Performance Evaluation of Python Tools to Capture Packets
in Resource-Constrained Devices

Otavio O. Silva, Daniel M. Batista

'Department of Computer Science — Institute of Mathematics and Statistics
University of Sao Paulo (USP) — Sao Paulo, SP — Brazil

otavio.ols@usp.br, batista@ime.usp.br

Abstract. Real-time traffic classifiers, such as Intrusion Detection Systems
based on Online Learning, must be constantly fed with packets to classify the
traffic by a specific deadline. When considering Python, there are several op-
tions for capturing packets. This paper evaluates the performance of three tools
to capture packets in Python running on a Raspberry Pi 3 Model B. Exhaustive
experiments conclude that Pypcap + dpkt is the best option over Pyshark and
Scapy. For instance, in terms of average CPU usage, when capturing TCP traf-
fic over cable, Pypcap + dpkt consumed 75.73% less than Pyshark and 4.24%
less than Scapy. All the code used to run the experiments is shared as free and
open-source software for reproducibility.

1. Introduction

Despite being a packet-switched network, the modern Internet is powered by some mech-
anisms that require more information than a single packet to make the best decisions. For
instance, an Intrusion Detection System may use the interval between several packets and
the size of all these packets to classify traffic as benign or malicious [Kostas et al. 2025].
In this case, the packets must be captured and stored in memory for some time to allow
good accuracy in classification. If the classification is made in real-time, for instance
when online learning is employed, the capture must be efficient to avoid excessive delays,
which will affect the performance of the mechanism [Oliveira et al. 2024].

Capturing the traffic in the default gateway of the network can be enough when
making decisions related to the traffic going to or coming from the Internet. However,
decisions that must consider the internal traffic of an organization would be negatively
affected by this strategy. Moreover, capturing all the traffic in the default gateway could be
demanding to the equipment, which will need to dedicate part of its resources to this end.
An option would be to capture the traffic in the end nodes of the network. However, even
considering that the traffic will be less intense than in the default gateway, the capacity of
these devices can be low, mainly when considering a scenario of the Internet of Things
with very simple devices like sensors and actuators.

With the advent of Artificial Intelligence techniques, such as Machine Learning, to
help make decisions in computer networks, the Python language became a notable pres-
ence in new proposals that involve the processing of network datasets (basically CSVs
generated from files captured by sniffers) [Afifi et al. 2024]. So, it is reasonable to con-
sider the use of tools that can be imported in Python code to capture the traffic and send
it directly to the part of the code responsible for training a model or making a specific



inference. Three tools that appear frequently in the literature for this purpose are Pyshark,
Scapy, and Pypcap working together with dpkt.

Although there are proposals in the literature that make use of these
tools [Dsouza et al. 2022] [Nazarov and Arslan 2022] [Sambath et al. 2024 ], the choice
to do so is not based on a performance evaluation, or when it is, the conclusions presented
by some of them are not observed in scenarios with resource-constrained devices or do
not consider metrics other than time, such as CPU usage, memory usage, and packet loss
in scenarios with varying configurations. This paper fills this gap by evaluating the per-
formance of the three tools in scenarios with varying bit rates and packet lengths of traffic
being captured in a Raspberry Pi 3 Model B. For instance, it was observed that in terms
of average CPU usage, when capturing TCP traffic over cable, Pypcap + dpkt consumed
75.73% less than Pyshark and 4.24% less than Scapy (For the sake of reproducibility, all
the software developed to conduct the experiments is available as free and open-source
software at https://github.com/otavioolsilva/wperformance—-2025).
We expect that our findings will help those running data analytics in computer networks
to select the best capturing tools to meet their demands.

The rest of this paper is organized as follows: Section 2 summarizes the three
tools evaluated in this paper. Section 3 presents previous works from the literature that
use the tools and highlight their gap, justifying the contribution of our work. Section 4 and
Section 5 present the experiments carried out to evaluate the tools by varying the bit rates
of the traffic and the packet lengths, respectively. The paper is finished with conclusions
and future works in Section 5.

2. Tools for Packet Capture in Python

The experiments were conducted evaluating three different Python libraries capable of
sniffing packets from the network interface: Pyshark', Scapy? and Pypcap® working to-
gether with dpkt*. These tools were chosen based on the literature and other related
works in the area, as they are frequently used in Python context for sniffing and process-
ing packets. Since some are more than libraries, the terms “tool” and “library” will be
used interchangeably in this paper.

Pyshark is a wrapper for Tshark, the command-line version of Wireshark®, one of
the main tools used for packet sniffing. So, when using Pyshark, what is, in fact, being
used is Tshark. A consequence of this is the fact that the Pyshark can take advantage of
the various Wireshark dissectors®, facilitating a deep analysis of the packets.

Scapy is a packet manipulation tool. It allows the creation/sending of packets
and their decoding/capture, considering the particularities of diverse protocols. Besides
being used as a Python library, Scapy can also be used interactively, which is helpful for
prototype solutions before putting them into production.

'https://github.com/KimiNewt /pyshark

https://scapy.net/

Shttps://github.com/pynetwork/pypcap

“https://github.com/kbandla/dpkt

Shttps://www.wireshark.org/

Shttps://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.
html



Pypcap is a wrapper for libpcap’, a C/C++ library for network traffic capture and
the basis for sniffers as tcpdump and Wireshark. Pypcap does not come with function-
alities for packet parsing, making it necessary to use another independent tool for this
purpose. For our work here, we chose to use the Python module dpkt, which is designed
to be performant for this end.

3. Related Work

An anomaly-based IDS that can be powered by five different machine learning techniques
is presented in [Dsouza et al. 2022]. Despite using the NSL-KDD dataset, which is based
on a very dated dataset to train the IDS, the authors test the performance of classification
of live traffic captured from the network interface of the Internet gateway, which is vital
if considering putting the system in a real environment. For packet sniffing and feature
extraction, the authors decided to use Pyshark, justifying that it has the best efficiency
among other options, although they do not inform what these others were.

An in-network cache to reduce the impact of file retransmissions in case of transfer
errors is proposed in [Nazarov and Arslan 2022]. The idea is to take advantage of the
capabilities of programmable switches and resend the files to the hosts from a nearby
location instead of the original file source. This proposal depends on efficient options to
parse the captured traffic before reconstructing the files in the cache points of the network.
To this end, the authors evaluated the same three options we assessed and concluded that
dpkt was the best option. The only criterion used by the authors was the time to parse the
captured traffic.

A network traffic analyzer is proposed in [Sambath et al. 2024]. The software is
written in Python and the authors used two of the tools evaluated by us: dpkt and Scapy.
However, the paper lacks a performance evaluation of them and a recommendation of
when each one must be used.

Different from [Dsouza et al. 2022], we do not prematurely conclude that Pyshark
is the best option and, as will be shown in the next sections, it was the least efficient.
Different from [Nazarov and Arslan 2022], we evaluated the tools considering various
metrics, not only time, and when capturing the traffic, not only when parsing it. Finally,
different from [Sambath et al. 2024], we conduct an exhaustive performance evaluation
to compare three options for capturing traffic from inside Python code.

4. Bit Rate Experiments

To understand what we can expect from an IoT device in terms of computing perfor-
mance, which is usually more limited compared to a usual computer, in this first set of
experiments we evaluate the tools under diverse bit rates of network traffic incoming to
the device. The next subsections explain the design of experiments and present the results.

4.1. Design of Experiments
Each round of an experiment is conducted as follows, orchestrated by a Bash script:

1. Run the Python script to capture the traffic in background and wait 10 seconds;
2. Start a transmission of packets to simulate network live traffic for 10 seconds; and

"https://www.tcpdump.oryg/



3. After the artificial traffic is finished, wait 32 seconds and collect the results.

Regarding Step #1, the script is engineered to call each of the different tools sep-
arately. Each one of them is configured to sniff the network for 50 seconds. Regarding
Step #2, iperf3® was used. It can transmit packets in the client-server model, allowing
the adjustment of several parameters. Regarding Step #3, it is important to note that the
Pypcap library does not implement a timeout mechanism that stops its execution after a
given amount of time. To achieve this behavior and limit its execution to 50 seconds as
designed, after the last 30 seconds (plus 2 seconds to have a safety margin) the Bash script
performs a single ping to the server to generate a packet that will be out of the window of
time defined manually in the code, so the loop breaks when the sniffer catches it.

Each combination of bit rate and tool was executed for five rounds, a sufficient
number to observe a low standard deviation in the results. The average of the values
collected is reported, except for the memory use metric, in which its peak was considered.
To register each metric, we used:

* The psutil Python library to measure the CPU consumption. It can retrieve infor-
mation about the system performance. For our purpose, we collected the percent-
age of CPU used by a process. Its operation is similar to the ps command in the
shell: it can be used to obtain the CPU utilization as a percentage for a process
since its last call using the total CPU time consumed. Note that this value can be
greater than 100 if the process runs on more than one processor core.

* The “resource” Python module to measure the memory use. It can collect the
maximum resident set size used by the process in KBytes.

* The “time” command to measure the total time utilized by the process, to ensure
that the workflow defined above was being followed.

* The “number of packets counted” is a value reported by each Python script at the
end of its execution. The different sniffers read the packets in the network and
the only processing that is done is to verify if the transmission protocol used is
UDP or TCP, to perform a minimal packet parsing, which in a real scenario would
probably be more complex and deeper in the packet.

The scenarios considered for analysis are:

* Transmission of TCP packets without bit rate limit, with the Raspberry Pi being
the client and the server at the same time in the localhost interface;

* Transmission of UDP packets at the bit rates of 1Mb/s, 2Mb/s, 3Mb/s, 4Mb/s,
SMb/s and 10Mb/s with the Raspberry Pi being the client and the server at the
same time in the localhost interface;

* Transmission of UDP packets without bit rate limit, with the Raspberry Pi being
the client and the server at the same time in localhost; and

* All three previous scenarios, but with the Raspberry Pi being a client and a note-
book being a server, on a direct Ethernet cable connection without Internet access.

To have an idea about the traffic transited in the experiments, Table 1 shows the
values reported by iperf3 (second column) for each configuration (first column), with the
localhost scenarios indicated as “LH” and the remote server ones as “RS”. The values are

8https://iperf.fr/



Configuration Report from iperf3
LH TCP (without limit) | 3.53 Gb/s, 4.11 GBytes

LH UDP 1Mb/s 1.02 Mb/s, 1.22 MBytes in 39 packets
LH UDP 2Mb/s 2.02 Mb/s, 2.41 MBytes in 77 packets
LH UDP 3Mb/s 3.01 Mb/s, 3.59 MBytes in 115 packets
LH UDP 4Mb/s 4.01 Mb/s, 4.78 MBytes in 153 packets
LH UDP 5Mb/s 5.01 Mb/s, 5.97 MBytes in 191 packets
LH UDP 10Mb/s 10.00 Mb/s, 11.9 MBytes in 382 packets

LH UDP (without limit) | 7.21 Gb/s, 8.4 GBytes in 275246 packets
RS TCP (without limit) | 94.64 Mb/s, 113 MBytes

RS UDP 1Mb/s 1 Mb/s, 1.19 MBytes in 864 packets

RS UDP 2Mb/s 2.00 Mb/s, 2.38 MBytes in 1727 packets
RS UDP 3Mb/s 3.00 Mb/s, 3.58 MBytes in 2590 packets
RS UDP 4Mb/s 4.00 Mb/s, 4.77 MBytes in 3453 packets
RS UDP 5Mb/s 5.00 Mb/s, 5.96 MBytes in 4316 packets
RS UDP 10Mb/s 10.0 Mb/s, 11.9 MBytes in 8632 packets

RS UDP (without limit) | 95.7 Mb/s, 114 MBytes in 82620 packets

Table 1. Parameters reported by iperf3 on each configuration for the Pyshark
experiments.

the averages of the five runs. Since we are considering the capture in a device which can
be used in IoT deployments, these bit rates are acceptable [Sivanathan et al. 2017]. Due
to the page limit, we only show the measurements obtained when running Pyshark (in
fact, the results of the scenarios with limited bit rates were the same for all the tools).

All metrics were collected in a Raspberry Pi 3 Model B, equipped with a Quad
Core 1.2GHz Broadcom BCM2837 64-bit ARM CPU, 1GB RAM running Debian
GNU/Linux 12 (bookworm), with a network interface of 100 Mb/s. An Acer Aspire
3 A315-41-R4RB notebook was used as the server in the experiments with the Ether-
net connection, equipped with an AMD Ryzen 5 2500U 2.0GHz 64-bit x86 CPU, 12GB
DDR4 2667 MHz RAM running Fedora Linux 41 (Silverblue), with a network interface
of 1000 Mb/s.

4.2. Results

One first observation to evaluate the performance is the difference between the minimum
and maximum values reached by each of the Python libraries in the CPU consumption
over the configurations, as can be seen in Figure 1 (All the graphs in the paper have indi-
cations of the standard deviation as a metric of dispersion, represented as a black line on
the top of the bars). At some point of the experiments, we can see that the libraries begin
to present constant use of the processing power: for Pyshark this happens very fast, with
about 4Mb/s in UDP localhost and 2Mb/s in UDP remote server, reaching approximately
80% of use; for Scapy this happens at 4Mb/s in UDP remote server, reaching around 20%
of use; and for Pypcap together with dpkt this threshold is uncertain in the considered
configurations, but we can see that in the unlimited bit rate cases the use of CPU is also
close to 20%.

We can observe that the minimum use of CPU for Pyshark, in the cases of 1Mb/s



110
100
90
80
70
60
50
40
30
20
10

B Pyshark Scapy B Pypcap and dpkt

<
—
=}

3 \> \© \e \° \gl \© R 3 \° \gl
ot WO e N" ?c,\'\“ DA o e e

0‘? 0‘? O‘? O? O Q'\ S ?©
R U R T RS

IN]

N
=}
©

% of use
413
60.5

i1.14
11.64

-
=)

o o o o
& e o

o0\° o\° o o
N S Ws
o R ®
PN o

N

Figure 1. Average CPU usage as a function of protocol and bit rate.

bit rate, is greater than the maximum achieved by the other two libraries. Pyshark is a great
library to extract processed information from the packets, however has demonstrated that
it is not a good choice for handling high volumes of traffic, especially when processing
power is a scarce resource.

Scapy had similar CPU usage compared with Pypcap and dpkt in the scenarios
with no bit rate limits, but the key difference is that the pair of libraries reaches their peak
more slowly. In a conventional network, we do not expect each device to be constantly
dealing with high packet volumes, the usual is for traffic to be controlled. So, the dif-
ference in performance dealing with a low amount of traffic is interesting to observe, as
this will probably be the main scenario that an IoT device will be working with. Also
note that the growth of CPU use appears to be well-behaved: the standard deviation is
not expressive over the different configurations, and comparing cases where the number
of packets increases linearly (for example, from 2Mb/s to 4Mb/s), the CPU usage also
increases in a nearly linear proportion (in RS, from 11.08% to 20.30%).

Increasing the bit rate of the traffic, and consequently the number of packets, be-
yond the observed thresholds does not lead to significant differences, indicating that the
number of packets in the network is a very influential parameter to the performance of the
libraries, but only to a certain point. After it, the libraries start struggling to deal with the
volume of packets. However, this is not the only parameter that affects the observations:
the size of the packets seems to be also an influential factor. In the localhost scenarios, the
number of packets per configuration is lower compared with the remote server one, as can
be seen in the Table 1, but the total number of bytes transmitted is similar, so the size of
the packets in the localhost scenario is larger. Scapy and Pypcap + dpkt seem to present
more difficulty when dealing with the traffic when the number of packets increases, but
for Pyshark the size of packets is already relevant, as we can see in the localhost metrics.
This parameter will be explored more in Section 5.

The memory use, in contrast with the CPU, does not present high variations be-
tween the configurations. The greatest difference can be observed when comparing local-
host and remote server scenarios, as can be observed in Figure 2. This is justified: we are
measuring the peak of memory and, as we discussed in the previous paragraph, the local-
host scenarios have larger packets than the remote server ones, so the parsing of a single
packet will take more memory in the first case. As the packets have a constant size in the
same configuration, it is reasonable to observe constant values over the experiments. The



100

%0 B Pyshark Scapy B Pypcap and dpkt

76.552
76.428

80

73.228
73.48
74.12
74.636
74.888
74.892
67.484
67.736
67.74
67.736
67.868
67.74
67.992
67.736

70
60
50

Megabytes
36.412

40

30.696

30.696

30.744
27.776

30

I
B
—
~

21.336
21.336
21.336
21.336
21.336
21.336
21.336
21.208
21.208
21.208
21.208
21.208
21.208
21.208
21.208

20
10

Figure 2. Peak of memory as a function of protocol and bit rate.

Scapy memory usage is considerably above the other libraries, using more than twice the
amount required by Pyshark and even more when compared to Pypcap + dpkt. The abso-
lute value of memory use is not very elevated, but considering the context of IoT devices,
a difference of bytes can have a big impact.

100000

mmm Pyshark Sca mmm Pypcap and dpkt 2
20000 Y py ypcap p! @ R
o =
80000 a
Y
£ 70000
[
]
2 60000
g
S 50000
2
S 40000 ©
2 30000 =
o
N ©
20000 8 T © © < QIN 49 4+9F oo
S H o< ©© N © NYN SO0 © N ©O I=p T0 Sow nSm <38 ~¥F SKg 9
10000 QP8R BS® NNs bme mom swd nnN S9N 288 zgw S0 988 S9F 2%9 SRE 23
Jo Bl 88 58S 238 (58 R8R mdd m=l A00 BE8 SRS SRS Rog Spf Eff 2R
ol \© \© \© \© \© 1 R S \© \© \© \© \© 1° R
S oW T T T T W et oW O O O oo el
o O O O O o O o o R
\ A A A Q A\ o A\ o A\ &
A A X « « <« S

Figure 3. Average number of packets as a function of protocol and bit rate.

Considering the total number of packets processed by each library, the first ob-
servation in Figure 3 is the disparity between Pypcap + dpkt and the other ones in the
scenarios without a bit rate limit. It is hard to compare them as the data of this pair of
libraries is on another scale, achieving numbers much more significant than the other two.
To reduce this disparity, Figure 4 represents only the scenarios with limited bit rate.

One may notice that the number of packets counted can be bigger than the number
of packets reported in the reference Table 1. This happens because the numbers reported
in the table are only referent to the UDP flow generated during the execution of iperf3.
The application also establishes a control connection using TCP between the client and
server to exchange the current parameters, so it is natural to have a greater final number
of packets. However, note that in the majority of the cases, the values reported are lower
than expected, especially in the unlimited bit rate cases, indicating a loss of packets.

The remote server results contain valuable insights: we can see that the bars from
the three different libraries grow together, until Pyshark and Scapy stop improving. As
the number of packets in the traffic grows, the performance of the libraries is degraded,
and in the same way that happened with the CPU usage, they do not improve anymore
after a threshold. The localhost scenarios presented unexpected behaviors on this metric,



11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

B Pyshark Scapy B Pypcap and dpkt

Number of packets

© \© \° \© © o \© o o © \© \©
o2V o oA o0 Qo RO oY o o S QoW N
N\ A A A A o° oW A\ A\ A\ A\ o°
X X A \X X w < < < (§ RS ©

Figure 4. Average number of packets as a function of protocol and bit rate (only
UDP scenarios with limited bit rates to improve visualization).

not being a good reference for conclusions:

» Scapy is counting all the packets twice, considering the number of packets counted
by Pypcap + dpkt as reference. The loopback interface is very different from
the normal ones, and Scapy’s FAQ’ indicates that unexpected behaviors can be
observed using it.

* The number of packets registered by Pyshark is also above the number counted
by Pypcap + dpkt, and half the number of Scapy. The reason for this is a Tshark
plugin that searches for connections with Android devices on localhost before the
sniff starts'?. In this way, every run in localhost with Pyshark has about 40 packets
more than the other libraries.

5. Packet Length Experiments

The second set of experiments evaluates the tools under flows with diverse packet lengths,
to understand if this is an influential factor in the performance of the Raspberry Pi running
the Python libraries that are being studied. The next subsections explain the design of
experiments and present the results.

5.1. Design of Experiments

Different from the bit rate experiments (Subsection 4.1) in which the duration of the
packet transmission was fixed, in the packet length experiments the constant over the
configurations is only the bit rate at 2Mb/s. In this sense, the flow duration generated
by iperf3 varies from one scenario to another. Moreover, the connectivity was done via
Ethernet and the protocol was only UDP, without the localhost scenario. With this con-
figuration, all the libraries can still perform well and also allow a considerable number of
packets in a short time. The procedure orchestrated by a Bash script is as follows:

1. Run the Python script to capture the traffic and wait 10 seconds;

2. Start a transmission of packets in the local network to simulate live traffic; and

3. After 42 seconds, end the test and collect the results. Here, in the same way as in
the last experiments, a ping is done by the Bash script to break the pypcap loop.

9https://scapy.readthedocs.io/en/latest/troubleshooting.html#
i-can-t-ping-127-0-0-1-or-1-scapy-does—-not-work-with-127-0-0-1-or-1-on-the-loopback-interface
Ohttps://github.com/gcla/termshark/issues/98



This is the reason for the difference of 2 seconds between the total time spent by
the Bash script and the Python script.

Similar to the last experiments, the sniffers are configured to run for 50 seconds.
However, the total packet transmission duration is not defined here. The scenarios con-
sidered for analysis were previously tested to ensure they would be inside the time range
of the sniffers and to permit a gap at the end of the iperf3 execution. They are:

* 1000 packets with 148, 724 and 1448 bytes of length;
* 4000 packets with 148, 724 and 1448 bytes.

The first configurations with 1000 packets were chosen to use a volume of packets
that all the libraries would be capable of handling, considering the experiments of the
previous section. For the configurations with 4000 packets, this number was chosen to
understand whether a reduction in the length of the packets would improve the results we
also observed in the sections above, where we saw that Pyshark and Scapy never reached
a count above this. Similar to the bit rate experiments, five rounds were executed for each
combination of number of packets, packet length and tool, usually taking the average
value of the numbers observed, except for the memory use metric, in which the peak of
use is considered. The same tools used there to register the metrics were used here.

The MTU (Maximum Transmission Unit) of the Raspberry Ethernet interface is
1500 bytes, being the TCP MSS (Maximum Segment Size) of 1448 bytes, the default
length of a packet used by iperf3 for both UDP and TCP transmissions. Using this value as
a basis, two others were chosen for the comparison: 148 bytes (close to 10% of 1448) and
724 bytes (50% of 1448). All the experiments were performed using the same equipment
and Ethernet connection from the previous section.

5.2. Results

100

= Pyshark mam Scapy s Pypcap and dpkt
90 A

79.48 79.96 79.16

801

70

601

50

% of use

40 {

304

201

101

Figure 5. Average CPU usage as a function of humber of packets and packet
length.



Observing the CPU metric in Figure 5, it is evident that all the libraries have an
increase in CPU usage when the packets are larger. Pyshark, being coherent with what
we saw in the previous section, utilizes much more CPU than the other libraries. The
Python script runs for a total of 50 seconds and the flow generated by iperf3 for the first
scenario considered has only 0.59 seconds of duration, representing approximately 1.2%
of the total time, while the usage of CPU time by Pyshark was of 28.78% on average, that
is, this library had a much higher CPU time consumption than expected considering the
duration of the experiment. In the configurations with 4000 packets, we can see that the
library stays at the same level. This observation is interesting to be seen together with the
number of packets counted in Figure 7.

W Pyshark mmm Scapy mmm Pypcap and dpkt

70 67.228 67.612 67.608 67.288 67.864 68.096

Megabytes
N
o

w
o

20

10

Figure 6. Peak of memory as a function of number of packets and packet length.

By analyzing Figure 6, the three libraries were coherent with what we saw in the
bit rate experiments. What is not coherent is the variations between the configurations:
neither of the libraries seems to respect the increase of packet length in their reports of
memory consumption. Pyshark and Scapy had variations that are not proportional to the
difference in length, and the duo Pypcap + dpkt was constant over all the configurations.
The scale of the packet sizes considered and total memory use is different, but this is
perhaps an indication that the structures used are not dynamic in terms of packet size.

In the 4000 packets scenarios, Pyshark counted fewer packets than the other li-
braries in most cases, as indicated in Figure 7, even with high CPU consumption. How-
ever, different from the plateau observed in Figure 5, it is clear that this library is being
affected by the size of the packets: the CPU usage is the same over all the packet lengths
considered, but the number counted decreases as there is an increase in the packet size.
Even though Pyshark could not count the totality of data in the network traffic over the
different packet lengths in the 4000 packets scenario, it struggled more in the ones with
bigger packets. On the other hand, in the 1000 packets scenario, it counted all the packets.

Scapy, in contrast, even in the 1000 packets scenario, was not capable of counting
all the packets, and note that the standard deviation is not very significant. This may



5000

mmm Pyshark W Scapy mmm Pypcap and dpkt

4500

4000

3500

Number of packets
N N w
o v o
o o o
o o o

1500

1000

500

Figure 7. Average number of packets as a function of humber of packets and
packet length.

indicate that this library has a limitation in the number of packets it can read per unit of
time (none of the libraries can read unlimited packets per second, however, we may have
found this limit here). In the bit rate experiments we observed that the limit reached by
this library in the number of packets counted was close to 3500 during the 10 seconds of
flow, so it is interesting to see here that this library was able to count only 339 packets
in the experiment with 0.59 seconds (1000 packets of 148 bytes) and 994 packets in
the one with 2.89 seconds (1000 packets of 724 bytes). The numbers are not perfectly
proportional, but are close: assuming that this library can read 350 packets per second,
in 0.59 and 2.89 seconds we would expect 206.5 and 1011.5 packets, respectively. The
bit rate being fixed leads to differences in the number of packets per second, which might
have an influence here. Even more interesting to see is that in the experiments that lasted
more than 10 seconds (4000 packets of 724 and 1448 bytes), Scapy was able to read
more than the usual 3500 packets, counting 3958 packets on average in the one with
11.58 seconds (the standard deviation is more expressive here. During the five repetitions
the number of packets varied between 3775 and 4006), in which we would expect 4053
packets considering 350 packets per second.

The CPU usage by Scapy also seems to reflect the behavior described in the pre-
vious paragraph: if we compare the consumption between the configurations with 1000
packets of 724 bytes and the one with 1448 bytes, we can see that the difference is small
(6.20% and 6.64%, respectively), as is the difference in the counted number, but the dura-
tion of the experiments is much more significant (2.89 and 5.79 seconds). The use of CPU
in the scenario with 4000 packets of 128 bytes, which lasted 2.37 seconds, also reinforces
it: 5.60%, but the number jumps in the other 4000 packets experiments that have a longer
duration. Therefore, it seems that the most influential factor here is not the packet length,
but the number of packets per second.

Finally, Pypcap together with dpkt presented good results, with low CPU con-



sumption and counting all the packets. Note that the most stressful configuration (4000
packets of 1448 packets) had a flow with a duration of 23.16 seconds, which is approx-
imately 46% of the total 50 seconds, but this duo of libraries presented only 2.36% on
CPU consumption. In this way, as the results were excellent, it is not conclusive that the
packet length had a significant influence on the performance of these libraries.

6. Conclusions and Future Works

The high number of proposals that keep emerging using Artificial Intelligence to classify
network traffic has led to the increasing use of Python scripts to take care of all the training
and testing phases of these proposals. This is due to the fact that Python has a good set of
libraries to apply both traditional and recent learning techniques. In this context, capturing
the traffic in the same script appears as a good strategy, mainly when dealing with real-
time traffic classification. This paper evaluated three tools to capture and process traffic in
Python: Pyshark, Scapy, and the duo Pypcap + dpkt. According to the evaluation, Pypcap
acting together with dpkt is the best solution both in terms of CPU usage, memory usage
and number of captured packets when running in a resource-constrained device. Ideas of
future work include the evaluation of Pypcap + dpkt under volumetric attacks and acting
as the first step of an Intrusion Detection System based on Online Learning.

Acknowledgments

This research is part of the STARLING project funded by FAPESP proc. 2021/06995-0.
It is also part of the FAPESP proc. 2024/10240-3.

References

Afifi, H., Pochaba, S., Boltres, A., Laniewski, D., Haberer, J., Paeleke, L., Poorzare, R.,
Stolpmann, D., Wehner, N., Redder, A., Samikwa, E., and Seufert, M. (2024). Machine

Learning With Computer Networks: Techniques, Datasets, and Models. IEEE Access,
12:54673-54720.

Dsouza, A., Lanjewar, V., Mahakal, A., and Khachane, S. (2022). Real Time Network In-
trusion Detection using Machine Learning Technique. In Proc. of the IEEE PuneCon,
pages 1-5.

Kostas, K., Just, M., and Lones, M. A. (2025). Individual Packet Features are a Risk
to Model Generalization in ML-Based Intrusion Detection. IEEE Networking Letters,
7(1):66-70.

Nazarov, N. and Arslan, E. (2022). In-Network Caching Assisted Error Recovery For File
Transfers. In Proc. of the IEEE/ACM INDIS, pages 20-24.

Oliveira, R., Pedrosa, T., Rufino, J., and Lopes, R. P. (2024). Parameterization and Per-

formance Analysis of a Scalable, near Real-Time Packet Capturing Platform. Systems,
12(4).

Sambath, S, B. B., Mario, C., Maheswari, G., and Gunasekar (2024). Network Traffic
Analyzer Using Python. In Proc. of the 1st ICSCAI, pages 1-7.

Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vish-
wanath, A., and Sivaraman, V. (2017). Characterizing and Classifying [oT Traffic
in Smart Cities and Campuses. In Proc. of the IEEE INFOCOM WKSHPS, pages
559-564.



