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Abstract. Energy and performance of parallel systems are an increasing concern
for new large-scale systems. Research has been developed in response to this chal-
lenge aiming the manufacture of more energy efficient systems. In this context, we
improved the performance and achieved energy efficiency by the development of
three different strategies which use the GPU memory subsystem (global-, shared-,
and read-only- memory). We also develop two optimizations to use data locality
and use of registers of GPU architecture. Our developed optimizations were ap-
plied to GPU algorithms for stencil applications achieve a performance improve-
ment of up to 201.5% in K80 and 264.6% in P100 when used shared memory
and read-only cache respectively over the naive version. The computational re-
sults have shown that the combination of use read-only memory, the Z-axis inter-
nalization of stencil application and reuse of specific architecture registers allow
increasing the energy efficiency of up to 255.6% in K80 and 314.8% in P100.

1. Introduction
Different applications in areas such as computational physics, weather forecast, oil ex-

ploration, climate modeling and atomic simulation require high performance with acceptable
power consumption. These scientific applications use stencil computations that include both
implicit and explicit partial differential equations (PDE) solvers [Datta et al. 2008]. Besides
the stencils scientific importance, they are interesting as a performance and energy consump-
tion evaluation benchmark because they have abundant parallelism and low computational
intensity, offering opportunities for on-chip parallelism and challenges for associated mem-
ory systems [Datta et al. 2008].

Scientific simulations may consume weeks and most of these time is spent in sten-
cil computations [de la Cruz and Araya-Polo 2011]. Continuous changes in the micro-
processors fabrication process have increased the performance of its products and influ-
enced state-of-the-art HPC systems. However, this exponential increase in performance
also leads to an exponential growth in power demand [Laros et al. 2009, Dong et al. 2010,
Padoin et al. 2013a]. Reductions in the applications execution time are also relevant for en-
ergy consumption because energy is saved when hardware resources are used for a shorter
time.



Memory performance is particularly important for stencil computations once they
are typically memory-bound. For this reason, optimize the memory accesses is one of the
keys to reducing the performance and energy consumption. In this paper, we improved
the performance and energy efficiency of stencil applications by better use of the memory
subsystem. We focus on analyzing the use of different Graphics Processing Units (GPU)
memories aiming to improve performance, energy consumption, and energy efficiency. The
main contributions of this paper are:

• propose of three strategies which use different GPU memories (global-, shared-, and
read-only- memory);
• extend these strategies by use data locality and registers optimization;
• performance evaluation of these optimizations on Tesla K80 and Tesla P100 GPUs.

The remaining sections of this paper are organized as follows. Section 2 discusses the
related work. In Section 3 we present the stencils application, the details of the optimizations
we developed and the evaluation methodology. Also, in Section 4 we address the results
obtained from the experiments. Finally, the Section 5 emphasizes the scientific contribution
of the work and notes several challenges that we can address in the future.

2. Related Work
Several studies evaluated the stencil performance and energy efficiency in CPUs and

GPUs. Despite that, processors and accelerators remain as the component with the high-
est power demand of the systems [Feng et al. 2005]. GPUs are made aiming massively
parallel processing and to achieve this they use hundreds of processing units working to-
gether. These characteristics lead to its superior energy efficiency when compared with
CPUs [Padoin et al. 2013b].

Micikevicius et al. [Micikevicius 2009] compared the performance of a stencil ported
from CPU to GPU. Their version of the stencil running in a GPU achieved an order of magni-
tude higher than running in a contemporary CPU. They conclude that is possible to improve
their results by the usage of shared memory to reduce communication overhead. Bauer et
al. [Bauer et al. 2011] showed that the main bottleneck in GPU applications is related to the
memory subsystem. To reduce its impact, they used DMA warps to improve memory trans-
fer between on-chip and off-chip memories. They achieved a speedup up to 3.2× on several
kernels form scientific applications.

Schäffer and Fey [Schäfer and Fey 2011] evaluate a set of algorithms on Fermi GPUs.
They evaluate micro-benchmarks using shared memory and found that using only the L1
cache creates a problem for its limited throughput. Also, the L2 cache is not a good option
because of cache blocking. They conclude that a new alternative to use shared memory was
needed to overcome communication bottleneck. Falch and Elster [Falch and Elster 2014]
proposed the usage of a manually managed cache to combine the memory from multiple
threads. Using their technique, they achieved a speedup of up to 2.04 in a synthetic stencil.
They concluded that manual caching is an effective approach to improve memory access and
that applications with regular access patterns are suitable to implement their technique.

Zhou et al. [Zhou et al. 2016] points that the use of GPUs enables considerable gains
in performance compared to using CPU. They have applied GPUs successfully in many
computations and memory intensive realms due to its superior performances in the float-
pointing calculation, memory bandwidth, and power consumption. The results obtained
show a speedup of up to 50 times using GPU algorithm rather than CPU algorithm. In



similar works, Zhou et al. [Zhou et al. 2012] obtained a speedup between 10 and 15 times
using a GPU rather than CPU.

Xue et al. [Xue et al. 2015] also make comparisons between GPU and CPU imple-
mentation. They obtained a speedup up to 18 times in the GPU-based implementation of a
time-reversal imaging micro-seismic event location. Also, Nikitin et al. [Nikitin et al. 2012]
obtained average speedup up to 46 times using GPU for compared to CPU for processing a
synthetic seismic data set (data compression, de-noising, and interpolation).

Maruyama and Aoky [Maruyama and Aoki 2014] present a method for stencil com-
putations on the NVIDIA Kepler architecture that uses shared memory for better data lo-
cality combined with warp specialization for higher instruction throughput, their method
achieves approximately 80% of the value from roof line model estimation. Hamilton et
al. [Hamilton et al. 2015] investigate the computational performance of GPU-based stencil
operations using stencils of varying shape and size (ranging from seven to more than 450
points in size). They found that using an NVIDIA K20 GPU, data movement, rather than
computing, was the bottleneck, and as such, the performance obtained can be attributed to
the effects of the L2 and texture caches on the card.

Nasciutti and Panetta [Nasciutti and Panetta 2016] did a performance analysis of 3D
stencils on GPUs focusing on the proper use of the memory hierarchy. They conclude that
the preferred code is the combination of read-only cache reuse, inserting the Z loop into the
kernel and register reuse. Different to other approaches that allocate workload on CPU and
GPU architectures, or works that use GPUs to achieve considerable performance gains when
compared to traditional CPU architecture. Our goal is to increase performance and energy
efficiency of stencil application applying methods and optimization to use different memory
levels of the GPUs.

3. Evaluation Methodology
In this section, we show the stencil model we use as a case study. We also present the

GPUs architectures, the optimizations evaluated and the experimental methodology.

3.1. Stencil Computations
The computational performance of GPU-based stencils has great scientific importance

as it is used in many areas of scientific computing. Stencil computations are present from a
simple Jacobi iterations until extremely complex solutions of non-linear Partial Differential
Equations (PDE) [Dubey 2014]. A stencil application calculates the value of one point of
the grid in the current iteration using the value of this same point and its neighbors in the
previous iteration [Datta et al. 2008].

3.1.1. Fletcher Model in Isotropic Acoustic Wave Propagation

The modeling simulates the collection of data in a seismic survey, as in Figure 1. At
intervals of, equipment coupled to the ship emits waves that reflect and refract on changes
of the medium in the subsoil. Eventually, these waves return to the surface of the sea, being
collected by specific microphones (geophones) coupled to cables towed by the ship. The
set of signals received by each geophone over time constitutes a seismic trace. For each
wave emission, the seismic traces of all cable geophones are recorded. The ship continues to
sailing and emits signals over time.

Acoustic wave propagation approximation is the current backbone for seismic imag-
ing tools. It has been extensively applied to imaging potential oil and gas reservoirs beneath
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Figure 1: Data collection (traces) in maritime seismic survey.

salt domes. We consider the model formulated by the isotropic acoustic wave propagation
under Dirichlet boundary conditions over a finite 3D rectangular domain, prescribing to all
boundaries, and the isotropic acoustic wave propagation. Propagation speed depends on
variable density, the acoustic pressure, and the media density. The Numerical method solves
Equation 1 and is detailed in [Vilela 2017]. Figure 2 illustrates the acoustic wave propagation
stencil.

Ci,j,k =a0Ci,j,k

+ a1(Ci−1,j,k + Ci+1,j,k + Ci,j−1,k + Ci,j+1,k + Ci,j,k−1 + Ci,j,k+1)

+ a2(Ci−2,j,k + Ci+2,j,k + Ci,j−2,k + Ci,j+2,k + Ci,j,k−2 + Ci,j,k+2)

+ a3(Ci−3,j,k + Ci+3,j,k + Ci,j−3,k + Ci,j+3,k + Ci,j,k−3 + Ci,j,k+3)

(1)
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Figure 2: Acoustic Wave Propagation 7 point Stencil.

3.2. Optimization Strategies
Current GPU architectures provide memories with different characteristics compared

with CPUs. One of the main differences between GPUs and CPUs is the way their memory



subsystem work. In a CPU, access to memory is done by obtaining their data from caches.
Usually looking on L1, L2, L3, and DRAM in that order. On the other hand, in a GPU the L1
memory cache, is used specifically for accesses to the stack and register spill, i.e., when too
many local variables do not fit in the register file, and thus some of it has to be cached. L2
memory is used for global accesses requested by stream processors. There are also registers
files, a shared memory, a texture memory and a global memory with different characteristics
such as size, speed, read-only memory and in the way that is possible to use them. These
registers were not available in NVIDIA GPUs before Kepler architecture. In Figure 3, we
show an overview of the Kepler GPU architecture.

SP SP SP

SP SP SP

L1 TexShared

SMX
SP SP SP

SP SP SP

L1 TexShared

SMX

L2 Cache
Global Memory

Figure 3: Sample of the memory subsystem on a NVIDIA Kepler architecture

To exploit the use of different memory levels available on current GPU, we develop
three versions of a stencil kernel using each one of the GPU memories. Each stencil version,
give us a different insight of the performance and capabilities of the GPU memory subsystem.

• The first version called naive take no advantage of any of the GPU high-speed mem-
ories and access data only from global memory.
• The second version called shared stores one part of the stencil data in the shared

memory scratchpad. The shared-memory version also uses the GPU resources that
the naive version uses, the main difference is that this version also uses the shared-
memory available on each SMX (Streaming Multiprocessors). Each one of the SMX
has one internal shared-memory to store data as shown in Figure 3. In this version,
data is manually allocated by the programmer through the use of the shared direc-
tive, indicating such data will be shared among all the GPU threads. The compiler
automatically configures the space division between the L1 cache memory and the
shared cache memory, choosing one of three options: 16 KB for the L1 cache and
48 KB for the shared cache, 32 KB for each, or 48 KB for the L1 cache and 16 KB
for the shared cache.
• The third version called read-only stores most read data in a read-only texture mem-

ory which is faster than shared memory but works with read-only data. This version
takes advantage of the read-only cache which is the SMX memory bank that stores
only read data, it is also called texture memory. Originally it was used only for tex-
tures, but starting with the Kepler architecture any data can be stored in this cache by
using the C-99 directive const restrict. The programmer may also explicitly
use this cache through the intrinsic lgd().

We developed two optimizations for each of the versions to evaluate improvements in
performance and energy efficiency by reusing the Z direction data. Reusing Z direction data
is named internalization.



• The int.z version takes advantage of data locality by storing stencil data for direc-
tion Z. This optimization consists of the internalization of the Z-axis into the threads.
Doing the internalization ensures that neighboring Z-blocks execute sequentially, in-
creasing the reuse of L2 cache data. Direction Z data is used to calculate subsequent
points in the X-Y direction.
• The int.z.reg version consists of combining the int.z with the usage of registers to

store the Z direction points. For example, to calculate the point Z3 in a 13 points
stencil, the neighboring points in X and Y, as well as points Z1, Z2, Z3, Z4 and Z5
are required. In order to calculate the points in Z4, points Z2, Z3, Z4 and Z5 would
be availed, and it is necessary to request the global memory only points Z6, as well
as the neighbors in X and Y.

3.3. Experimental Methodology
Our experiments were developed in two NVIDIA GPU card. The first is an NVIDIA

K80 GPU. This card is a Kepler architecture GPU with 2496 CUDA cores. The second card
is an NVIDIA P100 GPU. This card is a Pascal architecture GPU with 3584 CUDA cores.
Table 1 describes in detail the environments we used.

Device Tesla K80 Tesla P100

CUDA Cores 2496 3584
Registers 13 x 512kB 56 x 256KB
Memory 13 x 128KB L1 / shared 56 x 64KB shared

1536KB L2 4096KB L2
13 x 48KB texture (read-only) 56 x 24KB L1 / texture (read-only)
12GB GDDR5 global memory 16GB GDDR5 global memory

Table 1: Configuration of GPU system.

We used NVIDIA Management Library (NVML) to measure the power usage. Re-
garding the energy efficiency, we used performance divided by average power. Each exper-
iment was executed 20 times, we show average values as well a 95% confidence interval
calculated with Student’s t-distribution.

4. Results
This section shows the optimizations techniques we used to improve the performance

and energy efficiency of a stencil application. The stencil we used simulates the propagation
of a single wavelet over time. To create the simulation, it solves the isotropic acoustic wave
propagation with constant density under Dirichlet boundary conditions over a 3D domain.
The stencil is a 31-arm with a (1024× 256× 256) input size.

In the following subsections, we describe each optimization and analyze how they
address the performance and energy efficiency improvements. We also show the results
obtained by using the three different memories and the results of the optimizations applied
in each of them, on an NVIDIA Kepler architecture and NVIDIA Pascal architecture.

4.1. Performance Improvements
In this subsection, we show the Performance improvements obtained by using differ-

ent GPU memory subsystem (global- , shared- , and read-only-memory) and two optimiza-
tion techniques over a stencil kernel. In Figure 4 is showed the performance achieved for



each kernel version and optimizations performance. P100 features 5x more performance
that K80 GPU for this stencil kernel using Naive version. The performance achieved in K80
was 98.1 GFLOPS while in P100 was 489.3 GFLOPS.
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Figure 4: Performance gains over K80 and P100

Applying the first optimization technique int.z which stores data from direction Z in
local variables to take advantage of the data locality by reusing these data in the subsequent
iterations, performance gains were not realized in K80 (Figure 4(a)). Otherwise, in P100
(Figure4(b)), the performance were improved by up to 20, 8% using the this int.z technique
over a naive version. When the second optimization int.z.reg was employed, which consists
of the int.z optimization along with the use of the register file to store the Z points, the perfor-
mance was increased from 98.1 GFLOPS to 138.8 GFLOPS in K80, from 489.3 GFLOPS
to 838.9 GFLOPS in P100, which represent an increase of 41.5% and 71.4% respectively.

Although the performance was improved using optimizations techniques, the naive
version does not take advantage of fast GPU memories as shared memory. Thus, we im-
proved the naive version by used the shared memory scratch pad to store a slice of data that
is reused by the threads of the same block.

To the second version, the performance was increased from 98.1 GFLOPS to
144.4 GFLOPS in K80, from 489.3 GFLOPS to 643.2 GFLOPS in P100. In this version
the data were manually allocated using the shared directive, indicating a piece of data shared
among all threads. The performance improvement using the shared memory compared to
the naive was 47.10% on the K80 and 31.45% on the P100. In the P100, the performance is
lower because in Pascal architecture the number of SMs were increased and the number of
SPs in each SM were decreased. In this case, each P100 SM has less shared memory than a
K80 SMX.

Similarly to the first version, we also applied the int.z and int.z.reg optimizations
in this version aiming to improve the performance of the memory operations. The int.z
optimization over stencil represented an improvement of 7.07% in K80 performance, which
achieve 154.6 GFLOPS. Differently, in P100 the performance was reduced when used this
optimization.

The second optimization (int.z.reg) over shared memory performed in K80 increased
the performance in 104.9% when compared to shared memory version without optimiza-
tion and 201.5% when compared to naive without optimizations. Using this optimization



and shared Memory version in a stencil application was achieved the best performance,
296.04 GFLOPS. The gains were greater when the version with the second optimization was
applied in P100. The performance increased in 177.3% when compared to shared memory
version without optimization. Since the data are stored in the shared memory they are not
updated. So, we may take more advantage if the read-only memory is used. The read-only
memory is faster than shared memory but exclusively used for read-only operations.

Running the read.only version, which define that global memory reads are stored in
the read-only memory using the lgd() intrinsic, the performance achieved 162.2 GFLOP
in the K80 496.5 GFLOPS in the P100. The performance improvement of this strategy
compared to the naive on K80 was 65.26% and 1.48% on P100. The low improvement
occurs on P100 architecture because on Pascal, the read-only memory is shared with the L1
and the compiler defines the distribution for each memory. In Kepler, the read- only memory
is not shared with any other memory.

Adding the int.z optimizations over this third version of the kernel the performance
increase 6.03% in the K80 and 18.9% in the P100. The performance is also increased when
used the int.z.reg optimization over stencil performing in the read-only memory. Implement-
ing the int.z.reg that also uses the register file, the performance was improved by up to 41.8%
in the K80 and 67.9% in the P100.

4.2. Energy Efficiency Improvements

In this subsection, we show the energy efficiency improvements obtained by using
different GPU memory subsystem (global- , shared- , and read-only-memory) and two op-
timization techniques over a stencil kernel. Figure 5 showed the energy efficiency achieved
for each kernel version and optimizations performance.
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Figure 5: Energy Efficiency gains over K80 and P100

The gains in energy efficiency are similar to those achieved with the increase in per-
formance. The energy efficiency of the P100 (Figure 5(a)) was 5.8 times greater than K80
(Figure 5(b)) to naive version. The first optimization technique int.z overtakes the normal
version and also improvement the energy efficiency of up to 28.8% compared with the naive
version in P100. When the second optimization int.z.reg was employed, the energy effi-
ciency increase 54.8% in the K80 and 96.9% in the P100.



Analysing the energy efficiency gains to the second version of the kernel, it was 56.4%
in the K80 and 36.8% in the P100 over Naive version without optimization. Applying the
int.z and int.z.reg optimizations in this version the energy efficiency improvement in K80
and reduces in P100. However, the main gains were achieved with the second optimization
(int.z.reg) over shared memory. It increases the energy efficiency in 255.6% in the K80 and
314.8% in the P100 when compared to the naive version without optimizations. The best
efficiency was achieved when the int.z.reg optimization was used over read-only version. In
K80 it achieved 3.21 GFLOP/W.

5. Conclusion
Nowadays, the use of GPUs in HPC systems has become a popular choice among the

top-ranked platforms. However, to achieve even greater performance and energy efficiency
is necessary to exploit the different memory levels available. Several scientific applications
make use of stencil computations to their model simulations and are performed in GPU plat-
forms. Stencils have both implicit and explicit partial differential equations (PDE) being
interesting as an architectural evaluation benchmark. Their computing present low compu-
tational intensity, once that these applications are typically memory-bound. In this form,
memory optimizations are important for to use the fastest memories available in GPUs and
increase their energy efficiency.

In this paper, we improved the performance and achieved energy efficiency by the
development of three different strategies which use the GPU memory subsystem (global,
shared, and read-only memory). We also develop two optimizations to use data locality and
use of registers of GPU architecture. To analyze the impact of our proposed strategies and
optimizations, we applied them to a stencil application and ran on Tesla K80 and Tesla P100
GPUs. Our developed strategies to GPU algorithms achieved the performance improve-
ment of up to 201.5% in K80 and 264.6% in P100 when were used shared memory and
read-only cache respectively over the naive version. These increases in computational per-
formance also improve the energy efficiency. The main gains were achieved with (int.z.reg)
optimization over shared memory which increases the energy efficiency in 255.6% in K80
and 314.8% in P100 when compared to the naive version without optimizations.

Changes in the GPU architecture, as in the case of the introduction of the read-only
cache in the Kepler architecture, can generate changes in the results presented in this work.
In the future, we plan to investigate methods and optimizations aiming to achieve gains in
stencil applications over new NVIDIA architecture and Intel Xeon Phi.
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