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Abstract. Connection Networks are an abstraction to model the exchange of
information between entities. In this abstraction, entities are represented by
vertices and the exchange of information between two entities is represented by
edges. Entities in Connection Networks can have distinct roles which can be
related to their functionality. For example, in the Internet Connection Network,
entities represented by IP addresses can play the role of client or server. Howe-
ver, many Connection Networks are anonymized in order to omit information
concerning the identity and the role of the entities. This paper presents a study
of the structural characteristics of the Internet Connection Network as well as a
characterization of the different roles played by vertices. Using this characteri-
zation, this work proposes techniques to re-identify the role of vertices in anony-
mized Internet Connection Networks. These techniques use only the structural
properties of the network. Finally, the proposed techniques are evaluated and
compared to assess their efficiency in re-identifying roles. Numerical results are
very promising and indicate that it is possible to re-identify roles with a success
rate of over 96%.

Resumo. Redes de Conexão são uma abstração para modelar a troca de
informação entre um conjunto de entidades. Nesta abstração, entidades são
representadas por vértices e a troca de informação entre duas entidadas são
representadas por arestas. Entidades em uma Rede de Conexão podem possuir
papéis distintos, podendo este estar relacionado com a função desempenhada
pela entidade. Por exemplo, na Rede de Conexão da Internet, entidades repre-
sentadas por endereços IPs podem desempenhar o papel de cliente ou servi-
dor. Entretanto, muitas Redes de Conexão são anonimizadas de forma a omitir
informações relacionadas a identidade e o papel das entidades. Este traba-
lho apresenta um estudo das caracterı́sticas estruturais da Rede de Conexão da
Internet, assim como a caracterização dos diferentes papéis existentes. Com
base nesta caracterização, este trabalho propões técnicas para re-identificação
de papéis em Redes de Conexão da Internet que foram anonimizadas. Estas
técnicas utilizam-se apenas das propriedades estruturais da Rede de Conexão
anônima. Por fim, as técnicas propostas são avaliadas e comparadas entre si
para medir a eficiência da re-identificação dos papéis. Resultados numéricos
são muito promissores e indicam ser possı́vel re-identificar papéis com taxas de
acerto superior a 96%.
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1. Introdução

A área de estudo conhecida por Redes Complexas vem possibilitando – pelo desenvol-
vimento de diversas técnicas e modelos – o entendimento de caracterı́sticas e funcio-
nalidades de uma variedade de sistemas em redes presentes na natureza e na sociedade
[Albert and Barabási 2002].

Nosso trabalho detém-se ao estudo de um sistema em particular, ao qual deno-
minamos Redes de Conexão. As Redes de Conexão representam troca de informação
entre entidades. Um vértice neste sistema representa uma entidade participante da
comunicação, e, ao trocar informações, os vértices estabelecem uma aresta entre eles.
Um exemplo de Rede de Conexão é a Internet onde os IPs são os vértices da rede e a
troca de pacotes entre IPs é representado por uma aresta. Os vértices das Redes de Co-
nexão possuem atributos quanto ao papel desempenhado na troca de informação, ou seja,
os vértices são diferenciáveis em tipos. No exemplo da Internet temos que os vértices
podem ser denominados cliente se iniciam conexões ou servidor se apenas receberam
solicitações de conexões.

Alguns sistemas possuem informações sensı́veis, de cunho pessoal ou sigiloso,
recorrendo a anonimização para sua disponibilização pública. A anonimização objetiva
a impossibilidade – devido à remoção ou substituição de informações de identidade – de
relação, direta ou indireta, entre a instância anônima e a informação real por ela represen-
tada. A anonimização das Redes de Conexão leva, por exemplo, a perda de informações
quanto ao papel desempenhado pelos vértices e a identidade real destes. Entretanto, mui-
tos estudos recentes mostram a possibilidade da quebra do anonimato ou inferência de
informação de identidade, pela exploração das propriedades topológicas das redes.

Este trabalho apresenta uma caracterização das propriedades topológicas das
Redes de Conexões, tanto indiscriminadamente, quanto pela distinção de papéis.
Inspirando-se nesta caracterização são propostas técnicas que possibilitam a inferência de
informações relevantes – como a re-identififcação de papéis, baseando-se apenas na estru-
tura da rede. Neste trabalho fazemos ainda uma avaliação das técnicas de re-identificação
propostas e mostramos que é possı́vel promover a re-identificação de papéis em Redes de
Conexões Anônimas com taxas de acerto superior a 96%.

Deste modo, este trabalho está organizado com a seguinte estrutura. Na Seção
2 são definidas, formalmente, as Redes de Conexão e os possı́veis papéis nelas iden-
tificáveis. Na Seção 3 são apresentados alguns trabalhos relacionados. Na Seção 4 é
realizada a caracterização das propriedades topológicas da Redes de Conexões. Na Seção
5 são apresentadas técnicas para a identificação de papéis em Redes de Conexão anoni-
mizadas e, complementarmente, na Seção 6 são apresentados e avaliados resultados da
aplicação destas técnicas. Por último, na Seção 7 são feitas as considerações finais sobre
o trabalho.

2. Rede de Conexão

O conceito de Rede de Conexões foi introduzido no trabalho [Iliofotou et al. 2007] com
o nome de Grafo de Dispersão de Tráfego (TDG - Traffic Dispersion Graph). TDGs
são representações gráficas de várias interações direcionadas (”quem se comunica com
quem”) de um grupo de entidades. Nesse contexto a Internet pode ser uma Rede de
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(a) Rede de Conexão (b) Rede de Conexão Anônima

Figura 1. Rede de Conexão e sua Rede de Conexão Anonimizada equivalente

Conexão no qual os vértices representam entidades com endereços IP distintos e as arestas
representam a troca de pacotes entre entidades.

Na construção de uma Rede de Conexão podemos utilizar diversos tráfegos. No
nosso estudo consideramos apenas fluxos de comunicação TCP cuja origem ou destino
fosse a porta 80. Os vértices deste grafo foram classificados – durante o estudo de
caracterização – quanto a inicialização do estabelecimento da conexão TCP entre as en-
tidades. A conexão TCP é assimétrica e, deste modo, entidades que apenas iniciaram
conexões foram denominadas como Cliente, as que apenas receberam conexões foram
denominadas como Servidor e as que inicializaram e receberam conexões como Cli-
ente/Servidor. Neste trabalho utilizaremos a seguinte notação para referenciar os papéis:
Cliente é denotado por C, Servidor por S e Cliente/Servidor por CS. As arestas possuem
notação similar denotando os tipos de vértices por elas conectados, por exemplo, arestas
que conectam vértices C e S são denotadas por C-S, as que conectam vértices CS e CS
serão CS-CS. Na Figura 1(a) vemos um exemplo destas denonimações o IP3 apenas inicia
conexões sendo C, o IP1 apenas recebe conexões sendo S e o IP4 tanto inicia como recebe
conexões sendo CS. A Rede de Conexão utilizada neste trabalho utiliza apenas o endereço
de origem e destino proveniente de pacotes SYN do protocolo TCP para estruturação da
rede.

2.1. Rede de Conexão Anônima

A anonimização de uma rede pode ser feita utilizando diversas técnicas. Uma delas
utiliza-se da desassociação da informação sensı́vel através de um mapeamento um-para-
um com identificadores sintéticos [Hay et al. 2008]. A rede anônima gerada é isomorfa à
rede identificada que a gerou. Deste modo, um identificador da rede real é sempre mape-
ado para o mesmo identificador sintético da rede anonimizada bem como, uma aresta exis-
tente entre duas instâncias da rede real existirá também entre os vértices correspondentes
anônimos. Uma Rede de Conexão Anônima nada mais é uma Rede de Conexão que
passou para uma anonimização de identificadores e teve o atributo de papel omitido. A
Figura 1 exemplifica este processo. Um problema crı́tico existente em redes anônimas é a
quebra da segurança das informações. Neste sentido, diversos estudos recentes vem mos-
trando que é possı́vel quebrar o anonimato ou inferir informações de identidade a partir,
apenas, da exploração da estrutura da rede anônima. Em Redes de Conexões Anônimas
esse problema relaciona-se, por exemplo, a re-identificão de papéis.
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3. Trabalhos Relacionados
Em [Hay and Srivastava 2006] traces de tráfego real foram utilizados para estruturar Re-
des de Conexão – definido pelos autores como Grafo de Dispersão de Tráfego (TDGs
- Traffic Dispersion Graphs). Neste trabalho a análise e utilização de caracterı́sticas to-
pológicas é feita com o propósito de classificação de tráfego, e a Rede de Conexões em
estudo possui direção quanto ao envio de pacotes. O acréscimo da informação de direção
das arestas torna o problema de classificação de papéis proposta neste artigo, trivial.

Em [Narayanan and Shmatikov 2009] é proposto um algoritmo genérico para a
re-identificação de vértices em Redes Sociais reais baseado apenas na estrutura da Rede.
O algoritmo explora as informações contidas nas arestas como grau e previsão de arestas
(link prediction) – e não apenas nos dados repassados de cada vértice – para mapear
sobreposições entre uma Rede Social anônima alvo e uma Rede Social auxiliar conhecida.

O trabalho desenvolvido em [Pang et al. 2006] apresenta técnicas para inferência
da topologia e identificação de servidores em Redes Anonimizadas. [Mahadevan et al. ]
mostra um conjunto de caracterı́stica da topologia AS da Internet.

Em [Meiss et al. 2005] é apresentando um estudo em larga escala do tráfego Web
baseado no fluxo de dados de redes. [Kitsak et al. 2010] busca a identificação de um nó
que melhor promova a propagação de informação dentro de uma Rede Social.

4. Caracterização de Redes de Conexão
Para caracterizar uma Rede de Conexão utilizamos traces públicos de tráfego real
do backbone da Internet da base “The CAIDA Anonymized 2009 Internet Traces”
[Colby Walsworth 2009]. Esta base é composta por traces anonimizados de tráfego pas-
sivo – divididos em pedaços correspondentes a 1 minuto de observação - coletada pe-
los monitores da CAIDA em 2009. Desta base foram utilizados os arquivos “passive-
2009/equinix-chicago/20090331” equivalentes a 1 hora de observação consecutiva.

4.1. Propriedades

Métricas topológicas são amplamente difundidas para a descrição e comparação de Redes
[Albert and Barabási 2002]. Neste trabalho, apenas algumas das métricas mais utilizadas
foram avaliadas.

Grau Médio: é definido pelas duas mais básicas propriedades de um grafo, o
número de vértices e o número de arestas, sendo calculado pela razão entre duas vezes
o número de arestas e o número de vértices. O grau médio pode servir como indicativo
da conectividade do grafo – grafos com alto grau médio tendem a ser mais conectados
e robustos – porém, é tido como um indicativo limitado visto que grafos com diferentes
propriedades topológicas podem ter o mesmo grau médio [Albert and Barabási 2002]. A
Rede de Conexão em estudo possui 1520327 endereços de IPs e 2674054 arestas tendo
consequentemente um grau médio de aproximadamente 3, 52.

Distribuição Empı́rica de Grau: é fração de vértices de grau k dada por:
P (k) = n(k)/n, onde n(k) é o número de vértices com grau k e n o total de vértices.
Na Rede de Conexão estudada fica evidente uma relação desigual quanto à distribuição
de grau nos vértices. O grau médio do grafo é 3, 52 e o maior grau encontrado é 132900,
ou seja, o maior grau é mais de 37 mil vezes maior que o grau médio. A função de
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distribuição cumulativa complementar (Complementary Cumulative Distribution Func-
tion – CCDF) empı́rica do grau dos vértices, Figura 4 curva < todos >, foi traçada e
aproximada a uma distribuição de lei de potência através da utilização do método es-
tatı́stico de máxima verossimilhança (MLE – Maximum Likelihood Estimation) – usado
para ajustar dados a um modelo estatı́stico. Uma lei de potência representa uma relação
matemática onde a frequência ou quantidade de um objeto varia de acordo com uma
potência de algum atributo. Distribuições de probabilidade que seguem lei de potência
representam eventos que, em geral, possuem altas probabilidades para amostras do inı́cio
da distribuição, como também, amostras muito acima da média da distribuição com pro-
babilidade não desprezı́vel (variando de acordo com uma potência). Redes cujas caudas
da distribuição seguem uma lei de potência – ou seja – possuem a forma P (x) ∼ x−γ

são conhecidas como livres de escala [Albert and Barabási 2002]. A CCDF empı́rica foi
aproximada de uma lei de potência com expoente de γ = 2, 19 e erro σ = 4, 6 ∗ 10−3 e,
deste modo, comprovamos a grande desigualdade existente entre os graus.

Distribuição Conjunta Empı́rica de Grau: seja m(k1, k2) o total de arestas que
conectam nós de grau k1 e k2. A distribuição conjunta empı́rica de grau é a fração de
arestas que sejam incidentes sobre vértices de grau k1 e k2:

P (k1, k2) = µ(k1, k2) ∗m(k1, k2)/2m , onde m é o total de arestas e

µ(k1, k2) =

{
1 se k1 = k2

2 c.c.

Com a distribuição conjunta de probabilidade é possı́vel estimar informações quanto à
vizinhança de um vértice [Albert and Barabási 2002]. Ao observar a Figura 2 vemos

Figura 2. Histograma da Distribuição Conjunta Empı́rica de Grau (Intervalo logarı́tmo base
2)

que vértices de grau alto são, com grande probabilidade, adjacentes a vértices de grau
baixo. Por outro lado, vértices de grau baixo apresentam probabilidades semelhantes de
adjacência com graus altos e baixos.

Componente Conexa: é definida na teoria do grafos como um sub-grafo conexo
maximal. Diz-se que o grafo é conexo quando ele possui apenas um componente conexo
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composto pelo grafo inteiro. A Rede de Conexão em estudo não é conexa sendo, entre-
tanto, dominada por uma Componente Conexa Gigante (GCC - Giant Connected Compo-
nent) que possui 1499870 vértices, o equivalente a 98,65% do total de vértices restando
apenas 1,35% nas demais componentes. A Rede possui um total de 7869 componentes
conexos nos quais 78,88% tem tamanho 2 (menor tamanho possı́vel), 13,09% tamanho 3,
4,43% tamanho 4 e, consequentemente, menos de 3,6% tem tamanho maior que 4. Esta
relação desigual entre o tamanho da componente conexa e a quantidade de componentes
está expressa na Figura 3 onde a CCDF empı́rica do tamanho da componente conexa evi-
dencia tal diferença, de onde foi calculado o expoente γ = 2, 22 com o qual temos um
erro σ = 1, 3 ∗ 10−2. Distância: a distância entre dois vértices é definida como o menor

Figura 3. Distribuição do tamanho das componentes

caminho entre eles. A distribuição empı́rica da distância d(x) representa a fração de pares
de vértice que estão a uma distância de x saltos do outro. A maior distância do grafo
representa o diâmetro deste.

Clusterização: o coeficiente de clusterização representa a porcentagem de
triângulos sobre o total de triplas conectadas em todo o grafo [Albert and Barabási 2002].
Esta métrica tem implicações práticas pois expressa a robustez do grafo. Muitas das re-
des complexas reais estudadas possuem alto coeficiente de clusterização, porém, para
a rede em estudo – surpreendentemente – a clusterização é nula. Vale ressaltar que a
clusterização nula significa que não há ciclo de tamanho três na Rede de Conexões avali-
ada. Entretanto, esta rede possui ciclos de outros tamanhos.

4.2. Caracterização por Papéis
Nesta seção faremos a caracterização da Rede de Conexões quanto aos papéis desempe-
nhados pelos vértices. A observação das propriedades topológicas do Grafo quanto a estes
papéis é essencial para a caracterização e diferenciação destes. A partir desta análise é
possı́vel, então, propor técnicas para a classificação de papéis em Redes de Conexão ano-
nimizadas.

Grau Médio: é calculado pelas soma do grau dos vértices de um dado papel divi-
dido pelo total de vértices deste tipo. A Rede em estudo possui 1399690 vértices clientes
– 92,07% do total – que possuem o grau médio de aproximadamente 1, 89. Para o tipo ser-
vidores foram classificados 116509 vértices (7,66%) e o grau médio é aproximadamente
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21, 86. Já para o tipo cliente/servidor o grafo possui apenas 4128 nós (0,27%) e o grau
médio de 37, 90.

Distribuição Empı́rica de Grau: seja n1(k) o número de vértices com grau k
do tipo1. A distribuição empı́rica de grau dos vértices por tipo corresponde à fração de
vértices de um determinado tipo com grau k: P (k|t1) = n1(k)/n1 . A Figura 4 mostra
a CCDF empı́rica de grau para os diferentes papéis na Rede. Para o tipo C foi estimado
um expoente γc = 2, 48 com o qual temos um erro σc = 5, 5 ∗ 10−3, para o tipo S
γs = 1, 73 e σs = 7, 4 ∗ 10−3 e para o tipo CS γcs = 2, 05 com o qual temos um erro
σcs = 3 ∗ 10−2. Deste modo vemos que não só a distribuição empı́rica de grau da rede
segue uma lei de potência, como também, cada distribuição empı́rica de grau por tipo
de vértice estudada segue lei de potência. É interessante observar que as distribuições
de grau para S e CS tem um expoente menor que o expoente da distribuição C e, em
consequência, possuem uma distribuição de grau ainda mais desigual. Na figura 4 fica

Figura 4. Distribuição Empı́rica de Grau

evidente a diferença entre as caudas das distribuições. O maior grau de um vértice cliente
é 11411. Para este valor temos ainda que 0,19% dos vértices do tipo servidor, ou seja, mais
de 220 vértices, possuem grau maior que este. Para os vértices do tipo cliente/servidor
esse valor chega a 0,9%, porém representa uma quantidade de apenas 37 vértices com
grau superior. O maior grau de um vértice cliente/servidor é de 42384, para o qual ainda
temos aproximadamente 0,01% de vértices do tipo servidor com grau superior, cerca de
10 vértices. O maior grau da rede é do tipo servidor, com grau de 132900 que é 3 vezes
maior que o maior grau do tipo cliente/servidor e 11 vezes maior que o maior grau do tipo
cliente.

Arestas: A Rede de Conexões em estudo, devido ao modo como é composta,
possibilita que existam apenas arestas entre determinados tipos de vértices. As arestas
possı́veis são: C-S, C-CS, S-CS e CS-CS. Destas observou-se as seguintes quantidades
dentro na rede:

• C-S: 2520009 arestas (94,24%)
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(a) C-S (b) C-CS

(c) S-CS (d) CS-CS

Figura 5. Histograma da Distribuição Conjunta Empı́rica de Grau por Papéis (Inter-
valo logarı́tmo base 2)

• CS-C: 124717 arestas (4,66%)
• CS-S: 26932 arestas (1,01%)
• CS-CS: 2396 arestas (0,09%)

As proporções de arestas nos revelam que a adjacência mais comum na rede é
a de Clientes com Servidores. Outra maneira de interpretar esses dados diz respeito à
frequência relativa da classificação dos vértices adjacentes a um determinado tipo. Neste
sentido, os vértices do tipo S tem 98,94% de vizinhos do tipo C e apenas 1,06% do tipo
CS. Já os vértices do tipo C tem 95,28% de vizinhos do tipo S e 4,72% do tipo CS.
Vértices CS tem 80,96% de vizinhos C, 17,48% S e apenas 1,56% CS.

Distribuição Conjunta Empı́rica de Grau por papéis: representa a fração rela-
tiva de arestas que conectam um vértice de grau k1 do tipo1 e de grau k2 do tipo2. Como
arestas do tipo C-C e S-S não são possı́veis, a distribuição conjunta para estas arestas é
nula. As demais distribuições empı́ricas conjuntas estão representadas na Figura 5. A Fi-
gura 5 nos revela algumas tendência de vizinhança da rede. Em 5(a) vemos que S de grau
alto estão conectados na sua maioria com C de grau baixo e C de grau alto conectam-se,
em geral, a S de grau baixo. Tal padrão – relação entre grau alto e baixo – é repetido
também na Figura 5(b) e menos intensamente nas Figuras 5(c) e 5(d).

5. Re-identificação de papéis
A inferência de informações relevantes provenientes apenas da estrutura de Redes anoni-
mizadas tem sido alvo de diversos trabalhos [Hay et al. 2008] e [Pang et al. 2006]. Nesta
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seção apresentamos algumas técnicas, propostas neste trabalho, para a re-identificação
de papéis (cliente, servidor, cliente/servidor) em Redes de Conexão anonimizadas. As
técnicas apresentadas exploram apenas as propriedades estruturais destas redes descritas
e avaliadas na seção 4 deste trabalho. Todas as técnicas propostas preocupam-se em ge-
rar classificações consistentes, ou seja, classificações possı́veis, observadas as restrições
de relação de adjacência. Uma classificação consistente para uma Rede de Conexão não
permite que existam arestas do tipo C-C ou S-S.

5.1. Classificador de Ordem Decrescente
Esta técnica tenta explorar, de modo simples, a relação entre as caudas da distribuição
empı́rica de grau dos diferentes tipos de vértice. Podemos inferir que os vértices de maior
grau da rede serão do tipo servidor, de acordo com a avaliação na seção 4.2. Além disso,
esta técnica de classificação respeita as possı́veis relações de adjacências entre os vértices,
não permitindo que um vértice do tipo cliente ou servidor sejam adjacentes a vértices do
mesmo tipo. A idéia geral deste classificador é percorrer os vértices da Rede de Conexão
em ordem decrescente quanto ao grau, observar os vizinhos já classificados e atribuir uma
classificação consistente. O esquema desta técnica está descrito abaixo:

Classificador OrdemDecrescente (Maiores:FILA, Grafo: GRAFO)
INTEIRO: Cli, Serv
VERTICE: e, v
Para v em Vertices(Grafo): rotulo[v] := 0
Para e em Maiores:

Cli, Serv := 0
Para v em Vizinhos(Grafo, e):

caso rotulo[v] = C: Cli ++
caso rotulo[v] = S: Serv ++

Fim Para
se Serv=0 rotulo[e] := S
se nao, se Cli=0 rotulo[e] := C
se nao rotular[e] := CS

Fim Para
Fim Classificador

5.2. Classificador BFS
A Busca em Largura (BFS – Breadth-First Search) é um dos algoritmos mais simples e
utilizados para se percorrer um grafo. Este método explora sistematicamente as arestas
de um Grafo a partir de um vértice, até descobrir todos os vértices acessı́veis por este
iniciador [Cormen et al. 2001].

A idéia geral deste classificador parte da combinação da propagação de uma BFS
com algumas constatações provenientes da análise das Redes de Conexão, feita na seção
4, como a inferência quanto à classificação do vértice de maior grau como servidor e a
relação de adjacências possı́veis entre os vértices. As proporções das adjacências existen-
tes justificam o fato da utilização da BFS. Dado que 98,94% dos vértices adjacentes a um
vértice servidor são clientes e que 95,28% dos vértices adjacentes a um vértice cliente são
servidores, tenta-se classificar vértices como servidores ou clientes alternadamente em
cada onda de propagação. Adicionalmente, esta técnica utiliza-se também da constatação
da existência de ao menos um vértice cliente/servidor em ciclos de tamanho ı́mpar.

A existência de ao menos um vértice cliente/servidor em um ciclo ı́mpar é resul-
tado das relações de adjacência possı́veis. De outra maneira, se pudéssemos classificar em

1937



(a) 1 (b) 2 (c) 3 (d) 4

Figura 6. Detecção de CS em ciclo ı́mpar.

um ciclo ı́mpar vértices apenas com atribuições de cliente ou servidor, chegarı́amos a uma
inconsistência. Ao começar a classificação com um iniciador dentro do ciclo, devido a
alternâcia em cada passo entre as classificações (cliente ou servidor), haverá um ponto no
qual as classificações se interceptam e, neste ponto, havéra dois vértices classificados com
o mesmo tipo C-C ou S-S, chegando a inconsistente mencionada. A figura 6 exemplifica
esta constatação. Esta técnica proposta encontra-se apresentada no quadro a seguir:

Classificador BFS (Maiores:FILA, Grafo:GRAFO)
FILA: Fila := pegarPrimeiros(1, Maiores)
BOLEANO: aux
VERTICE: n, v
Para v em Vertices(Grafo):

rotulo[v] := 0
visita[v] := 0

Fim Para
Para n em Fila: camada[n] := 0
Enquanto Fila não vazia:

n := saiFila(Fila)
aux := FALSO
se camada[n] é Par

rotulo[n] := S
se camada[n] é ı́mpar

rotulo[n] := C
Para v em Vizinhos(Grafo, n):

se visita[v]= 0
visita[v]:=1;

entrarFila(Fila, v);
camada[v] := camada[n]+1

se visita[v] = 1
se rotulo[v] = rotulo[n]

aux := VERDADEIRO
Fim Para
se aux

rotulo[n] := CS
Fim enquanto

Fim Classificador

5.3. Classificador com múltiplas BFS
O Classificador BFS, ao classificar um vértice errado, propaga o erro por toda a árvore que
possui o vértice classificado erroneamente como pai. Apesar da grande porcentagem de
adjacências de C-S, um pequeno erro de classificação no inı́cio da árvore BFS pode gerar
grandes propagações de erro dentro da rede. A classificação com múltiplas BFS explora
todas as caracterı́sticas já abordadas pela classificação BFS (simples). A técnica utiliza
os n vértices de maior tamanho como iniciadores tentando classificá-los como servidores.
Esta técnica possibilita a diminuição de erros no inı́cio da propagação da classificação, a
detecção de vértices CS fora de ciclos ı́mpares e a diminuição do número de rodadas.
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O esquema da técnica de múltiplas BFS só difere do esquema de uma única BFS
pela inicialização da Fila como pode ser visto a seguir:

FILA: Fila := pegarPrimeiros(n, Maiores)

6. Avaliação dos Classificadores
A avaliação de sistemas de classificação é feita de forma experimental observando a
eficácia do classificador, ou seja, sua capacidade de classificar corretamente as instâncias
avaliadas. Segundo [Baeza-Yates and Ribeiro-Neto 1999] uma das maneiras de se calcu-
lar esta efetividade é utilizando-se contadores extraı́dos de uma matriz de contingência e
utilizar, por exemplo, as medidas clássicas de precisão e abrangência.

A matriz de contingência apresenta contadores relativos às quantidades de obje-
tos classificados como pertencentes ou não a uma determinada classe, pelo classificador
especialista. Observando-se uma classe particular x podemos obter 4 contadores da ma-
triz de contingência, que são: TP quantidade de objetos classificados corretamente como
x, FP quantidade de objetos classificados erroneamente como x, TN quantidade de ob-
jetos corretamente não classificados como x, FN quantidade de objeto erroneamente não
classificados como x. A partir desses contadores podemos facilmente calcular a pre-
cisão e a abrangência. A precisão consiste na probabilidade da classificação estar cor-
reta (TP), dado que o objeto havia sido classificado como x (TP+FP), ou seja, a pre-
cisão é TP/(TP+FP). A abrangência mede a probabilidade de um objeto, tirado ao acaso,
ser classificado como x (TP+FN) e que esta classificação esteja correta (TP), ou seja, a
abrangência corresponde a: TP/(TP+FN).

Para simplificar a avaliação, as medidas de precisão e abrangência
podem ser combinadas, por exemplo, utilizando a medida F (F-measure)
[Baeza-Yates and Ribeiro-Neto 1999]. A medida F pode ser calculada da seguinte
forma:

Fα =
1

α 1
P

+ (1− α) 1
R

onde α é um fator da importância relativa da precisão e da abrangência. Em nossas
avaliações utilizaremos α = 0, 5

Outra medida de avaliação para os classificadores é a complexidade computaci-
onal de pior caso [Cormen et al. 2001]. Esta medida pode ser obtida pela inspeção do
pseudo-código de cada classificador. Inspecionando o Classificador de Ordem Crescente
vemos que este recebe os vértices ordenados, a ordenação tem complexidade O(n log n),
onde n é o número de vértices do grafo. Além disso, este classificador percorre a lista
de vértices uma única vez e, para cada vértice analisado, são inspecionados todos os seus

vizinhos. Esta quantidade de iterações é dada por:
n∑
i=1

g(i), onde n é o número de vértices

do grafo e g(i) é o grau do vértice i. O resultado deste somatório é igual a 2m, onde m
é o número de arestas do grafo [Cormen et al. 2001]. Temos assim que a complexidade
deste primeiro classificador é O(n log n+m). O classificador BFS, por sua vez, requer a
identificação do vértice de maior grau, o que é feito com uma busca simples de comple-
xidade O(n). Adicionalmente, a partir deste vértice inicial, percorre-se a lista de vértices
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apenas uma vez inspecionando os vizinhos de cada vértice. A complexidade do classifi-
cador BFS é portantoO(n+m) [Cormen et al. 2001]. O classificador com múltiplas BFS
percorre a lista de vértices uma única vez, pois não há sobreposição nas propagações das
múltiplas BFS. Para a identificação dos iniciadores destas BFS, entretanto, é necessário
obter a lista dos k maiores vértices. Como k é uma constante correspondente ao número
de iniciadores, poderı́amos realizar, por exemplo, k buscas simples. Deste modo a com-
plexidade deste classificador é O(n + m). Comparativamente, podemos concluir que a
complexidade dos classificadores BFS será sempre melhor ou igual a complexidade do
Classificador de Ordem Crescente.

6.1. Resultados

Para uma maior compreensão dos resultados, todos os classificadores tiveram seus resul-
tados classificados em métricas de precisão e abrangência, tanto em uma abordagem geral
– observando-se todos os tipos de vértices, como também em uma abordagem especı́fica
por tipo de vértice. Vale ressaltar que na abordagem indiferente quanto ao tipo (todos)
as métricas de precisão, abrangência e Medida-F são equivalentes e representam a taxa
simples de acertos.

A Tabela 1 mostra os resultados obtidos pelos classificadores. Utilizaremos os
resultados de n = 5, 10, 20, 30 para o classificador de múltiplas BFS.

Precisão – C Precisão – S Precisão CS Abrangência – C Abrangência – S Abrangência – CS Medida-F - todos
Ordem Decrescente 0,9671 0,3879 0,1365 0,9293 0,5556 0,4198 0,9016

BFS 0,9194 0,0634 0,0026 0,4510 0,4860 0,0037 0,4523
5-BFS 0,9731 0,8787 0,0647 0,9826 0,6270 0,0647 0,9557
10-BFS 0,9731 0,9200 0,1669 0,9933 0,6248 0,3763 0,9656
20-BFS 0,9735 0,9262 0,1860 0,9941 0,6261 0,3812 0,9678
30-BFS 0,9731 0,9210 0,1735 0,9936 0,6243 0,3795 0,9668

Tabela 1. Avaliação das Técnicas

As técnicas propostas apresentam, em geral, melhor eficiência para a classificação
de clientes, seguido por servidor e, por último, de cliente/servidores. A técnica de
BFS, apesar de apresentar uma boa precisão para a classificação de clientes, possui uma
eficiência muito baixa. As técnicas de Ordem Descrecente apresentam bons resultados
para a classificaçao de clientes e médios resultados para a classificação nos demais tipos,
tendo uma avaliação geral boa. Os melhores resultados obtidos foram para o classificador
de múltiplas BFS, apresentando excelentes resultados para o tipo cliente, bons resulta-
dos para o tipo servidor e resultados médios para o tipo cliente/servidor, tendo portanto
uma ótima avaliação final. Esta técnica de classificação só perde para na abragência da
avaliação de cliente/servidores para o classificador de Ordem Decrescente.

Entre os classificadores BFS – com única propagação ou múltiplas – é notável
o aumento na eficiência da classificação daqueles que utilizam múltiplos iniciadores em
relação ao com iniciador único. Os classificadores com múltiplas BFS foram experi-
mentados com diversas variações quanto ao número n de iniciadores. A Figura 7, por
exemplo, representa os resultados obtidos com a variação de iniciadores com n entre 1 e
30. Os resultados obtidos observando-se apenas o acréscimo de um ou dois iniciadores
poderiam desacreditar a técnica de classificação com múltiplas BSF, pois a taxa de acerto
passa de 45,23% para 44,93% para n = 2. Porém ao utilizar 4 iniciadores observa-se um
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(a) Precisão (b) Abrangência

(c) Medida-F

Figura 7. Avaliação do Classificador com n múltiplas BFS

aumento significativo na eficiência da classificação cuja taxa de acertos salta de 44,88%
para 95,54% – um aumento de cerca 112,88%. Depois deste salto o acréscimo de mais
iniciadores desenha-se como uma aparente função crescente de leves oscilações.

Para entender melhor os resultados obtidos com a utilização de classificadores
com múltiplas BFS foram observadas as distâncias existentes entre esses vértices inici-
adores. A Tabela 2 representa as distâncias existentes entre o grupo dos 10 vértices de
maior grau ordenados de modo decrescente. Adicionalmente apresentamos também a al-
tura da árvore gerada pela BFS de cada um deles. Desta tabela vemos que o quarto maior
vértice estava a uma distância ı́mpar do vértice iniciador no caso de n = 1. Tal fato ocasi-
ona – pela atribuição de rótulos da rodada deste algoritmo – a classificação errônea deste
vértice, e da árvore subsequente que possui ele como pai. O mesmo acontece também nos
vértices de sétimo, oitavo e décimo maior grau. Observe que ao utilizar n = 4 garantimos
que todos os 10 maiores vértices serão atingidos em rodadas pares e serão classificados
como servidores.

7. Considerações finais
As contribuições chaves deste trabalho foram a avaliação e caracterização das proprieda-
des topológicas de uma Rede de Conexão retratando o tráfego TCP na porta 80, como
também, o desenvolvimento de técnicas para a re-identificação de papéis em Redes de
Conexões Anonimizadas baseado apenas em sua estrutura.

A melhor técnica proposta avaliada – 30 múltiplas BFS – possui uma taxa de
acerto de 96,78% comprovando que é possı́vel identificar papéis em Redes de Conexão
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1 2 3 4 5 6 7 8 9 10 Max
1 0 2 2 3 2 2 3 3 2 3 13
2 2 0 2 3 2 2 3 3 2 3 14
3 2 2 0 3 2 2 3 3 2 3 14
4 3 3 3 0 3 3 2 2 3 2 12
5 2 2 2 3 0 2 3 3 2 3 13
6 2 2 2 3 2 0 3 3 2 3 13
7 3 3 3 2 3 3 0 2 3 2 12
8 3 3 3 2 3 3 2 0 3 2 14
9 2 2 2 3 2 2 3 3 0 3 13

10 3 3 3 2 3 3 2 2 3 0 12

Tabela 2. Distância entre os 10 vértices de maior grau

Anônimas.
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