds. Mathematically,M ⊂ R

k

is a manifold of dimensionm if, for each pointp ∈ M , there is a neighborhoodU ⊂ M

of p and a homeomorphismx : U → U0. U0 is an open set ofRm, such that the inverse
homeomorphismx−1 : U0 → U ⊂ R

k is an immersion of classC∞. In summary, for
eachu ∈ U0, the derivatived(u)

dx
: R

m → R
k is biunivocal.

Figure 1 shows an example of a plane parametrizationR
m−1 ×R+ to R

k. Given a
pointq′, we can, by means ofφq : H0 → H ∩M , find a corresponding pointq ∈ M . This
example illustrates the mapping of a point and its neighborhood in a space with a higher
number of dimensions.

Figure 1. Example of a manifold.

This mapping allow understanding unobservable or underrepresented behav-
iors which are better described in a higher number of dimensions. From this study,
[Whitney 1936] proposed his immersion theorem, whereby every trajectory inm dimen-
sions can be mapped into a space with2n + 1 dimensions.

Based on such a theorem, [Takens 1980] proved that, instead of mapping states
into a 2n + 1-dimensional space, one can improve reconstruction considering time
offsets. Thus, the outputs of a dynamical system, here seen as an one-dimensional
time seriesx0, x1, . . . , xn−1, can be unfolded in a multidimensional (or phase) space
in the formxn(m, τ) = (xn, xn+τ , . . . , xn+(m−1)τ), wherem is the embedded dimen-
sion andτ represents the time delay. This theorem has been successfully employed to
estimate dynamical system rules, thus, simplifying the behavioral studies and predic-
tions [Alligood et al. 1996]

To illustrate the concepts of embedded dimension and time delay, we consider the
output of the Logistic map (Equation 1) unfolded in a2-dimensional space (i.e., m = 2)
and withτ = 1, which results in pairs of points(xt, xt+1) (see Figure 2(b)). After such
unfolding, we can observe the rule which generated the outputs and, consequently, study,
understand and model other real-world problems by using Takens’ immersion theorem.
By making a regression of the resulting point pairs, we obtain the dynamical system rule

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2037

and can determine future states.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

S
er

ie
s

o
b
se

rv
at

io
n
s

Time

(a) Logistic map outputs.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
t-

1

Time t

(b) Logistic map reconstructed with embed-
ded dimension2 and time delay1.

Figure 2. Study on Logistic map.

The embedded dimension defines the number of axis of the phase space, which
are required to unfold the inherent behavior of systems. In this example, the series
demands two axis, but other cases may require more (e.g., the Lorenz map requires3
axis [Alligood et al. 1996]). Several methods have been proposed to determine the em-
bedded dimension as well as the time delay. The most accepted ones are the False Nearest
Neighbors [Kennel et al. 1992] for the embedded dimension and the Auto-Mutual Infor-
mation [Fraser and Swinney 1986] for the time delay.

In this paper we employ such methods to estimate embedded dimensions and
time delays in order to improve the reconstruction of system outputs in multidimensional
spaces. By estimating dynamical system rules, we are able to understand and make pre-
dictions for a given system. Systems of interest here are processes and their outputs are
composed of occupation variables which change over time. As we are particularly in-
terested in how CPU load varies over time, we monitor that variable for every process
and, then, reconstruct each process in a different multidimensional space, obtaining the
rule for every process which determines its CPU occupation states. The states of different
processes may influence one each other, reducing and/or improving performance. This
paper focuses essentially on how to modify such influences in order to make processes
run faster.

4. The Proposed Approach

This paper was motivated by influences and interactions of multiple dynamical systems
[González-Miranda 2004]. For example, a systemA may modify the behavior of another
systemB as they compete for resources. Understanding such influences, we claim that
it is possible to modify the points of interaction among them and, thus, improve perfor-
mance.

In order to illustrate the main ideas that motivated this study, consider two dynam-
ical systems represented by the following rules:f(x) = sin(x) andg(x) = sin(x/2.0 +
y) · 2.0. The outputs of such systems are shown in Figure 3(a). Also consider that the
person who obtained those outputs does not know the rules, thus he/she needs to obtain
them by using the procedure described in Section 3. One will reconstruct the outputs by

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2038

computing the False Nearest Neighbors and the Auto-Mutual Information methods and
apply the resultant embedded dimension and time delay to Takens’ immersion theorem
[Takens 1980], obtaining the reconstructions presented in Figure 3(b).

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000

S
er

ie
s

o
b
se

rv
at

io
n

Time

f(x) g(x)

(a) Functionsf(x) andg(x).

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

T
im

e
t-

1

Time t

f(x) g(x)

(b) Attractors off(x) andg(x) functions.

Figure 3. Functions f(x) and g(x) and their attractors.

Now consider that both systems are combined through a simple sum of observa-
tions. This combination results in a third system which represents the same computer
receiving both processes at the same time; the scheduler will then attempt to run both to-
gether. This third system is characterized by functionh(x) = sin(x)+sin(x/y+2.0)+2.0,
whose outputs are illustrated in Figure 4(a). The reconstructed behavior of this third sys-
tem (Figure 4(b)) has a region with a behavior different from that previously observed
when evaluating single processes. This reconstruction confirms that the combination of
systems forces their interactions in terms of resource utilization, modifying the recon-
structed behavior, which will also be called dynamical system attractor or simply attractor
from now on.

-3

-2

-1

 0

 1

 2

 3

 0 500 1000 1500 2000 2500 3000

S
er

ie
s

o
b
se

rv
at

io
n
s

Time

(a) Functionh(x).

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

T
im

e
t-

1

Time t

(b) Attractor ofh(x) function.

Figure 4. Function h(x) and its attractor.

Additional combinations of functionsf(x) andg(x) are illustrated in Figure 5(a).
We observe that the attractors (Figure 5(b)) show different behavior for different combi-
nations, motivating the search for situations in which, by combining distinct functions in
different ways (i.e., in terms of time displacements), there is an equilibrium between these
functions, generating stabler attractors and, therefore, a more uniform behavior.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2039

-3

-2

-1

 0

 1

 2

 3

 0 500 1000 1500 2000 2500 3000

S
er

ie
s

o
b
se

rv
at

io
n
s

Time

Combination 1
Combination 2

Combination 3
Combination 4

(a) Offsets off(x) andg(x)

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

T
im

e
t-

1

Time t

Combination 1
Combination 2

Combination 3
Combination 4

(b) Attractors of the offsets.

Figure 5. Offsets of f(x) and g(x) and their attractors.

To apply this study in the context of process scheduling, we have proposed an
analytical model to evaluate combinations (in terms of time displacements) considering
the behavior of two processes characterized by the same function:p(x) = q(x) = 50 ·
sin(x) + 50. Through offsets inx-axis (which represents time), different attractors were
obtained, allowing assessing and obtaining stabler situations. Figure 6 shows the response
time according to such a model.

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250

T
im

e
(s

)

Offsets in x-axis

Figure 6. Response times.

We can observe that, for certain offsets inx, the response time is significantly
lower, providing evidence that some combinations ofp(x) andq(x) result in a more ap-
propriate scheduling in terms of makespan (makespan represents the total execution time
of an application). Figures 7, 8 and 9 illustrate the behavior of combinations ofp(x) and
q(x) varying offsets inx. The respective attractors are also shown.

By considering this example, we observe that a stabler attractor has been ob-
tained by using offset31 on x-axis, i.e., the combined behavior of processes tends to
a region of higher stability. Such stability is observed, in terms of dynamical systems
[Alligood et al. 1996], because there is a slight variation in the resulting attractor formed
by the combination of both systems, as seen in Figure 8(b). In different words, the states of
the resulting system are more concentrated in a specific region. On the other hand, when
such combination results in unstabler systems, we observe novel orbits being formed such
as in Figure 9(b) (two well-defined concentric orbits). The presence of more orbits indi-
cates the system has higher probability to vary, making prediction more complex. This

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2040

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140

C
P

U
 l

o
ad

Time (s)

(a) Offset 0.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
t-

1

Time t

(b) Attractor to offset 0.

Figure 7. Combination of p(x) and q(x) with offset 0.

 50

 60

 70

 80

 90

 100

 110

 0 20 40 60 80 100 120 140

C
P

U
 l

o
ad

Time (s)

(a) Offset 31.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120

T
im

e
t-

1

Time t

(b) Attractor to offset 31.

Figure 8. Combination of p(x) and q(x) with offset 31.

offset corresponds to the point in Figure 6 whose response time is minimal.

Based on these initial observations, we designed and implemented two heuristics
in a simulator. By considering series collected during the execution of real applications,
they schedule processes according to equilibrium situations.

4.1. Proposed Heuristics and Results

The first heuristic proposed, Heuristic A, considers the temporal behavior of the pro-
cesses and performs the scheduling based on their predicted CPU usage. This heuristic
assumes the prediction of the processes behavior in a time slice (after the current mo-
ment). For example, considering a seriesS = {x0, x1, . . . , xn−1} with n observations,
we perform the prediction of the next observationxn based on the approach proposed in
[Mello and Yang 2009]. Based on such a prediction, Heuristic A schedules the process
with higher CPU utilization at the next observationxn. Thus, it maximizes the processor
utilization and reduces the response time of processes.

By prioritizing processes with higher CPU usage, Heuristic A tends to delay the
execution of others with lower demands. To avoid this limitation, we have proposed a
variation of the first heuristic which introduces a probabilistic term to select the next
process to run. This term is proportional to the next observationxn for every process and

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2041

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140

C
P

U
 l

o
ad

Time (s)

(a) Offset 64.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
t-

1

Time t

(b) Attractor to offset 64.

Figure 9. Combination of p(x) and q(x) with offset 64.

is computed as follows. LetPi be the probability of a processi to be selected, then

Pi =
xi

n∑N

j=1 x
j
n

,

wherexi
n is the next observation of processi, that is, the predicted CPU usage. For

instance, given a set of three processes running, assuming that the workload of every
process in the next time slice is{x1

n = 13.96, x2
n = 6.53, x3

n = 2.27}, the probability
of selecting each one to execute in the next time slice is given by{P1 = 0.61, P2 =
0.28, P3 = 0.11}. Thus, even processes that demand less resources may also be selected.
This new heuristic has been called Heuristic B.

In order to validate both heuristics, we considered five scenarios representing dif-
ferent environment workloads. Such scenarios were designed based on execution traces3

of the toolgrep and also on aC-language version of theFibonacci algorithm.The
tool grep was executed in two different ways:

grep -r "?" /,

which prints the result in standard output, alternating computation with I/O operations,
and

grep -r "?" / > /dev/null,

which avoids output operations, increasing CPU usage. When usingFibonacci, no
output was generated.

Figures 10(a) and 10(b) show the CPU load forgrep andFibonacci, respec-
tively. Forgrep, we observe there is an alternated pattern of CPU utilization and output
operations, whileFibonacci demands a higher and constant CPU usage.

Based on the obtained traces (shown in Figure 10), the heuristics were simulated
and compared against theRound-Robin(RR) policy. Only for clarification purposes, RR
assigns identical CPU times for each process, which are organized in a circular queue.

3We developed a script to run on GNU/Linux to obtain CPU usage at every150 ms, that reads file
/proc/id/stat – id corresponds to the process identifier.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2042

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000 7000

C
P

U
 l

o
ad

Time (s)

(a) CPU usage for toolgrep.

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000 7000

C
P

U
 l

o
ad

Time (s)

(b) CPU usage forFibonacci algorithm.

Figure 10. CPU usage.

Table 1 presents the results for fivegrep processes simultaneously started in the compu-
tational environment, thus competing for resources. In this case, we assume the execution
of grep generating outputs. We here compare the total execution time (makespan), the
process average running time, the time necessary to switch contexts (CS), that is, the to-
tal time the scheduling policy requires to select the next process to run, and, finally, the
average CPU utilization.

Table 1. Five identical executions of grep.
Policy Total Time AVG Time CS Time AVG Utilization

RR 33,440.0 6,688.0 13.34 1.90
Heuristic A 34,680.0 6,936.0 1,82 1.83

Performance Gain -3.57%
Heuristic B 33,769.0 6,753.0 14.00 1.88

Performance Gain -0.96%

In this case, RR presented better results, since all processes impose the same work-
load and, thus, a simply execution interleaving tends to better results, in opposition to
strategies proposed by both heuristics evaluated. We can also observe that Heuristic B
reduced response time and improved resource usage when compared to Heuristic A.

In a second scenario, we considered three identical executions ofFibonacci al-
gorithm. In such a circumstance, we obtained a similar behavior for all policies (Table 2),
due to the high CPU utilization imposed by everyFibonacci process.

Table 2. Three identical executions of Fibonacci algorithm.
Policy Total Time AVG Time CS Time AVG Utilization

RR 21,347.0 7,115.0 4.27 46.73
Heuristic A 21,347.0 7,115.0 4.27 46.73

Performance Gain 0.00%
Heuristic B 21,347.0 7,115.0 4.27 46.73

Performance Gain 0.00%

These two scenarios are composed of processes with identicalbehaviors; in such
a situation our heuristics do not improve performance. However, when a different set of
processes is executed, the heuristics indeed affect the final performance. For example,

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2043

Table 3 presents fourgrep processes, writing in the standard output, and one execution
of grep redirecting the output to the null device (as previously shown). We then observe
that Heuristic A reduced the response time to approximately52% when compared to RR
and also improved the resource utilization. The performance of Heuristic B is slightly
below A, but still better than RR.

Table 3. Five executions of grep (four identical and one different).
Policy Total Time AVG Time CS Time AVG Utilization

RR 18,324.0 3,664.0 6.98 3.07
Heuristic A 8,814.0 1,762.0 3.07 3.75

Performance Gain +51.91%
Heuristic B 9,493.0 1,898.0 3.19 3.64

Performance Gain +48.19%

In another scenario, we simulated higher demands for CPU by running threegrep
processes, writing in the standard output, onegrep execution without outputs and, fi-
nally, oneFibonacci process. In this case, Heuristics A and B outperformed RR in
terms of response time (reducing it in about31% and28%, respectively) and CPU utiliza-
tion (Table 4).

Table 4. Four executions of grep (three identical and one different) and one exe-
cution of Fibonacci algorithm.

Policy Total Time AVG Time CS Time AVG Utilization
RR 22,382.0 4,476.0 6.98 16.81

Heuristic A 15,448.0 3,089.0 4.15 23.61
Performance Gain +30.98%

Heuristic B 16,005.0 3,201.0 4.27 22.83
Performance Gain +28.49%

Finally, in the last scenario (Table 5), we increased CPU demands by adding an-
otherFibonacci process in the previous scenario. In this case, performance was also
improved by Heuristics A and B, however, such improvement was lower than the previous
scenario because, by adding anotherFibonacci process, the total CPU workload was
too high to be treated by a single computer. If we add more processes, there will even
be reductions in the resulting improvement, tending, in overloaded situations, to the same
performance of RR.

Table 5. Four executions of grep (three identical and one different) and two exe-
cution of Fibonacci algorithm.

Policy Total Time AVG Time CS Time AVG Utilization
RR 29,364.0 4,894.0 8.38 23.92

Heuristic A 22,564.0 3,760.0 5.58 30.90
Performance Gain +23.17%

Heuristic B 23,064.0 3,844.0 5.65 30.26
Performance Gain +21.45%

We have concluded that the proposed heuristics improve both performance and
resource usage when heterogeneous processes are submitted to the environment. Another
important point is that when processes barely use CPU, our heuristics do not provide
improvements (Tables 1 and 3). A second situation occurs when processes impose too

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2044

heavy workloads; in such scenario, heuristics tend to present results closer to RR. How-
ever, when processes present a different behavior and impose neither too heavy nor too
low CPU usage, both heuristics strongly improve performance results as well as resource
utilization. This last scenario is typical in desktop computers. Furthermore, we can also
employ such heuristics in grid computing environments by avoiding the overload of single
computers and making such heuristics responsible for local scheduling.

5. Conclusions

This paper has presented studies on behavioral interactions of processes, motivating the
proposal of two heuristics which allocate resources based on how processes demand CPU
in future time slices. Both heuristics were implemented in a simulator and compared
against the Round-Robin policy.

Results have confirmed that, when processes demand the same or similar CPU
usage, both heuristics are slightly inferior to Round-Robin. Still, when processes are
similar, but under higher CPU utilization, the heuristics as well as Round-Robin present
similar performance. Finally, when processes have different behaviors, both heuristics
outperform Round-Robin in terms of reducing the total execution time and improving
CPU utilization.

Furthermore, we remember that many computational environments are mostly
characterized by processes with different behavior, as desktop systems, confirming the
potential usage of such heuristics in real-world scenarios. Even large-scale environments,
such as grids, could take advantage of the proposed heuristics by using them as local
scheduling policies.

Acknowledgments
This paper is based upon work supported by FAPESP (São Paulo Research Foundation),
Brazil, under grant no. 2009/15338-1. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do not necessarily
reflect the views of FAPESP.

References

Alligood, K. T., Sauer, T. D., and Yorke, J. A. (1996).Chaos: An Introduction to Dynam-
ical Systems. Springer-Verlag.

Chunlin, L. and Layuan, L. (2009). A system-centric scheduling policy for optimizing
objectives of application and resource in grid computing.Computers and Industrial
Engineering, 57(3):1052–1061.

Devarakonda, M. V. and Iyer, R. K. (1989). Predictability of process resource usage:
A measurement-based study on UNIX.IEEE Transactions on Software Engineering,
15(12):1579–1586.

Dinda, P. A. (2001). Online prediction of the running time of tasks. InIEEE International
Symposium on High Performance Distributed Computing, pages 383–382.

Dodonov, E. and Mello, R. F. (2010). A novel approach for distributed application
scheduling based on prediction of communication events.Future Generation Com-
puter Systems, 26(5):740–752.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2045

Downey, A. B. (1997). Predicting queue times on space-sharing parallel computers. In
International Symposium on Parallel Processing, pages 209–218.

Feitelson, D. G. and Nitzberg, B. (1995). Job characteristics of a production parallel
scientific workload on the NASA ames iPSC/860. InJob Scheduling Strategies for
Parallel Processing, volume 949 ofLNCS, pages 337–360. Springer-Verlag.

Feitelson, D. G., Rudolph, L., Schwiegelshohn, U., Sevcik, K. C., and Wong, P. (1997).
Theory and practice in parallel job scheduling. InJob Scheduling Strategies for Paral-
lel Processing, volume 1291 ofLNCS, pages 1–34. Springer-Verlag.

Ferrari, D. and Zhou, S. (1988). An empirical investigation of load indices for load
balancing applications. InInternational Symposium on Computer Performance Mod-
elling, Measurement and Evaluation, pages 515–528.

Fraser, A. M. and Swinney, H. L. (1986). Independent coordinates for strange attractors
from mutual information.Phys. Rev. A, 33(2):1134–1140.

Gibbons, R. (1997). A historical application profiler for use by parallel schedulers. InJob
Scheduling Strategies for Parallel Processing, volume 1291 ofLNCS, pages 58–77.
Springer-Verlag.

González-Miranda, J. M. (2004).Syncronization and Control of Chaos: An Introduction
for Scientists and Engineers. Imperial College Press.

Kennedy, J., Eberhart, R. C., and Shi, Y. (2001).Swarm Intelligence. Morgan Kaufmann
Publishers.

Kennel, M. B., Brown, R., and Abarbanel, H. D. I. (1992). Determining embedding
dimension for phase-space reconstruction using a geometrical construction.Phys. Rev.
A, 45(6):3403–3411.

Krishnaswamy, S., Loke, S. W., and Zaslavsky, A. (2004). Estimating computation times
of data-intensive applications.IEEE Distributed Systems Online, 5(4):1–12.

Lee, B.-D. and Schopf, J. M. (2003). Run-time prediction of parallel applications on
shared environments. InIEEE International Conference on Cluster Computing, pages
487–491.

Mello, R. F. and Yang, L. (2009). Prediction of dynamical, nonlinear, and unstable process
behavior.The Journal of Supercomputing, 49(1):22–41.

Schopf, J. M. and Berman, F. (1999). Stochastic scheduling. InACM/IEEE Conference
on Supercomputing.

Sevcik, K. C. (1989). Characterizations of parallelism in applications and their use in
scheduling.Performance Evaluation Review, 17(1):171–180.

Smith, W., Foster, I., and Taylor, V. (2004). Predicting application run times with histori-
cal information.Journal of Parallel and Distributed Computing, 64(9):1007–1016.

Takens, F. (1980). Detecting strange attractors in turbulence. InDynamical Systems and
Turbulence, pages 366–381. Springer.

Whitney, H. (1936). Differentiable manifolds.The Annals of Mathematics, 37(3):645–
680.

XXXI CONGRESSO DA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO

2046

	ANAIS_02_CONTEUDO
	WPERFORMANCE
	WPerformance_Sessao_3_Artigo_1_Gabriel

