
Network Address Translation using a
Programmable Dataplane Processor

Juan Sebastian Mejia Vallejo1, Daniel Lazkani Feferman1,
Christian Esteve Rothenberg1

1Departamento de Engenharia de Computação e Automação Industrial (DCA)
Faculdade de Engenharia Elétrica e de Computação (FEEC)

Universidade Estadual de Campinas (Unicamp)
Caixa Postal 6101 - 13.083-970 - Campinas, SP, Brasil

{jmejia,fefer,chesteve}@dca.fee.unicamp.br

Abstract. A short-term solution for the depletion of Internet Protocol (IP) ad-
dresses and scaling problems in network routing is the reuse of IP address by
placing Network Address Translators (NAT) at the borders of stub domains. In
this article, we propose an implementation of NAT using Programming Protocol-
Independent Packet Processors (P4) language, taking advantage of its features
such as target-agnostic dataplane programmability. Through the MACSAD
framework, we generate a software switch that achieves high performance with
the support of different hardware (H/W) and Software (S/W) platforms. The
main contributions of this paper relate to the performance evaluation results of
the NAT implementation using P4 language with MACSAD compiler.

1. Introduction
Considering the continuous growth of Internet services such as Voice Over IP, Multi-
media Over IP, on-line games and the progressive depletion of public IPv4 addresses,
the Network Address Translation (NAT) [Egevang and Francis 1994] became the primary
method to allow multiple Private IPs to get access to the Internet through a limited number
of Public IP. Typically, an extensive range of private IP (e.g., 10.0.0.0 to 10.255.255.255),
enables the communication of servers, printers, etc. However, the number of public IPs
are limited and costly. In recent years, an initiative of turning rigid hardware-based net-
works into software-based emerged and it was named as Software-Defined Networking
(SDN), splitting the control and dataplane functions to turn some network functionali-
ties into virtualized software devices running on servers (e.g., off-the-rack x86 servers),
switches or even cloud computing infrastructure [Han et al. 2015].

OpenFlow is currently maintained by the ONF (Open Networking Foundation)
and is one of the first projects following the SDN methodology by letting the adminis-
trators to define dataplane functionalities. However, after more than 10 years since its
foundation, the interface continues to have H/W target compatibility issues and slow sup-
port for new packet headers. In the recent development, the P4 [Bosshart et al. 2014] lan-
guage introduces dataplane programmability by allowing multiple targets to use the same
Domain Specific Language (DSL) to resolve the OpenFlow issues. MACSAD framework
delivers cross-platform portable dataplane applications, it brings performance, flexibility
and portability in dataplane. Thus, the P4 NAT S/W switch uses MACSAD and con-
cepts of SDN and Network Function Virtualization (NFV) dataplanes [Niu et al. 2016]



to achieve a high performance programmable NAT switch. We present the NAT perfor-
mance evaluation varying either target platform parameters (e.g., Packet I/O, number of
cores) and packet size. The rest of this paper is structured as follows: Section II provides
the background details. Section III describes the Methodology. Section IV briefly expose
the Related work. Finally, Section V discusses conclusion and future works.

2. Background
2.1. Programming Protocol-Independent Packet Processors (P4)
Considering the development of OpenFlow (OF) protocol over the years, few limitations
were found (e.g., most switches have multiple policies and stages of match+action tables,
limited TCAM space, etc.). Furthermore, to include a new header on OF it was necessary
to update its version with retro-compatibility, making the release of new versions too
slow [Bosshart et al. 2014]. Initially, the first version of OF started with 12 fields. Today,
the last version contains more than 40 fields and there are important headers that are not
supported yet. The P4 language defines three main goals to resolve those limitations:
· Reconfigurable in the field: Redefine packet parsing and processing in the field should
be even after it is implemented.
· Protocol independence: The dataplane should be configurable and not tied to a specific
header format.
· Target independence: Packet-processing function should be independent of the target
where it will be deployed. Hence the compiler could map to different forwarding devices.

P4 is a high-level language that defines how the pipeline of a network forwarding
device should process the packets. The language uses an abstract forwarding model that
can be defined in three main phases: first, the P4 program describes the header structure
and parser to extracts the header fields. Second, the pipeline is shaped with a set of match-
action tables, here the P4 program can match the header fields and execute some rules,
and finally, the de-parser emits the new packet headers to send to the output port.

2.2. Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD)
The MACSAD is a P4 compiler [Patra et al. 2016] that focuses on high performance with
portability and flexibility. As shown in Figure 1a and 1b, the MACSAD is composed of
modules compilation process :

(a) Macsad architecture. Adapted
from : [Patra et al. 2017]

(b) 3-Tier compilation
process

Figure 1. MACSAD architecture.

·Auxiliary frontend: responsible to aggregate several Domain Specific Language (DSL).
It creates an Intermediate Representation (IR) from P4 code (both P414 and P416 ver-
sions); the core compiler uses this representation. In this module, the P4-hlir project is



used to translate P4 programs to a High-Level Intermediate Representation (HLIR).
· Auxiliary backend: aims to give a common SDK, using OpenDataPlane (ODP) APIs
[OpenDataPlane 2013]. Furthermore, it contains developed libraries to bring support for
P4 primitives.
· Core compiler: includes the transpiler and compiler modules. It merges the result of
the frontend (the HLIR) and backend (the ODP APIs) to provide the binary which will be
used by the device either by a Virtual Machine (VM), Raspberry (ARM), server (x86) or
a SoC (ARM).

Transpiler receives the result from the Auxiliary frontend and automatically gen-
erates the Data-path Logic codes. This tool is responsible for the definition of the size,
queues, lookup mechanism, and types of tables that will be created using the target’s re-
sources. The group of ”.c” files generated by the transpiler contains ODP APIs, helper
libraries and parts of the P4 program.

Compiler creates an executable S/W switch from the generated ”C” code above
mentioned, in our case a NAT and the controller interface to add the table entries. Cur-
rently, MACSAD uses Low-Level Virtual Machine and GNU Compiler Collection (GCC)
compiler to guarantee the support of multiple targets.

3. Methodology
3.1. Testbed
As depicted in Figure 3b Our testbed includes two servers with Intel Xeon E5-2620v2
processors (6 cores), 64GB of memory, running Ubuntu Linux 16.04 LTS (kernel 4.4)
and two dual-port Intel X540-AT2 NIC (10G). For the experiments, one node (Tester)
runs a packet generator (NFPA) [Csikor et al. 2015] sending packets of different sizes to
the other node with DUT via 10GB NIC. Packets are sent back through another NIC of
the Tester to the first node. NFPA uses Pktgen-dpdk v3.4.5 [Turull et al. 2016] and DPDK
v17.08 for packet generation. The DUT supports multiple packet I/Os with DPDK v17.08,
ODP v1.16.0.0, and Netmap v11.2 versions.

3.2. NAT Dataplane P4/MACSAD Implementation
This use case has been implemented with P416, which is the latest P4 version, bringing
new instructions to define tables, actions and controls. Figure 2 illustrates the imple-
mented pipeline of our NAT P4 program1, which is divided in Upload (UL) and Down-
load (DL) data paths. The packet processing is supported in the MACSAD architecture
(See in Fig.1a) and the dataplane is shaped with a set of tables described as follow:
· Set interface - it set up the network interface as external or internal to separate the UL
and DL traffic;
· L2 - The NAT acts as an L2 learning switch and processes ARP packets coming from
the host; an entry is created (or updated) in the MAC address table.
· NAT UL/DL - Since users within a private IP network send packets to a public network,
NAT is required to translate IPv4 address and TCP ports in both ways, this table store TCP
port and IPv4 address entries to perform packet processing and forwarding. Otherwise,
incoming packets without equivalent entries are dropped.

1https://github.com/intrig-unicamp/macsad-usecases/blob/master/
p4-16/nat.p4



· IPv4 routing - The routing table stores the next hop based on the IP address. It is based
on the Longest Prefix Match (LPM) implementation.

Ingress

Drop

UL

DL

P
ro

g
ra

m
a

b
le

P
a

rs
e

r

L
2

 T
a

b
le

NAT UL
Table

Table

IPV4
routing
Tables

Drop

Egress

S
e

t 
in

te
rf

a
c

e
T
a

b
le

NAT DL

Figure 2. NAT pipeline

3.3. Performance Evaluation

Figure 3a depicts the NAT use case handling traffic between a Private and an External
(Public) network, with the primary dataplane functions divided into a UL path coming
from the Host (IP address 10.1.1.10) to an Internet Server (IP: 213.1.1.1), and DL path
from the Server back to the Host. Figure 3b shows the testbed scenario.

UL: The UL traffic starts with Host that sends a packet destined to Server, when
the packet arrives at our NAT software switch, the source IP is rewritten with the public
IP and the following TCP port. Finally, the NAT performs IPv4 packet forwarding and
select the output port to send the packet through the external network.

DL: As a response, the Server (IP: 213.1.1.1) sends TCP traffic back to the host
(10.1.1.10) via NAT software switch through the external interface using NAT Public IP,
which is converted to the Private IP by the NAT. Finally, it completes the IP packet for-
warding by selecting the next hop and output port towards Host.

We have generated random traffic traces for both datapaths varying the source and
destination IPv4, L2 source address, TCP source and destination ports inside the Forward-
ing Information Bases (FIBs). All these fields were filled through an SDN controller. We
run MACSAD with three CPUs combinations (2, 4, 6 CPUs), FIB table of 100 entries,
and three Packet I/O drivers (Socket-mmap, Netmap, DPDK). In the next subsection, we
present the testbed setup and performance results.

3.4. Results

The bars in Figures 4a and 4b measure the performance on NAT with a packet flow of
100 entries. From the results, we observe that the best performance for all the packets
sizes was with DPDK NIC driver, in fact, this PktI/O achieve line rate (i.e., 4,52 Mpps
for a packet size of 256B) both UL and DL datapaths with medium and bigger packet
sizes (256B-1518B). On the other hand, the worst case is clearly with 64B and 128B
using Socket-mmap, as it handles more packets per second. However, this was already

(a) NAT scenario

P1

NATNFPA

P1

P2 P2

Tester

Node

Macsad

Based Node

(b) Testbed

Figure 3. NAT Scenario.



expected as for low sizes it needs to match more tables, impacting the results. In Figure 4b
we observe the performance increase by adding CPU cores, this is mainly using notable
on Netmap and DPDK NIC drivers, considering that more cores usually means more
instructions can be done, we were already expecting these results. Also, due to queues
type; unlike of Socket-mmap which use hardware queues, both DPDK and Netmap, can
assign virtual queues to increase performance.

64 128 256 512 102412801518 64 128 256 512 102412801518

Packet size (Bytes)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

pp
s)

UL DL

DPDK
Netmap
Socket-mmap

(a) NAT Performance compari-
son for different NIC drivers (4
cores, 100 table entries)

2 4 6 2 4 6 2 4 6 2 4 6 2 4 6 2 4 6

Packet size (Bytes)

0

1

2

3

4

5

6

Th
ro
ug
hp
ut
 (M
pp
s)

64 128 256 64 128 256
Number of coresUplink (UL) Downlink (DL)

DPDK
Netmap
Socket-mmap

(b) NAT Performance comparison for
different number of cores, drivers and
packet sizes

Figure 4. NAT performance results.

4. Related Work
The work in [Hwang et al. 2015] describes a S/W router, with Layer 3 forwarding func-
tionalities that reside in distinct VMs. They use NetVM platform obtaining throughputs
of up to 10 Gbps. Rather of running into H/W limitations such as NIC, their implementa-
tion is limited by the available processing capacity. In [Roberto et al. 2013] we found an
approach to virtualize a Broadband Remote Access Server (BRAS) based on Click OS, a
tiny Xen virtual machine designed specifically for network processing it can achieve line
rate of 10Gbps with Netmap and VALE PktI/O drivers. The work in [Bondan et al. 2014]
presents the management requirements in the context of a specific NFV enabler platform
called ClickOS; they propose a network scenario with a NAT function. However, they
studied the requirements to deploy the virtualized devices to ease the adoption of NFV
by network operators. In [Palkar et al. 2015] presents E2, a framework for NFV packet
processing. It is a solution to manage network functions for placement, scaling and other
functionalities. In the evaluations, its data plane built on SoftNIC, a programmable soft-
ware switch uses a virtualized NAT which achieves line rate of 10Gbps with 60 Bytes of
packets size. Its approach differs ours as we are using P4 to specify dataplane functions
with multi-target support.

5. Conclusions and Future Work
In this article, we have presented a brief description of the NAT S/W dataplane using P4
language; a new language that aims to revolutionize networks by giving programmability
to the dataplane.

We have exposed a NAT S/W switch running on MACSAD over x86 platform and
different PktI/O drivers (DPDK, Netmap, Socket-mmap), achieving 10G line rate with
medium and large packets, confirming our approach of support complex SDN dataplanes
with portability and high performance. As a future work, we intend to implement and



show the performance results in other platforms such as VMs and ARM systems, also
adding new features considering the IPv6 deployment such as IPv6 to IPv4 translation
mechanism. Our results encourage us to identify and resolve the bottlenecks mainly on
smaller packets size and consider more performance metrics as processing delay, CPU
cycles, etc.

Acknowledgments
This work was supported by the Innovation Center, Ericsson Telecomunicações S.A.,
Brazil under grant agreement UNI.61.

References
Bondan, L., d. Santos, C. R. P., and Granville, L. Z. (2014). Management requirements

for clickos-based network function virtualization. pages 447–450.

Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., and Walker, D. (2014). P4: Programming
protocol-independent packet processors. ACM SIGCOMM Computer Communication.

Csikor, L., Szalay, M., Sonkoly, B., and Toka, L. (2015). Nfpa: Network function perfor-
mance analyzer. IEEE Conference on Network Function Virtualization and Software
Defined Networks Demo Track.

Egevang, K. B. and Francis, P. (1994). The ip network address translator (nat). RFC 1631,
RFC Editor. http://www.rfc-editor.org/rfc/rfc1631.txt.

Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. (2015). Network function virtualiza-
tion: Challenges and opportunities for innovations. IEEE Communications Magazine,
53(2):90–97.

Hwang, J., Ramakrishnan, K. K., and Wood, T. (2015). Netvm: High performance and
flexible networking using virtualization on commodity platforms. IEEE Transactions
on Network and Service Management, 12(1):34–47.

Niu, Z., Xu, H., Tian, Y., Liu, L., Wang, P., and Li, Z. (2016). Benchmarking nfv software
dataplanes. CoRR, abs/1605.05843.

OpenDataPlane (2013). OpenDataPlane.org. https://www.opendataplane.
org. Accessed: 2018-01-30.

Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S., Rizzo, L., and Shenker, S.
(2015). E2: A Framework for NFV Applications. SOSP ’15. ACM, New York, USA.

Patra, P., Rothenberg, C., and Pongracz, G. (2017). MACSAD: High performance data-
plane applications on the move. IEEE International Conference on High Performance
Switching and Routing, HPSR, 2017-June.

Patra, P. G., Rothenberg, C. E., and Pongrácz, G. (2016). MACSAD: Multi-Architecture
Compiler System for Abstract Dataplanes (Aka Partnering P4 with ODP). In ACM
SIGCOMM’16 Demo and Poster Session.

Roberto, B., Thomas, D., H, F., A, M., M, J., N, S., and K, H.-J. (2013). Rethinking
Access Networks with High Performance Virtual Software BRASes. EWSDN.

Turull, D., Sjödin, P., and Olsson, R. (2016). Pktgen: Measuring performance on high
speed networks. Computer communications, 82:39–48.


