
Design, Implementation and Evaluation of IPv4/IPv6 Longest
Prefix Match support in P4 Dataplanes

Fabricio E Rodriguez Cesen1, P Gyanesh Kumar Patra1,
Christian Esteve Rothenberg1, Gergely Pongracz2

1University of Campinas (UNICAMP), Brazil

2Ericsson Research, Hungary.

{frodri,gyanesh,chesteve}@dca.fee.unicamp.br

{Gergely.Pongracz}@ericsson.com

Abstract. New trends in dataplane programmability inside Software Defined
Networking (SDN) paradigm are in an effort to bring multi-platform support
with a high-level definition of the dataplane pipeline functions. The Multi-
Architecture Compiler System for Abstract Dataplanes (MACSAD) can integrate
the Protocol-Independent Packet Processors (P4) domain-specific language and
the OpenDataPlane Project (ODP) APIs, to define a programmable dataplane
across multiple targets in a unified compiler system. In this paper, we present
and evaluate the IPv4/IPv6 Longest Prefix Match (LPM) support in MACSAD.
We develop a new ODP Helper library implementing the IPv6 lookup mech-
anism based on the current IPv4 solution and evaluate its performance and
scalability for diverse workloads and target platform configurations.

1. Introduction
Ubiquity and deep proliferation of Internet services are driving the bandwidth require-
ments upward exponentially, and also the necessity to carryout the actual capability eval-
uation of the networks. A flexible, (re-)configurable network is seen as a solution to deal
with the continuously evolving network features and ever-growing bandwidth require-
ments by re-defining the dataplane on demand.

Software Defined Networking (SDN) [Kreutz et al. 2015] is an emerging network
architecture to advocate separation of control plane from data plane. The first com-
munications standard interface defined between the control and data plane was Open-
Flow [McKeown et al. 2008]. OpenFlow adoption was marred because of its protocol
dependent nature and difficulty to define new custom protocols. Programming Protocol-
Independent Packet Processors (P4) [Bosshart et al. 2014] is an open source domain spe-
cific language (DSL) for expressing how packets are processed by the pipeline of a net-
work element. P4 is evolving as a de facto language to define dataplane in SDN infrastruc-
tures. Similarly OpenDataPlane (ODP) [OpenDataPlane 2013], an open-source project,
has emerged as another candidate for describing programmable dataplanes providing a
common set of Application Programming Interfaces (APIs) for multiple targets.

Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD)
[Patra et al. 2016, Patra et al. 2017] is an approach to converge P4 and ODP through
a common compilation process delivering portability of dataplane applications without

compromising target performance. During it’s development we observed the absence
of IPv6 lookup mechanism in ODP (limited to IPv4 and no short-term plans related to
this implementation by ODP team) to support more levels of addressing hierarchy, and a
greater number of addressable nodes, and proposed an ODP Helper library with a lookup
mechanism for IPv6 as a contribution to ODP open-source community and also extended
the effort to add the support to MACSAD too. We lead a complete performance and
scalability evaluation of existing IPv4 and new entrant IPv6 for diverse test workloads
(packet traces, table sizes) and target platform configurations (e.g., I/O, CPU #cores).

The rest of this text contains the following topics. Background details and re-
lated works are covered in Section 2. Section 3 describes our architecture proposal for
the design and implementation of IPv4/IPv6 Longest Prefix Match (LPM) support for
MACSAD. Section 4 shows the performance evaluation results. Finally, conclusion and
future works are discussed in Section 5.

2. Background and Related Work

This section defines three main concepts of our research work: P4 expressing how packets
are processed ; ODP as the API for the networking dataplane; and finally MACSAD.

P4 Protocol Independent Switch Architecture (PISA) [Gurevich 2015,
McKeown 2016] allows custom definition of network protocols in switch design
approach using match+action abstractions. Top-down analysis reveals the need of a
Domain Specific Language (DSL) to describe packet processing in these devices. P4
as a high level DSL provides a high enough abstractions to define dataplane, invariably
supporting (re-)configuration of PISA devices. P4 is designed to be protocol independent
to be able to support custom protocols and target independent to write dataplane
applications agnostic to target.

ODP project is a networking dataplane API specification. It defines a set of high-
level APIs spanning a common set of standard features across multi targets including
ARM, Power PC, and x86 making dataplane applications portable. It enables program-
mers to write dataplane applications without knowing the underlying hardware. It allows
programmers to leverage any specific hardware acceleration capabilities too. ODP is
at a higher abstraction level than Data Plane Development Kit (DPDK)1 and Netmap2 ,
and can use their user-space fast packet processing I/O to improve performance. Netmap
works with linux kernel and allow usage of all linux based tools. DPDK fastpath is sepa-
rated from linux and it restricts access of the linux based tools to configure interfaces.

ODP provides a helper library3 as an extended library supporting table manage-
ment such as hash table, and IP lookup (IPv4-only). On the contrary DPDK offers various
fully optimized table management libraries similar to ODP including IPv6 support. An
application developed using ODP APIs needs to be linked to the ODP implementation
block (see Fig. 1) in ODP software stack of the target platform.

MACSAD architecture overview is shown in Figure 2. It has three main modules:
(i) Auxiliary Frontend, (ii) Auxiliary Backend and (iii) Core Compiler.

1http://dpdk.org/
2http://info.iet.unipi.it/˜luigi/netmap/
3https://github.com/Linaro/odp/tree/master/helper

Figure 1. ODP Architecture.
Source: [OpenDataPlane 2013]

Use
Case

DATAPATH
LOGIC

Figure 2. MACSAD Architecture.
Source: [Patra et al. 2016]

• Auxiliary Frontend The Auxiliary Frontend creates the Intermediate Representation
(IR) for the Core Compiler, based on the P4 code as an input. The p4-hlir project is
used to translates the P4 programs into a High Level IR (HLIR).
• Auxiliary Backend Is used to give a common Software Development Kit (SDK) for

the compiler incorporating the ODP API.
• Core Compiler Encompasses the Transpiler and Compiler internal modules. The Tran-

spiler determines the lookup mechanism, the size, and type of tables that are going to
be created. The Compiler takes in Transpiler output and compile along with ODP APIs
provided by the Auxiliary Backend to create the MACSAD Switch (MACS) (MACSAD
compiled binary code is referred to as MACS) for the desired target.

While there is potentially large amount of literatures on IPv6 implementations, we
briefly emphasize on related programmable dataplane activities similar to our proposed
IPv4/IPv6 LPM solutions. OpenvSwitch (OVS) [OpenvSwitch 2016] is the traditional
widely adopted OpenFlow based software switch with support for DPDK packet I/O for
higher performance. PISCES [Shahbaz et al. 2016] is developed by extending OVS bring-
ing in high-level DSL such as P4 support to achieve programmability. But it is limited
by the restricted OVS pipeline abstractions and only supports IPv4. Similarly T4P4S
[Laki et al. 2016], the closest alternative to MACSAD, is also a software switch which
maps P4 abstractions to DPDK with the help of a Hardware Abstraction Layer. However,
it is not multi-platform, and DPDK’s LPM library for IPv6 is not supported.

3. Layer-3 forwarding (IPv4/IPv6) Implementation
This section presents LPM prototype support in MACSAD in terms of use cases, namely,
Layer-3 forwarding with IPv4 (L3-IPv4) and IPv6 (L3-IPv6).

These use cases are implemented with support of ODP Helper library for LPM
lookup mechanism where 32-bit and 128-bit keys are used for IPv4 and IPv6 address
lookup. The P4 pipeline consists of two tables; IP lookup is performed on the first table
along with corresponding actions of standard L3 packet processing (i.e., MAC re-writing,
TTL/Hop Limit decrement). Then, the final packet update happens at egress section by
the second table, which changes the source MAC address before sending out the packet.

• L3-IPv4 IPv4 lookup algorithm in MACSAD uses a binary tree to perform the prefix
lookup. We chose this root prefix to be 16-bit netmask. The binary tree has three levels
(16-8-8) with a worst case scenario of 3 memory accesses for each IPv4 lookup.
• L3-IPv6 Under this use case, we developed a new ODP Helper library module based

on the available IPv4 solution. It is similar to DPDK4 solution with 15 levels of tables.
The 1st level is of 16-bit followed by 14 additional levels of 8-bit each).
4http://dpdk.org/doc/guides-16.04/prog_guide/lpm6_lib.html

100 1k 10k 100M 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M 100 1k 10k 100M 1M 100 1k 10k 100k 1M 100 1k 10k 100k 1M

Number of entries
 Packet size

2

4

6

8

Th
ro

ug
hp

ut
 (M

pp
s)

64 128 256 64 128 256
(IPv4) (IPv6)

DPDK
Netmap

Socket-mmap

Figure 3. IPv4/IPv6 forwarding performance for different I/O drivers (1 CPU core).

4. Performance Evaluation

We evaluate performance for the two LPM use cases using three different packet I/O en-
gines (DPDK, Netmap, Socket mmap). For each combination, we explore the scalability
for different workloads (packet traces, table entries) and configuration options (e.g., CPU
cores) using Network Function Performance Analyzer (NFPA) [Csikor et al. 2015] as a
benchmarking tool. To generate the traces we developed a packet crafter tool5 that will
provide the necessary PCAP files to be used with NFPA. The pipeline implementation
and other informations for reproducibility purposes including the P4 programs6 used by
MACSAD and the traffic generator tool (BB-Gen) are available in our public repositories.

4.1. Testbed and Methodology

Our testbed contains two Lenovo ThinkServer RD640 servers with Intel Xeon E5-2620v2,
6 Cores, Hyper-Threading disabled, running at 2.1GHz, 8*8GB DDR3, a dual-port Intel
X540-AT2 NIC (10G), and run with Ubuntu Linux 16.04 LTS (kernel 4.4). The Tester
server runs NFPA with DPDK v17.08 and PktGen v3.4.5, and connected to the Device
Under Test (DUT [Bradner and McQuaid 1999]). The DUT supports multiple packet I/Os
to illustrate the ability to accommodate various different platform features, such as DPDK
v17.08, ODP v1.16.0.0, Netmap v11.2, and the basic Linux Socket mmap provided by the
Linux kernel. The MACS is configured to forward packets received from one port to the
other and eventually back towards NFPA, which in turn analyzes the packet throughput
concerning packets per second (pps) and bits per second (bps).

For both L3-IPv4 and L3-IPv6, different number of cores (1, 2, 4, and 6) were
allocated to the DUT, distinctive workloads were configured by setting different number
of IP prefixes (100, 1K, 10K, 100K, 1M) in the lookup table and a matching number of
L3 flows in the synthetic traces were used.

L3-IPv4. Figure 3 (Left Side) shows the performance of L3-IPv4 for different Forwarding
Information Base (FIB) sizes and packet I/O drivers. The red y axes labels refer the line
rate for different packet sizes. (i.e., 8.44 Mpps for 128 bytes and 4.52 Mpps for 256
bytes). The results for L3-IPv4 is grouped into three sectors indicating different packet
sizes (i.e., 64, 128, 256). Each sector is further divided into five different points marking
the complexity of the pipeline, i.e., the size of the FIB (100, 1K, etc.). It can be observed
that MACS with DPDK reaches the line rate with packets sizes of 256 bytes regardless
of the FIB table size. The performance of Netmap is comparatively lower but it reaches

5https://github.com/intrig-unicamp/BB-Gen
6https://github.com/intrig-unicamp/macsad-usecases

1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

Number of Cores
 Number of entries

2
4
6
8

10
12
14

Th
ro
ug
hp
ut
 (M

pp
s)

line rate

100 10K 100 10K(IPv4) (IPv6)

Socket-mmap
Netmap
DPDK

Figure 4. IPv4/IPv6 different cores performance (64 bytes packets).

line rate with 512B packets. Also it is interesting to note that, the measured results for
1M FIB entries are better than for 100K FIB entries. From the results, it is clear that
the Linux Socket mmap driver never saturates the 10G interfaces even with the largest
packets (1518 bytes) due to the highly increased number of system calls, fundamental
kernel scheduling, costly context switching, etc. imposed by the Linux kernel itself.

L3-IPv6. Results for the L3-IPv6 use case with 1 CPU core are shown on the right side
of Fig. 3. The performance results lead to a conclusion similar to L3-IPv4 where DPDK
reaches line rate with 256 byte packets for all FIB sizes. There are some performance
differences in case of Netmap driver, a slight drop as the number of FIB entries grows,
and what is more, when the FIB size reaches 1M the line rate is not achieved even with
the biggest packet size. However, when comparing our results to L3-IPv4, we must point
out that the peculiarity with 100K and 1M number of entries observed before also applies
for L3-IPv6. From the IPv4 and IPv6 results, it is clear that with small packets (i.e., 64
and 128) when the FIB number of entries increases, the performance slightly reduce.

Figure 4 shows a throughput comparison as the number of cores increases from
1 to 6. When the number of CPU cores increases, MACSAD can process more packets
resulting in higher throughput. It is notable (red line Fig. 4) that as the number of FIB
entries increases, the throughput reduces slightly. Moreover, when table key size increase
from 32 bytes (IPv4) to 128 bytes (IPv6) the performance also decreases. This is a sig-
nificant finding in the understanding of how the complexity of the number of FIB entries
and key sizes affect the throughput. This assumption might be addressed in future studies,
analyzing the performance with different key sizes and including a variation of FIB size.

5. Conclusions and Future Work
We contributed with the addition of use cases to MACSAD, confirming ability of MAC-
SAD to offer (re-)configurable SDN dataplanes supporting different pipelines while con-
firming to portability and performance as well. We demonstrated the performance of
our LPM implementations by running MACS over different packet I/O drivers (DPDK,
Netmap, Socket mmap). Confirming that Socket-mmap is slower as it is the linux default
driver without any fastpath advantages from Netmap or DPDK. Netmap performance is
lower than DPDK on ODP system because in case of Netmap packet copy operation be-
comes costlier as in case of DPDK support ODP implement zero-copy feature. With this
work, we accomplished some open source contributions. The developed IPv6 lookup li-
brary will be suggested for adoption by ODP project. We developed a new packet crafter
tool that natively creates packets for different standard and custom protocols, and able
to generate PCAP files up to more than 1M entries with different headers distributions.

Furthermore, we added various trace files to the NFPA repository too.

We will continue to improve the IPv6 library by implementing support for differ-
ent 1st level sizes and varying number of subtree levels. We are also planning to analyze
how the performance is being affected by the variation of the prefix length and investigate
additional performance properties, e.g., packet loss, latency, CPU cycles, etc.

Acknowledgments
This work was supported by the Innovation Center, Ericsson Telecomunicações S.A.,
Brazil under grant agreement UNI.61.

References
Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco,

D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Review.

Bradner, S. and McQuaid, J. (1999). Benchmarking methodology for network interconnect de-
vices. RFC 2544, RFC Editor. https://www.ietf.org/rfc/rfc2544.txt.

Csikor, L., Szalay, M., Sonkoly, B., and Toka, L. (2015). Nfpa: Network function performance
analyzer. IEEE Conference on NFV and SDN Demo Track.

Gurevich, V. (2015). P4 Tutorial. https://p4.org/assets/
Nov-2015-P4-Bootcamp-Labs-Guide.pdf.

Kreutz, D., Ramos, F., Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., and Uhlig,
S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE.

Laki, S., Horpácsi, D., Vörös, P., Kitlei, R., Leskó, D., and Tejfel, M. (2016). High speed
packet forwarding compiled from protocol independent data plane specifications. In ACM
SIGCOMM’16 Posters and Demos.

McKeown, N. (2016). Programming the Forwarding Plane. https://forum.stanford.
edu/events/2016/slides/plenary/Nick.pdf.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., and Turner, J. (2008). Openflow: Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev.

OpenDataPlane (2013). OpenDataPlane.org. https://www.opendataplane.org.

OpenvSwitch (2016). OpenvSwitch. http://openvswitch.org/.

Patra, P. G., Rothenberg, C. E., and Pongracz, G. (2016). Macsad: Multi-architecture compiler
system for abstract dataplanes (aka partnering p4 with odp). ACM SIGCOMM Demo and Poster
Session.

Patra, P. G., Rothenberg, C. E., and Pongracz, G. (2017). Macsad: High performance dataplane
applications on the move. IEEE HPSR High Performance Switching and Routing.

Shahbaz, M., Choi, S., Pfaff, B., Kim, C., Feamster, N., McKeown, N., and Rexford, J. (2016).
Pisces: A programmable, protocol-independent software switch. ACM SIGCOMM Computer
Communication Review.

