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Abstract. Connection Networks are an abstraction to model the exchange of
information between entities. In this abstraction, entities are represented by
vertices and the exchange of information between two entities is represented by
edges. Entities in Connection Networks can have distinct roles which can be
related to their functionality. For example, in the Internet Connection Network,
entities represented by IP addresses can play the role of client or server. Howe-
ver, many Connection Networks are anonymized in order to omit information
concerning the identity and the role of the entities. This paper presents a study
of the structural characteristics of the Internet Connection Network as well as a
characterization of the different roles played by vertices. Using this characteri-
zation, this work proposes techniques to re-identify the role of vertices in anony-
mized Internet Connection Networks. These techniques use only the structural
properties of the network. Finally, the proposed techniques are evaluated and
compared to assess their efficiency in re-identifying roles. Numerical results are
very promising and indicate that it is possible to re-identify roles with a success
rate of over 96%.

Resumo. Redes de Conexdo sdo uma abstracdo para modelar a troca de
informagdo entre um conjunto de entidades. Nesta abstragcdo, entidades sdo
representadas por vértices e a troca de informagdo entre duas entidadas sdo
representadas por arestas. Entidades em uma Rede de Conexdo podem possuir
papéis distintos, podendo este estar relacionado com a funcdo desempenhada
pela entidade. Por exemplo, na Rede de Conexdo da Internet, entidades repre-
sentadas por enderecos IPs podem desempenhar o papel de cliente ou servi-
dor. Entretanto, muitas Redes de Conexdo sdo anonimizadas de forma a omitir
informacdes relacionadas a identidade e o papel das entidades. Este traba-
lho apresenta um estudo das caracteristicas estruturais da Rede de Conexdo da
Internet, assim como a caracterizacdo dos diferentes papéis existentes. Com
base nesta caracterizagdo, este trabalho propdes técnicas para re-identificagcdo
de papéis em Redes de Conexdo da Internet que foram anonimizadas. Estas
técnicas utilizam-se apenas das propriedades estruturais da Rede de Conexdo
anonima. Por fim, as técnicas propostas sdo avaliadas e comparadas entre si
para medir a eficiéncia da re-identificacdo dos papéis. Resultados numéricos
sdo muito promissores e indicam ser possivel re-identificar papéis com taxas de
acerto superior a 96%.
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1. Introducao

A éarea de estudo conhecida por Redes Complexas vem possibilitando — pelo desenvol-
vimento de diversas técnicas e modelos — o entendimento de caracteristicas e funcio-
nalidades de uma variedade de sistemas em redes presentes na natureza e na sociedade
[Albert and Barabasi 2002].

Nosso trabalho detém-se ao estudo de um sistema em particular, ao qual deno-
minamos Redes de Conexdo. As Redes de Conexdo representam troca de informacgao
entre entidades. Um vértice neste sistema representa uma entidade participante da
comunicacdo, e, ao trocar informagdes, os vértices estabelecem uma aresta entre eles.
Um exemplo de Rede de Conexao € a Internet onde os IPs sdo os vértices da rede e a
troca de pacotes entre IPs é representado por uma aresta. Os vértices das Redes de Co-
nexao possuem atributos quanto ao papel desempenhado na troca de informacao, ou seja,
os vértices sdo diferencidveis em tipos. No exemplo da Internet temos que os vértices
podem ser denominados cliente se iniciam conexdes ou servidor se apenas receberam
solicitagdes de conexdes.

Alguns sistemas possuem informagdes sensiveis, de cunho pessoal ou sigiloso,
recorrendo a anonimizacdo para sua disponibilizacao publica. A anonimizagdo objetiva
a impossibilidade — devido a remoc¢ao ou substituicao de informacdes de identidade — de
relacdo, direta ou indireta, entre a instancia anonima e a informacao real por ela represen-
tada. A anonimizagdo das Redes de Conexao leva, por exemplo, a perda de informagdes
quanto ao papel desempenhado pelos vértices e a identidade real destes. Entretanto, mui-
tos estudos recentes mostram a possibilidade da quebra do anonimato ou inferéncia de
informacao de identidade, pela exploragdo das propriedades topoldgicas das redes.

Este trabalho apresenta uma caracterizacdo das propriedades topoldgicas das
Redes de Conexdes, tanto indiscriminadamente, quanto pela distincdo de papéis.
Inspirando-se nesta caracterizacio sdao propostas técnicas que possibilitam a inferéncia de
informagdes relevantes — como a re-identififcacao de papéis, baseando-se apenas na estru-
tura da rede. Neste trabalho fazemos ainda uma avaliacdo das técnicas de re-identificacao
propostas e mostramos que € possivel promover a re-identificacao de papéis em Redes de
Conex0es Andnimas com taxas de acerto superior a 96%.

Deste modo, este trabalho estd organizado com a seguinte estrutura. Na Secdo
2 sdo definidas, formalmente, as Redes de Conexdo e os possiveis papéis nelas iden-
tificiveis. Na Secdo 3 sdo apresentados alguns trabalhos relacionados. Na Secdo 4 é
realizada a caracterizacao das propriedades topologicas da Redes de Conexdes. Na Secao
5 sdo apresentadas técnicas para a identificagdo de papéis em Redes de Conex@o anoni-
mizadas e, complementarmente, na Secdo 6 sdo apresentados e avaliados resultados da
aplicacdo destas técnicas. Por tltimo, na Secdo 7 sdo feitas as consideragdes finais sobre
o trabalho.

2. Rede de Conexao

O conceito de Rede de Conexdes foi introduzido no trabalho [Iliofotou et al. 2007] com
o nome de Grafo de Dispersdao de Trafego (TDG - Traffic Dispersion Graph). TDGs
sdo representacoes graficas de vdrias interagdes direcionadas (’quem se comunica com
quem”) de um grupo de entidades. Nesse contexto a Internet pode ser uma Rede de
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(a) Rede de Conexao (b) Rede de Conexao AnOGnima

Figura 1. Rede de Conexao e sua Rede de Conexao Anonimizada equivalente

Conexao no qual os vértices representam entidades com enderecos IP distintos e as arestas
representam a troca de pacotes entre entidades.

Na construcao de uma Rede de Conexdo podemos utilizar diversos trafegos. No
nosso estudo consideramos apenas fluxos de comunicagdo TCP cuja origem ou destino
fosse a porta 80. Os vértices deste grafo foram classificados — durante o estudo de
caracteriza¢ao — quanto a inicializa¢do do estabelecimento da conexdao TCP entre as en-
tidades. A conexdo TCP € assimétrica e, deste modo, entidades que apenas iniciaram
conexodes foram denominadas como Cliente, as que apenas receberam conexdes foram
denominadas como Servidor e as que inicializaram e receberam conexdes como Cli-
ente/Servidor. Neste trabalho utilizaremos a seguinte notacao para referenciar os papéis:
Cliente € denotado por C, Servidor por S e Cliente/Servidor por CS. As arestas possuem
notacdo similar denotando os tipos de vértices por elas conectados, por exemplo, arestas
que conectam vértices C e S sdo denotadas por C-S, as que conectam vértices CS e CS
serdo CS-CS. Na Figura 1(a) vemos um exemplo destas denonimagdes o IP3 apenas inicia
conexdes sendo C, o IP1 apenas recebe conexdes sendo S e o IP4 tanto inicia como recebe
conexdes sendo CS. A Rede de Conexao utilizada neste trabalho utiliza apenas o endereco
de origem e destino proveniente de pacotes SYN do protocolo TCP para estruturacdo da
rede.

2.1. Rede de Conexao Anonima

A anonimizacdo de uma rede pode ser feita utilizando diversas técnicas. Uma delas
utiliza-se da desassociagc@o da informagdo sensivel através de um mapeamento um-para-
um com identificadores sintéticos [Hay et al. 2008]. A rede andnima gerada € isomorfa a
rede identificada que a gerou. Deste modo, um identificador da rede real € sempre mape-
ado para o mesmo identificador sintético da rede anonimizada bem como, uma aresta exis-
tente entre duas instancias da rede real existird também entre os vértices correspondentes
anonimos. Uma Rede de Conexao Andnima nada mais € uma Rede de Conexdo que
passou para uma anonimizac¢do de identificadores e teve o atributo de papel omitido. A
Figura 1 exemplifica este processo. Um problema critico existente em redes anonimas € a
quebra da seguranca das informacdes. Neste sentido, diversos estudos recentes vem mos-
trando que € possivel quebrar o anonimato ou inferir informacdes de identidade a partir,
apenas, da exploracao da estrutura da rede andnima. Em Redes de Conexdes Andnimas
esse problema relaciona-se, por exemplo, a re-identificao de papéis.
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3. Trabalhos Relacionados

Em [Hay and Srivastava 2006] traces de trafego real foram utilizados para estruturar Re-
des de Conexdo — definido pelos autores como Grafo de Dispersao de Trafego (TDGs
- Traffic Dispersion Graphs). Neste trabalho a andlise e utilizacdo de caracteristicas to-
poldgicas € feita com o propésito de classificacdo de trafego, e a Rede de Conexdes em
estudo possui dire¢do quanto ao envio de pacotes. O acréscimo da informacao de dire¢dao
das arestas torna o problema de classificacdo de papéis proposta neste artigo, trivial.

Em [Narayanan and Shmatikov 2009] é proposto um algoritmo genérico para a
re-identificacdo de vértices em Redes Sociais reais baseado apenas na estrutura da Rede.
O algoritmo explora as informag¢des contidas nas arestas como grau e previsdo de arestas
(link prediction) — e nao apenas nos dados repassados de cada vértice — para mapear
sobreposicoes entre uma Rede Social andnima alvo e uma Rede Social auxiliar conhecida.

O trabalho desenvolvido em [Pang et al. 2006] apresenta técnicas para inferéncia
da topologia e identificacdo de servidores em Redes Anonimizadas. [Mahadevan et al. |
mostra um conjunto de caracteristica da topologia AS da Internet.

Em [Meiss et al. 2005] € apresentando um estudo em larga escala do trafego Web
baseado no fluxo de dados de redes. [Kitsak et al. 2010] busca a identificacdo de um n6
que melhor promova a propagacdo de informacao dentro de uma Rede Social.

4. Caracterizacao de Redes de Conexao

Para caracterizar uma Rede de Conexdo utilizamos traces publicos de trafego real
do backbone da Internet da base “The CAIDA Anonymized 2009 Internet Traces”
[Colby Walsworth 2009]. Esta base é composta por traces anonimizados de trafego pas-
sivo — divididos em pedacos correspondentes a 1 minuto de observagdo - coletada pe-
los monitores da CAIDA em 2009. Desta base foram utilizados os arquivos “passive-
2009/equinix-chicago/20090331” equivalentes a 1 hora de observacao consecutiva.

4.1. Propriedades

Métricas topoldgicas sao amplamente difundidas para a descricdo e comparagao de Redes
[Albert and Barabasi 2002]. Neste trabalho, apenas algumas das métricas mais utilizadas
foram avaliadas.

Grau Médio: ¢é definido pelas duas mais basicas propriedades de um grafo, o
nimero de vértices e o nimero de arestas, sendo calculado pela razio entre duas vezes
o numero de arestas € o numero de vértices. O grau médio pode servir como indicativo
da conectividade do grafo — grafos com alto grau médio tendem a ser mais conectados
e robustos — porém, € tido como um indicativo limitado visto que grafos com diferentes
propriedades topoldgicas podem ter o mesmo grau médio [Albert and Barabasi 2002]. A
Rede de Conexdo em estudo possui 1520327 enderecos de IPs e 2674054 arestas tendo
consequentemente um grau médio de aproximadamente 3, 52.

Distribuicao Empirica de Grau: ¢é fracdo de vértices de grau k£ dada por:
P(k) = n(k)/n, onde n(k) é o nimero de vértices com grau k e n o total de vértices.
Na Rede de Conexao estudada fica evidente uma relagdo desigual quanto a distribui¢ao
de grau nos vértices. O grau médio do grafo € 3, 52 e o maior grau encontrado é 132900,
ou seja, o maior grau € mais de 37 mil vezes maior que o grau médio. A funcdo de

1932



distribuicdo cumulativa complementar (Complementary Cumulative Distribution Func-
tion — CCDF) empirica do grau dos vértices, Figura 4 curva < todos >, foi tracada e
aproximada a uma distribuicdo de lei de poténcia através da utilizagdo do método es-
tatistico de maxima verossimilhanga (MLE — Maximum Likelihood Estimation) — usado
para ajustar dados a um modelo estatistico. Uma lei de poténcia representa uma relagao
matematica onde a frequéncia ou quantidade de um objeto varia de acordo com uma
poténcia de algum atributo. Distribuicdes de probabilidade que seguem lei de poténcia
representam eventos que, em geral, possuem altas probabilidades para amostras do inicio
da distribuicdo, como também, amostras muito acima da média da distribui¢do com pro-
babilidade ndo desprezivel (variando de acordo com uma poténcia). Redes cujas caudas
da distribuicao seguem uma lei de poténcia — ou seja — possuem a forma P(z) ~ z77
sdo conhecidas como livres de escala [Albert and Barabasi 2002]. A CCDF empirica foi
aproximada de uma lei de poténcia com expoente de v = 2,19 eerro o = 4,6 x 103 e,
deste modo, comprovamos a grande desigualdade existente entre os graus.

Distribuicao Conjunta Empirica de Grau: seja m(kq, k2) o total de arestas que
conectam nés de grau k; e ky. A distribuicdo conjunta empirica de grau é a fracdo de
arestas que sejam incidentes sobre vértices de grau k e ko:

P(ky, ko) = u(ky, ko) x m(ky, k2)/2m , onde m € o total de arestas e

1 seki =k
:u(klﬂ kQ) = ! ’
2 c.c.

Com a distribuicdo conjunta de probabilidade € possivel estimar informagdes quanto a
vizinhanca de um vértice [Albert and Barabasi 2002]. Ao observar a Figura 2 vemos
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Figura 2. Histograma da Distribuicao Conjunta Empirica de Grau gntervalo logaritmo base
2)

que vértices de grau alto sdo, com grande probabilidade, adjacentes a vértices de grau
baixo. Por outro lado, vértices de grau baixo apresentam probabilidades semelhantes de
adjacéncia com graus altos e baixos.

Componente Conexa: ¢ definida na teoria do grafos como um sub-grafo conexo
maximal. Diz-se que o grafo € conexo quando ele possui apenas um componente conexo
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composto pelo grafo inteiro. A Rede de Conexdo em estudo ndo é conexa sendo, entre-
tanto, dominada por uma Componente Conexa Gigante (GCC - Giant Connected Compo-
nent) que possui 1499870 vértices, o equivalente a 98,65% do total de vértices restando
apenas 1,35% nas demais componentes. A Rede possui um total de 7869 componentes
conexos nos quais 78,88% tem tamanho 2 (menor tamanho possivel), 13,09% tamanho 3,
4,43% tamanho 4 e, consequentemente, menos de 3,6% tem tamanho maior que 4. Esta
relacdo desigual entre o tamanho da componente conexa e a quantidade de componentes
estd expressa na Figura 3 onde a CCDF empirica do tamanho da componente conexa evi-
dencia tal diferenca, de onde foi calculado o expoente v = 2,22 com o qual temos um
erro 0 = 1,3 % 10~2. Distancia: a distincia entre dois vértices é definida como o menor
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Figura 3. Distribuigdo do tamanho das componentes

caminho entre eles. A distribuicdo empirica da distdncia d(x) representa a fracao de pares
de vértice que estdo a uma distancia de x saltos do outro. A maior distancia do grafo
representa o diametro deste.

Clusterizacao: o coeficiente de clusterizacdo representa a porcentagem de
tridngulos sobre o total de triplas conectadas em todo o grafo [Albert and Barabasi 2002].
Esta métrica tem implicagOes praticas pois expressa a robustez do grafo. Muitas das re-
des complexas reais estudadas possuem alto coeficiente de clusterizacdo, porém, para
a rede em estudo — surpreendentemente — a clusterizagdo € nula. Vale ressaltar que a
clusterizag@o nula significa que nao ha ciclo de tamanho trés na Rede de Conexdes avali-
ada. Entretanto, esta rede possui ciclos de outros tamanhos.

4.2. Caracterizacao por Papéis

Nesta se¢ao faremos a caracterizagdo da Rede de Conexdes quanto aos papéis desempe-
nhados pelos vértices. A observacao das propriedades topoldgicas do Grafo quanto a estes
papéis € essencial para a caracterizacdo e diferenciacdo destes. A partir desta andlise é
possivel, entdo, propor técnicas para a classificacdo de papéis em Redes de Conexado ano-
nimizadas.

Grau Médio: é calculado pelas soma do grau dos vértices de um dado papel divi-
dido pelo total de vértices deste tipo. A Rede em estudo possui 1399690 vértices clientes
—-92,07% do total — que possuem o grau médio de aproximadamente 1, 89. Para o tipo ser-
vidores foram classificados 116509 vértices (7,66%) e o grau médio é aproximadamente
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21,86. Ja para o tipo cliente/servidor o grafo possui apenas 4128 nés (0,27%) e o grau
médio de 37, 90.

Distribuicio Empirica de Grau: seja n;(k) o ndmero de vértices com grau k
do tipo,. A distribuicdo empirica de grau dos vértices por tipo corresponde a fragdo de
vértices de um determinado tipo com grau k: P(k|t;) = nq(k)/n1 . A Figura 4 mostra
a CCDF empirica de grau para os diferentes papéis na Rede. Para o tipo C foi estimado
um expoente 7, = 2,48 com o qual temos um erro g, = 5,5 % 1073, para o tipo S
v = 1,73 e oy = 7,4 % 1073 e para o tipo CS 7., = 2,05 com o qual temos um erro
0. = 3 * 1072, Deste modo vemos que ndo sé a distribui¢io empirica de grau da rede
segue uma lei de poténcia, como também, cada distribuicdo empirica de grau por tipo
de vértice estudada segue lei de poténcia. E interessante observar que as distribuicdes
de grau para S e CS tem um expoente menor que o expoente da distribuicao C e, em
consequéncia, possuem uma distribuicdo de grau ainda mais desigual. Na figura 4 fica
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: ¥y <servidor> %
01 5 =cliente/servidor= o
0.01
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Figura 4. Distribuicdo Empirica de Grau

evidente a diferenca entre as caudas das distribui¢des. O maior grau de um vértice cliente
€ 11411. Para este valor temos ainda que 0,19% dos vértices do tipo servidor, ou seja, mais
de 220 vértices, possuem grau maior que este. Para os vértices do tipo cliente/servidor
esse valor chega a 0,9%, porém representa uma quantidade de apenas 37 vértices com
grau superior. O maior grau de um vértice cliente/servidor é de 42384, para o qual ainda
temos aproximadamente 0,01% de vértices do tipo servidor com grau superior, cerca de
10 vértices. O maior grau da rede € do tipo servidor, com grau de 132900 que € 3 vezes
maior que o maior grau do tipo cliente/servidor e 11 vezes maior que o maior grau do tipo
cliente.

Arestas: A Rede de Conexdes em estudo, devido ao modo como é composta,
possibilita que existam apenas arestas entre determinados tipos de vértices. As arestas
possiveis sdo: C-S, C-CS, S-CS e CS-CS. Destas observou-se as seguintes quantidades
dentro na rede:

e (C-S: 2520009 arestas (94,24%)

1935



DCG + + + DCG + + +
1le+06 T T T T 0.001 100000 T T T T 0.01
I

100000 # 10000 L

10000 0.0001 0.001
1000 §

1000

100

100 1e-05 0.0001

10 10

1 L 1e-08 1 L L L L le-05
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

DCG + + + DCG + +
10000 T T T T 0.01 100000 T T T T 0.01

10000
1000 £ f THIAL .

1000

100 0.001 0.001

100

10
10 F

-
R

1 L L L L L 0.0001 1 L L L L 0.0001
1 10 100 1000 10000 100000 1le+06 1 10 100 1000 10000 100000

(c) S-CS (d) CS-CS

Figura 5. Histograma da Distribuicao Conjunta Empirica de Grau por Papéis (nter-

valo logaritmo base 2)

o CS-C: 124717 arestas (4,66%)
e (CS-S: 26932 arestas (1,01%)
e CS-CS: 2396 arestas (0,09%)

As proporcdes de arestas nos revelam que a adjacéncia mais comum na rede é
a de Clientes com Servidores. Outra maneira de interpretar esses dados diz respeito a
frequéncia relativa da classificacao dos vértices adjacentes a um determinado tipo. Neste
sentido, os vértices do tipo S tem 98,94% de vizinhos do tipo C e apenas 1,06% do tipo
CS. J4 os vértices do tipo C tem 95,28% de vizinhos do tipo S e 4,72% do tipo CS.
Vértices CS tem 80,96% de vizinhos C, 17,48% S e apenas 1,56% CS.

Distribuicao Conjunta Empirica de Grau por papéis: representa a fragdo rela-
tiva de arestas que conectam um vértice de grau k; do tipo, e de grau ko do tipos. Como
arestas do tipo C-C e S-S ndo sdo possiveis, a distribuicdo conjunta para estas arestas ¢
nula. As demais distribui¢cdes empiricas conjuntas estio representadas na Figura 5. A Fi-
gura 5 nos revela algumas tendéncia de vizinhanga da rede. Em 5(a) vemos que S de grau
alto estdo conectados na sua maioria com C de grau baixo e C de grau alto conectam-se,
em geral, a S de grau baixo. Tal padrdo — relacdo entre grau alto e baixo — é repetido
também na Figura 5(b) e menos intensamente nas Figuras 5(c) e 5(d).

5. Re-identificacao de papéis

A inferéncia de informagdes relevantes provenientes apenas da estrutura de Redes anoni-
mizadas tem sido alvo de diversos trabalhos [Hay et al. 2008] e [Pang et al. 2006]. Nesta
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secdo apresentamos algumas técnicas, propostas neste trabalho, para a re-identificacdo
de papéis (cliente, servidor, cliente/servidor) em Redes de Conexdo anonimizadas. As
técnicas apresentadas exploram apenas as propriedades estruturais destas redes descritas
e avaliadas na secao 4 deste trabalho. Todas as técnicas propostas preocupam-se em ge-
rar classificagdes consistentes, ou seja, classificagdes possiveis, observadas as restri¢des
de relacdo de adjacéncia. Uma classificagdo consistente para uma Rede de Conexao nao
permite que existam arestas do tipo C-C ou S-S.

5.1. Classificador de Ordem Decrescente

Esta técnica tenta explorar, de modo simples, a relacdo entre as caudas da distribui¢ao
empirica de grau dos diferentes tipos de vértice. Podemos inferir que os vértices de maior
grau da rede serdo do tipo servidor, de acordo com a avaliagdo na secao 4.2. Além disso,
esta técnica de classificacao respeita as possiveis relacdes de adjacéncias entre os vértices,
nao permitindo que um vértice do tipo cliente ou servidor sejam adjacentes a vértices do
mesmo tipo. A idéia geral deste classificador € percorrer os vértices da Rede de Conexao
em ordem decrescente quanto ao grau, observar os vizinhos ja classificados e atribuir uma
classificagcdo consistente. O esquema desta técnica esta descrito abaixo:

Classificador OrdemDecrescente (Maiores:FILA, Grafo: GRAFO)
INTEIRO: Cli, Serv
VERTICE: e, v
Para v em Vertices (Grafo): rotulo[v] := 0
Para e em Maiores:
Cli, Serv := 0
Para v em Vizinhos (Grafo, e):
caso rotulo[v] = C: Cli ++
caso rotulo[v] = S: Serv ++
Fim Para
se Serv=0 rotulo[e] := S
se nao, se Cli=0 rotulol[e] := C
se nao rotular([e] := CS
Fim Para
Fim Classificador

5.2. Classificador BFS

A Busca em Largura (BFS — Breadth-First Search) é um dos algoritmos mais simples e
utilizados para se percorrer um grafo. Este método explora sistematicamente as arestas
de um Grafo a partir de um vértice, até descobrir todos os vértices acessiveis por este
iniciador [Cormen et al. 2001].

A 1déia geral deste classificador parte da combinagdo da propaga¢do de uma BFS
com algumas constatacdes provenientes da andlise das Redes de Conexao, feita na se¢do
4, como a inferéncia quanto a classificagdo do vértice de maior grau como servidor e a
relacdo de adjacéncias possiveis entre os vértices. As proporcdes das adjacéncias existen-
tes justificam o fato da utilizacdo da BFS. Dado que 98,94% dos vértices adjacentes a um
vértice servidor sdo clientes e que 95,28% dos vértices adjacentes a um vértice cliente sao
servidores, tenta-se classificar vértices como servidores ou clientes alternadamente em
cada onda de propagacdo. Adicionalmente, esta técnica utiliza-se também da constatacao
da existéncia de ao menos um vértice cliente/servidor em ciclos de tamanho impar.

A existéncia de ao menos um vértice cliente/servidor em um ciclo impar € resul-
tado das relagdes de adjacéncia possiveis. De outra maneira, se pudéssemos classificar em
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Figura 6. Deteccao de CS em ciclo impar.

um ciclo impar vértices apenas com atribui¢des de cliente ou servidor, chegariamos a uma
inconsisténcia. Ao comecar a classificacdo com um iniciador dentro do ciclo, devido a
alternacia em cada passo entre as classifica¢des (cliente ou servidor), havera um ponto no
qual as classificacdes se interceptam e, neste ponto, havéra dois vértices classificados com
o mesmo tipo C-C ou S-S, chegando a inconsistente mencionada. A figura 6 exemplifica
esta constatacdo. Esta técnica proposta encontra-se apresentada no quadro a seguir:

Classificador BFS (Maiores:FILA, Grafo:GRAFO)
FILA: Fila := pegarPrimeiros(l, Maiores)
BOLEANO: aux
VERTICE: n, v
Para v em Vertices (Grafo) :

rotulo([v] := 0
visital[v] := 0
Fim Para
Para n em Fila: camada[n] := 0
Enquanto Fila ndo vazia:
n := saiFila(Fila)
aux := FALSO
se camada[n] é Par
rotulo[n] := S
se camada[n] é impar
rotulo[n] := C
Para v em Vizinhos (Grafo, n):
se visital[v]= 0
visitalv]:=1;
entrarFila(Fila, v);
camada[v] := camadal[n]+1l
se visitalv] = 1
se rotulo[v] = rotulo[n]
aux := VERDADEIRO

Fim Para
se aux
rotulo[n] := CS
Fim enquanto
Fim Classificador

5.3. Classificador com multiplas BFS

O Classificador BFS, ao classificar um vértice errado, propaga o erro por toda a drvore que
possui o vértice classificado erroneamente como pai. Apesar da grande porcentagem de
adjacéncias de C-S, um pequeno erro de classificacdo no inicio da arvore BFS pode gerar
grandes propagagdes de erro dentro da rede. A classificacdo com multiplas BES explora
todas as caracteristicas ja abordadas pela classificacdo BFS (simples). A técnica utiliza
os n vértices de maior tamanho como iniciadores tentando classifica-los como servidores.
Esta técnica possibilita a diminui¢c@o de erros no inicio da propagacao da classificacdo, a
detecc¢do de vértices CS fora de ciclos impares e a diminui¢ao do nimero de rodadas.
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O esquema da técnica de multiplas BFS s6 difere do esquema de uma tnica BFS
pela inicializacdo da Fila como pode ser visto a seguir:

FILA: Fila := pegarPrimeiros(n, Maiores)

6. Avaliacao dos Classificadores

A avaliagdo de sistemas de classificagdo € feita de forma experimental observando a
eficécia do classificador, ou seja, sua capacidade de classificar corretamente as instancias
avaliadas. Segundo [Baeza-Yates and Ribeiro-Neto 1999] uma das maneiras de se calcu-
lar esta efetividade € utilizando-se contadores extraidos de uma matriz de contingéncia e
utilizar, por exemplo, as medidas classicas de precisdo e abrangéncia.

A matriz de contingéncia apresenta contadores relativos as quantidades de obje-
tos classificados como pertencentes ou ndo a uma determinada classe, pelo classificador
especialista. Observando-se uma classe particular x podemos obter 4 contadores da ma-
triz de contingéncia, que sdo: TP quantidade de objetos classificados corretamente como
x, FP quantidade de objetos classificados erroneamente como x, TN quantidade de ob-
jetos corretamente nao classificados como x, FN quantidade de objeto erroneamente nao
classificados como x. A partir desses contadores podemos facilmente calcular a pre-
cisdo e a abrangéncia. A precisdo consiste na probabilidade da classificagdo estar cor-
reta (TP), dado que o objeto havia sido classificado como x (TP+FP), ou seja, a pre-
cisao é TP/(TP+FP). A abrangéncia mede a probabilidade de um objeto, tirado ao acaso,
ser classificado como = (TP+FN) e que esta classificacdo esteja correta (TP), ou seja, a
abrangéncia corresponde a: TP/(TP+FN).

Para simplificar a avaliagdo, as medidas de precisdo e abrangéncia
podem ser combinadas, por exemplo, utilizando a medida F (F-measure)
[Baeza-Yates and Ribeiro-Neto 1999]. A medida F pode ser calculada da seguinte

forma:
1

1 1
Oé}—D + (1 — OZ)E

onde o € um fator da importancia relativa da precisao e da abrangéncia. Em nossas
avaliagdes utilizaremos o = 0, 5

a —

Outra medida de avaliacdo para os classificadores € a complexidade computaci-
onal de pior caso [Cormen et al. 2001]. Esta medida pode ser obtida pela inspe¢dao do
pseudo-cédigo de cada classificador. Inspecionando o Classificador de Ordem Crescente
vemos que este recebe os vértices ordenados, a ordenagdo tem complexidade O(n logn),
onde n € o ndmero de vértices do grafo. Além disso, este classificador percorre a lista
de vértices uma Unica vez e, para cada vértice analisado, sdo inspecionados todos os seus

n

vizinhos. Esta quantidade de iteragdes € dada por: Z g(i), onde n é o nimero de vértices
i=1

do grafo e ¢(i) é o grau do vértice i. O resultado deste somatdrio € igual a 2m, onde m

¢ o nimero de arestas do grafo [Cormen et al. 2001]. Temos assim que a complexidade

deste primeiro classificador é O(n logn + m). O classificador BFS, por sua vez, requer a

identificagc@o do vértice de maior grau, o que € feito com uma busca simples de comple-

xidade O(n). Adicionalmente, a partir deste vértice inicial, percorre-se a lista de vértices
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apenas uma vez inspecionando os vizinhos de cada vértice. A complexidade do classifi-
cador BFS ¢ portanto O(n+m) [Cormen et al. 2001]. O classificador com multiplas BFS
percorre a lista de vértices uma unica vez, pois ndo hé sobreposi¢do nas propagagdes das
multiplas BFS. Para a identificacao dos iniciadores destas BFS, entretanto, € necessario
obter a lista dos k£ maiores vértices. Como k € uma constante correspondente ao nimero
de iniciadores, poderiamos realizar, por exemplo, k£ buscas simples. Deste modo a com-
plexidade deste classificador é O(n + m). Comparativamente, podemos concluir que a
complexidade dos classificadores BFS serd sempre melhor ou igual a complexidade do
Classificador de Ordem Crescente.

6.1. Resultados

Para uma maior compreensao dos resultados, todos os classificadores tiveram seus resul-
tados classificados em métricas de precisdo e abrangéncia, tanto em uma abordagem geral
— observando-se todos os tipos de vértices, como também em uma abordagem especifica
por tipo de vértice. Vale ressaltar que na abordagem indiferente quanto ao tipo (todos)
as métricas de precisdo, abrangéncia e Medida-F sdo equivalentes e representam a taxa
simples de acertos.

A Tabela 1 mostra os resultados obtidos pelos classificadores. Utilizaremos os
resultados de n = 5, 10, 20, 30 para o classificador de multiplas BFS.

Precisdo — C Precisdo—S Precisdo CS Abrangéncia- C Abrangéncia-S Abrangéncia- CS Medida-F - todos

Ordem Decrescente 0,9671 0,3879 0,1365 0,9293 0,5556 0,4198 0,9016
BFS 0,9194 0,0634 0,0026 0,4510 0,4860 0,0037 0,4523

5-BFS 0,9731 0,8787 0,0647 0,9826 0,6270 0,0647 0,9557
10-BFS 0,9731 0,9200 0,1669 0,9933 0,6248 0,3763 0,9656
20-BFS 0,9735 0,9262 0,1860 0,9941 0,6261 0,3812 0,9678
30-BFS 0,9731 0,9210 0,1735 0,9936 0,6243 0,3795 0,9668

Tabela 1. Avaliacao das Técnicas

As técnicas propostas apresentam, em geral, melhor eficiéncia para a classificacao
de clientes, seguido por servidor e, por ultimo, de cliente/servidores. A técnica de
BFS, apesar de apresentar uma boa precisao para a classificacdo de clientes, possui uma
eficiéncia muito baixa. As técnicas de Ordem Descrecente apresentam bons resultados
para a classificagao de clientes e médios resultados para a classificagcdo nos demais tipos,
tendo uma avaliagc@o geral boa. Os melhores resultados obtidos foram para o classificador
de multiplas BFS, apresentando excelentes resultados para o tipo cliente, bons resulta-
dos para o tipo servidor e resultados médios para o tipo cliente/servidor, tendo portanto
uma Otima avaliacdo final. Esta técnica de classificacdo sé perde para na abragéncia da
avaliacdo de cliente/servidores para o classificador de Ordem Decrescente.

Entre os classificadores BFS — com tnica propagacdo ou multiplas — é notavel
o aumento na eficiéncia da classificacdo daqueles que utilizam multiplos iniciadores em
relacdo ao com iniciador unico. Os classificadores com multiplas BFS foram experi-
mentados com diversas variacdes quanto ao nimero n de iniciadores. A Figura 7, por
exemplo, representa os resultados obtidos com a variagc@o de iniciadores com 7 entre 1 e
30. Os resultados obtidos observando-se apenas o acréscimo de um ou dois iniciadores
poderiam desacreditar a técnica de classificacdo com multiplas BSF, pois a taxa de acerto
passa de 45,23% para 44,93% para n = 2. Porém ao utilizar 4 iniciadores observa-se um
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Figura 7. Avaliacao do Classificador com n multiplas BFS

aumento significativo na efici€ncia da classificacdo cuja taxa de acertos salta de 44,88%
para 95,54% — um aumento de cerca 112,88%. Depois deste salto o acréscimo de mais
iniciadores desenha-se como uma aparente funcdo crescente de leves oscilagoes.

Para entender melhor os resultados obtidos com a utilizacdo de classificadores
com multiplas BFS foram observadas as distancias existentes entre esses vértices inici-
adores. A Tabela 2 representa as distancias existentes entre o grupo dos 10 vértices de
maior grau ordenados de modo decrescente. Adicionalmente apresentamos também a al-
tura da arvore gerada pela BFS de cada um deles. Desta tabela vemos que o quarto maior
vértice estava a uma distancia impar do vértice iniciador no caso de n = 1. Tal fato ocasi-
ona — pela atribuicdo de rétulos da rodada deste algoritmo — a classificacio erronea deste
vértice, e da arvore subsequente que possui ele como pai. O mesmo acontece também nos
vértices de sétimo, oitavo e décimo maior grau. Observe que ao utilizar n = 4 garantimos
que todos os 10 maiores vértices serao atingidos em rodadas pares e serdo classificados
como servidores.

7. Consideracoes finais

As contribui¢des chaves deste trabalho foram a avaliagdo e caracterizacao das proprieda-
des topologicas de uma Rede de Conexao retratando o trafego TCP na porta 80, como
também, o desenvolvimento de técnicas para a re-identificacdo de papéis em Redes de
Conexdes Anonimizadas baseado apenas em sua estrutura.

A melhor técnica proposta avaliada — 30 multiplas BFS — possui uma taxa de
acerto de 96,78% comprovando que € possivel identificar papéis em Redes de Conexado
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1/2/3/4/5/6|7|8|9]|10| Max
110223223 |3]2] 3 13
2(2(0(23(2|23|3|2| 3 14
3 12(2(03|2|2|3|3|2]| 3 14
4 |3/3/3/0(3|32|2|3| 2 12
512|2(213|0(23|3|2] 3 13
6 |2|2]23|2|/0]3|3|2| 3 13
713133233023 2 12
8 |3/3/3/2|3|3]2|0|3| 2 14
9 2223|2233 |/0| 3 13
1033323 |3]2|2|3| 0 12

Tabela 2. Distancia entre os 10 vértices de maior grau

Andnimas.
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