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Resumo. O aprendizado federado (FL) permite treinar modelos de aprendizado
de mdquina (ML) por clientes distribuidos sem a necessidade de compartilhar
seus dados locais com um servidor central (CS). Ao compartilhar somente os
pardmetros locais dos modelos dos clientes, FL mitiga problemas de seguranca
e privacidade do treinamento tradicional de ML, reduzindo a exposigcdo de da-
dos sensiveis. No entanto, FL introduz uma nova classe de aplicagoes de rede,
caracterizadas por troca de pardmetros frequentes e de grande tamanho, fa-
zendo um uso significativo dos recursos de rede e computacdo, gerando desa-
fios em situagcoes com largura de banda e recursos de processamento limitados.
Vdrios fatores estdo diretamente relacionados a carga gerada na rede, como o
tamanho do modelo e o niimero de clientes envolvidos. Embora a configura-
cdo desses parametros tenha como objetivo principal maximizar a precisdo e a
convergéncia do modelo, alcancar um equilibrio entre a qualidade do modelo
e os recursos de rede disponiveis é essencial. Este estudo analisa o impacto de
diferentes aplicagoes de FL e seus parametros na rede de acesso. Para isso, foi
desenvolvido um simulador de rede, e uma metodologia para gerar trdfego de
FL a partir do simulador LEAF, que é um benchmark para aprendizado em am-
bientes federados. Os resultados da simula¢cdo mostram um aumento na laténcia
do trdfego de FL a medida que o niimero de clientes aumenta ou o tamanho do
batch diminui.

Abstract. Federated learning (FL) enables the training of machine learning
(ML) models by distributed clients without sharing their local data with a cen-
tral server (CS). By sharing only the local model parameters of the clients, FL
addresses security and privacy challenges of traditional ML training, reducing
sensitive data exposure. However, FL introduces a new class of network ap-
plications, characterized by frequent and large-size model parameter exchan-
ges and significant network and computational resource utilization, leading to
challenges in situations with limited bandwidth and processing resources. Se-
veral factors are directly related to the network traffic load generated, such as
model size, the number of clients involved, and hyperparameter configuration.
Although the configuration of these parameters primarily aims to maximize the
model’s accuracy and convergence, achieving a balance between model quality
and available network resources is essential. This study analyzes the impact
of relevant FL application factors under the same access network on the FL
model and network performance. To this end, a homemade network simulator
was developed, including a methodology for generating FL traffic and obtaining
application-level performance from the LEAF framework, which is a benchmark
for learning in federated settings. Simulation results show an increase in latency
in FL traffic as the number of clients increases or the batch size decreases.

1. Introducao

A Aprendizagem de Mdquina (ML) tem atraido consideravel aten¢do da academia e a
industria devido a sua capacidade de resolver problemas complexos com baixo custo de



implementacdo. No contexto de redes Sexta Geracdo de Redes Mdveis (6G), espera-se
que ML otimize a alocacao de recursos, preveja padrdes de trafego e melhore a experién-
cia dos usudrios. No entanto, os métodos tradicionais de ML exigem que para treinamento
do modelo os clientes transmitam dados brutos para um Servidor Central (CS). Esse pro-
cedimento envolve requisitos relacionados a segurancga e a privacidade dos dados, além
de aumentar o trafego na rede. As regulamentacdes recentes sobre privacidade de dados
impdem desafios ainda maiores na implementacdo dos paradigmas tradicionais de ML
[Parliament 2016], ao exigir altos niveis de seguranca para que os dados sejam transmiti-
dos para servidores.

O Aprendizagem Federativo (FL) surgiu como uma abordagem para o treinamento
de modelos de ML, preservando a privacidade [McMahan et al. 2017]. No FL, os clientes
treinam modelos de ML localmente com seus dados, sem compartilhar os dados brutos
com o CS, reduzindo o risco de vazamentos de dados. Em vez de transmitir os dados
brutos, os clientes compartilham os parametros do modelo com o CS, o qual os agrega
em um modelo global. Esse modelo global é entdo reenviado aos clientes para o proximo
ciclo de treinamento. O processo iterativo continua até que o modelo atinja um precisao
predefinida ou um nimero especificado de ciclos de treinamento seja completado.

Embora o FL melhore a privacidade, permitindo que os clientes treinem o modelo
localmente, FL. também introduz uma sobrecarga de trafego significativa na rede. Isso
se deve ao grande tamanho dos modelos locais e a frequéncia das atualizacdes dos mo-
delos entre os clientes e o CS. O tamanho dos modelos varia de kilobytes a gigabytes,
dependendo da aplicac@o. Por exemplo, modelos simples como um classificador linear e
o LeNet tém tamanhos de modelo, de 1,10 kB e 350 kB, respectivamente. Ja arquiteturas
baseadas em Transformer apresentam tamanhos de modelo significativamente maiores,
por exemplo modelos Vision Transformer (ViT) alcangam 329,62 MB e modelos BERT
ultrapassam 417,72 MB [Jin et al. 2023]. Como resultado, as aplica¢gdes de FL. podem
exigir grandes recursos de rede e de computagdo, o que representa um desafio para a im-
plementacdo de modelos de FLL em redes com largura de banda limitada ou dispositivos
com poder computacional restrito.

No entanto, uma mesma aplicacdo FL pode gerar diferentes cargas de trafego,
dependendo da sua configuracdo. Hiperparametros como taxa de aprendizado, tamanho
do lote (i.e., batch size) e nimero de épocas, definem o tempo de treinamento e, portanto,
a frequéncia com que os pacotes sdo enviados entre os clientes e o CS. A arquitetura
e a complexidade da rede neural definem o nimero de pardmetros do modelo, o que
determina o tamanho dos pacotes a serem enviados. Além disso, o nimero total de clientes
impacta o volume geral de trafego gerado durante o treinamento. Isso significa que é
necessdrio configurar a aplicacdo de FL de acordo com os recursos computacionais e de
rede disponivelis.

Aplicacdes com um alto consumo de recursos usualmente tem pacotes da ordem
de centenas de MB, com alta frequéncia nas atualizagdes. Essas aplicacdes sdo apropria-
das para cendrios cross-silo, onde s@o poucos clientes federados implantados em compu-
tadores de alta capacidade, como data centers ou clusters, e conectados ao CS por acesso
de banda larga. Por outro lado, aplicacdes que geram pacotes com tamanho no ordem dos
kB com ciclos de treinamento longos sao apropriados para cendrios cross-device, onde 0s
clientes possuem recursos computacionais limitados e um canal ndo confidvel com largura
de banda restrita.

Além disso, o trafego das aplicagdes de FL. compete com outros tipos de trafego
que coexistem nas redes de acesso, o que torna ainda mais desafiador o fornecimento de
qualidade de servi¢o. Por exemplo, o trifego FL pode competir com trafegos sensiveis
ao atraso, como multimidia ou VoIP. Como ilustrado na Figura 1, esses trafegos provém
de clientes residenciais, empresariais ou at€é mesmo de operadoras de rede mével, que
utilizam a mesma rede de acesso em banda larga para enviar o trafego de suas estacdes.

A selecdo apropriada das configuragdes nas aplicagdes de FL é importante para
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Figura 1. Arquitetura de Aprendizado Federado sobre Redes de Acesso em
Banda Larga

gerar um equilibrio entre o desempenho do modelo e os recursos de rede e computagdo
disponiveis, especialmente ao implementd-las em ambientes com recursos limitados. Ao
ajustar os parametros, € possivel minimizar a sobrecarga de comunicagdo e as deman-
das computacionais, garantindo a viabilidade prética das aplica¢des FL em cenarios com
recursos restritos. Compreender a relagdo entre a configuracao do modelo federado e o
consumo de recursos da rede € essencial para equilibrar a precisdo do modelo e o desem-
penho da rede, garantindo uma implementacdo escaldvel das aplicacdes FL em redes de
comunicacao existentes.

A caracterizagdo dos tradeoffs entre o desempenho das aplicagdes e a comunica-
cdo tem sido recentemente abordada na literatura. Diversos estudos investigam o impacto
de fatores como trafego de fundo, perdas de pacotes e o tempo sincronizagdo de clientes na
carga da rede e no desempenho do modelo. Por exemplo, [Eris et al. 2021] explora o im-
pacto do trafego de fundo na desempenho das aplica¢des FL, enquanto [Rodio et al. 2023]
propde o algoritmo para lidar com perdas de pacotes FL. em redes sem fio. Além disso,
[Tedeschini et al. 2023] apresenta um modelo de trafego para otimizar a comunicagao em
redes sem fio com clientes heterogéneos. Essas estratégias visam melhorar a convergén-
cia dos modelos FL em redes com recursos limitados. No entanto, esses trabalhos ainda
ndo avaliam o impacto das configuracdes das aplicacdes FL tanto no desempenho dos
modelos quanto nas redes de comunicacdo. A falta de uma andlise mais profunda sobre
como as configura¢des podem afetar simultaneamente a eficicia do modelo e a eficiéncia
da rede limita a aplicabilidade dessas abordagens em cendrios reais, onde as condicdes de
rede e os requisitos de desempenho podem variar consideravelmente.

Este trabalho analisa como o acesso a rede pode impactar diferentes configuragcdes
de aplicacdes de FL. Através dessa andlise, € possivel estabelecer uma relacdo entre os
recursos computacionais e a demanda de largura de banda requeridos para diferentes con-
figuragcdes de aplicacdes FL. Dessa forma, busca-se contribuir para o desenvolvimento
de estratégias mais eficientes que equilibram a qualidade do modelo com os recursos
das redes de comunicacdo. Neste estudo, foi possivel compreender como o ajuste de
parametros das aplicacdes FL influencia o custo de comunicagdo. Para alcancgar esse ob-
jetivo, prop0Os-se uma metodologia que integra o benchmark LEAF [Caldas et al. 2018],
responsdvel pelo treinamento do modelo e pela geracdo do trafego de FL, com um simu-
lador do acesso a rede baseado em traces desenvolvido internamente. Essa integracio
visa criar uma plataforma robusta, capaz de modelar de forma realista os comportamen-
tos e impactos do tridfego de FL em cendrios complexos de comunicag¢do, onde outros
trafegos estdo competindo por recursos, como pode ser o caso do trafego multimidia.



Foram utilizados dois conjuntos de dados FEMNIST [Cohen et al. 2017] e Shakespeare
[Shakespeare 2014]. Em resumo, este artigo apresenta as seguintes contribuicoes:

* Desenvolvimento de um simulador de acesso baseado traces e propomos uma
metodologia para a sua integracdo com emulador de aplica¢des de FL. chamado
LEAF. Este simulador, modela, de forma geral, a camada de enlace, para analisar
o comportamento do acesso a rede quando submetida a trafego FL, permitindo
avaliar o desempenho do modelo e a influéncia do acesso no treinamento.

* Andlise do impacto do acesso a rede no treinamento de aplicacdes FL.

* Recomendacgdes para a configuracdo dos parametros das aplicacdes FL em cena-
rios com recursos limitados, auxiliando os profissionais a equilibrar o desempenho
do modelo e a utilizacdo dos recursos de rede.

O restante deste artigo estd organizado da seguinte forma: a Secdo 2 apresenta
os principais trabalhos relacionados a esta pesquisa. A Secdo 3 introduz a metodologia
do trabalho, incluindo o modelo de sistema e os detalhes de nossa proposta. A Secdo 4
aborda os parametros de simulacdo e a discussao dos resultados obtidos. Por fim, a Se¢ao
5 apresenta as conclusdes e dire¢des para trabalhos futuros

2. Trabalhos Correlatos

O estado da rede representa um fator importante no tempo de convergéncia e precisdao do
modelo FL. Estudos recentes analisam como as condi¢des da rede afetam o desempenho
do modelo [Kairouz et al. 2021]. Ao mesmo tempo, a configuracio das aplica¢des de FL.
impacta a carga de trafego FL introduzida na rede. Assim, € necessario buscar um equili-
brio entre as varidveis que modificam a carga da rede a fim de otimizar o desempenho do
modelo.

Em [Eris et al. 2021] foi avaliado o impacto do trafego de fundo no desempenho
do modelo. Foi simulado trafego de FL utilizando o protocolo UDP. O trafego de fundo
foi simulado seguindo uma distribui¢ao de Poisson, de forma a competir pela largura de
banda disponivel. Os resultados da simulacao mostraram que o trafego de fundo aumenta
a perda de pacotes, a qual prejudica significativamente o desempenho do FL, especial-
mente em condi¢des de congestionamento. Isso destaca o papel critico das condi¢des de
rede na convergéncia e na acurdcia do modelo FL.

Em [Rodio et al. 2023] foram abordados os desafios do suporte do treinamento
federado em redes sem fio com perdas de pacotes. O trabalho propde considerar perdas
heterogéneas de pacotes entre os clientes. Dando maior peso aos clientes que demora-
ram mais rodadas em enviar com sucesso 0s seus parametros ao servidor. Foi proposto
uma abordagem que mitiga os efeitos das perdas de pacotes sem aumentar o consumo de
recursos. O trabalho conclui que uma alta confiabilidade de transmissdo nao € um fator
necessario para o treinamento federado.

Em [Tedeschini et al. 2023] foi modelado o trafego FL em redes sem fio com or-
questracdo assincrona e clientes heterogéneos. O modelo proposto ressalta a necessidade
de adaptar os parametros da aplicacdo de FL para o ambiente no qual serd colocada. O
artigo também apresenta um algoritmo para selecionar o nimero ideal épocas de treina-
mento local feitas por cada cliente antes de compartilhar os pesos com o servidor. Tal
abordagem, busca equilibrar a largura de banda com o tamanho da base de dados do cli-
ente e o seu poder de processamento.

Em [Paolini et al. 2024] € proposto a integracdo de Fountain Codes (FC) para mi-
tigar os efeitos da perda de pacotes nas atualizagdes dos modelos. FC é uma classe de
codigos de correcao de erros usado principalmente em sistemas de comunicagdo e arma-
zenamento de dados. O uso de FC demonstraram melhorias significativas em condicdes
de alta perda de pacotes, tipicas de redes sem fio instaveis. Ao empregar FC e cumulative
acknowledgment (ACK), o sistema pode recuperar dados perdidos e melhorar transmis-
sao dos parametros do modelo. No entanto, as vantagens dos FC diminuem em ambientes



de baixa perda de pacotes, onde a sobrecarga computacional dos FC torna-se nio ne-
gligencidvel. Isso ressalta a necessidade de abordagens adaptativas, como a sele¢do do
protocolo mais adequado com base nas condi¢des da rede.

Alguns trabalhos propdem uma andlise sobre as diferentes tecnologias de
rede; dadas suas peculiaridades, como laténcia e largura de banda [Li et al. 2020,
Ciceri et al. 2022]. Esses estudos propdem mecanismos de fatiamento de largura de banda
para redes Passive Optical Network (PONs), com foco na reserva de largura de banda e
multiplexacdo para atender as demandas de rede do FL. Essa abordagem destaca a impor-
tancia de um provisionamento de Quality of Service (QoS) personalizado para melhorar a
comunicacao nos sistemas FL. Esses artigos também identificam os desafios enfrentados
pelo FL devido a natureza compartilhada dos recursos de rede, como em PONs.

Ainda, dando suporte aos trabalhos anteriores no estudo do impacto das condi-
coes da rede no desempenho dos modelos federados, diversos simuladores t€ém sido uti-
lizados com essa finalidade. Uma discussdo comparativa dos simuladores utilizados na
avaliacdo do desempenho da federacdo revela que, enquanto alguns simuladores, como o
FedSim [Varno 2022] e o FedML [He et al. 2020], focam especificamente nos algoritmos
de aprendizado federado, eles apresentam escassa habilidade para configurar a rede. Por
outro lado, simuladores especificos de rede, como o NS-3 [Riley and Henderson 2010],
OMNeT++ [Varga 2010] e Mininet [Kaur et al. 2014], oferecem uma maior flexibilidade
na modelagem das condi¢des da rede, mas necessitam de implementagdes especificas para
o ambiente federado. Nesse sentido, nenhum dos simuladores oferece a possibilidade de
alterar os parametros da rede para uma mesma configuracdo da federacdo, sendo iden-
tificado um espago para o desenvolvimento de um simulador baseado em traces. Dessa
forma, para um mesmo experimento de aprendizado federado sera possivel observar seu
comportamento em diferentes condi¢des da rede.

Os artigos vistos nesta revisido detectam a importancia do estudo da carga gerada
na rede pelos modelos FL. Porém, as abordagens propostas neles focam em tecnologias
e protocolos de comunicagdo especificos. Deixando de lado uma andlise mais geral da
relacdo que existe entre os tempos de comunicagcdo e computacdo dos modelos. Nesse
sentido, este estudo propde uma metodologia para a avaliacdo de desempenho da rede
FL, considerando a relacdo entre o tempo de computacdo e o tempo de comunicagao.
Para isso, foi criado um simulador que, usando filas de background e fraces, permite uma
visdo em alto nivel do sistema, permitindo, assim, comparar como os modelos e seus
parametros impactam no desempenho da rede de comunicacio e do modelo de FL.

3. Modelo do Sistema

Para garantir um processo independente do hardware disponivel, propomos um pipeline
que integra a emulacdo do treinamento FL com um simulador de acesso a rede desenvol-
vido internamente, o qual permite avaliar o impacto da carga de trabalho do FL . O fluxo
do nosso pipeline € apresentado na Figura 2. No estdgio 1, s@o escolhidas as aplicacdes
FL que serdo emuladas, a arquitetura do modelo que seré treinado e os hiper-parametros
do treinamento, como numero de clientes, épocas e rodadas de treinamento. No estagio
2, a aplicagdo FL € emulada localmente usando o benchmark LEAF. Utilizamos o LEAF
porque ele gera a quantidade de Operacdes de Ponto Flutuante (FLOPs) a cada rodada de
treinamento por cliente. No entanto, essa implementacdo pode ser realizada com qualquer
framework que emule aplicacdes FL. No estdagio 3, o numero de FLOPs utilizados para
o treinamento dos modelos locais, é convertido no tempo de chegadas dos pacotes FL na
rede. Apds isso, no estdgio 4, estes tempos de chegada sdo utilizados como entrada para
o simulador de traces. O simulador realizaréd a simulagdo do fluxo de pacotes dos clientes
ao CS e adicionard um trafego concorrente ao fluxo FL. Por fim, no estigio 5, as métricas
de modelo e da rede como precisdo e atraso médio no envio dos modelos locais ao CS sao
coletadas.

O benchmark LEAF é um emulador que permite avaliar o comportamento do trei-
namento de aplicacdes FL (i.e., Estagios 1 e 2). A ferramenta permite variar a configura-
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Figura 2. Pipeline para a Integracao do Trafego de Aplicacdoes FL em um Simula-
dor de Acesso a Rede baseado em Eventos Discretos.

cdo da aplicacao de FL que serd emulada, que inclui o dataset, a arquitetura do modelo,
o nimero de clientes, a taxa de aprendizado, o nimero de épocas e a fracdo dos dados
locais usados para o treinamento (minibatch). O emulador fornece cinco aplicacdes FL,
que abrangem tarefas de processamento de imagens (Federated EMNIST (FEMNIST),
Celeba) e processamento de texto (Shakespeare, Reddit e Twitter), além de possibilitar
a criacao de aplicacoes personalizados. O dataset € particionado ndo Independente nem
Identicamente Distribuida (nIID) entre os clientes. Para a agregacao dos modelos, a ferra-
menta utiliza o algoritmo Federated Average (FedAvg). O processo de emulagao € reali-
zado localmente, portanto o treinamento dos modelos locais de cada cliente e a agregacao
no CS sdo realizados na mesma méquina.

Ap6s o fim do treinamento FL, o LEAF escreve todas as métricas coletadas du-
rante o treinamento em dois arquivos Valores Separados por Virgula (CSV), um para as
métricas do modelo e outro para as métricas sistema. No arquivo de métricas do modelo
sdo armazenados os valores de acuricia, perda dos modelos, nimero de amostras para
treinamento e particdo de avaliacdo (treinamento e teste). Essas métricas sdo coletadas a
cada numero fixo de rodadas da treinamento. Adicionalmente, no arquivo de métricas do
sistema, sdo armazenados para cada cliente em cada rodada de treinamento os valores de
numero de FLOPs, tamanho do modelo, quantidade de bytes enviados para o servidor e
nimero de amostras empregadas para treinamento local.

Para a criagdo do arquivo de trilhas, foi implementado um script que converte os
FLOPs em tempo de chegada de pacotes FL (i.e., Estdgio 3). O script recebe como en-
trada o arquivo de métricas do sistema, a quantidade de FLOPs dos cliente e tem como
saida um arquivo de trilhas que contém o tempo de chegada e o tamanho de cada pacote
enviado pelos clientes FL ao CS em cada rodada de treinamento. Durante o processo de
conversdo, foi considerado que a arquitetura dos modelos possui indices de paraleliza¢ao
diferentes, o que significa que cada modelo terd um tempo de processamento diferente
para a mesma quantidade de processadores disponiveis. A eficiéncia da paralelizagao foi
modelada com base na Lei de Amdahl [Amdahl 1967] que relaciona a porcentagem da
tarefa que pode ser executada em paralelo com a quantidade de processadores disponi-
veis para execucdo, fornecendo o aumento de velocidade esperado com a paralelizacao
do processo. Esta lei é definida por S(N) = 1/(1 — P+ %), onde S(IN) é aumento de velo-

cidade esperado (speed-up), N € o nimero de processadores disponivel para a realizagdo
da tarefa e PP € a porcentagem do c6digo que pode ser processada em paralelo.

3.1. TraceFL-Net-Sim: um simulador de acesso a rede para aprendizado federado
baseado em Traces

Desenvolvemos um simulador de cddigo aberto para avaliar o impacto do trafego FL
e background na carga do acesso a rede, chamado de Trace-driven Federated-Learning
Network Simulator (TraceFL-Net-Sim) '. Como pode ser visto na Figura 2, o simulador

"https://github.com/wocn-unicamp/TraceFL-Net—-Sim
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Fila Background

utiliza os resultados gerados pelo LEAF e processados pelo script como arquivo de regis-
tro de eventos para gerar o trafego FL. O simulador gera um arquivo que contém métricas
de rede, tais como vazdo média e atraso médio do trafego FL. O TraceFL-Net-Sim uti-
liza uma simulacdo de eventos discretos para o fluxo de quadros Ethernet entre os nés da
rede. Os pacotes de FL sdo fragmentados em /N quadros no inicio da simulagdo e o pacote
FL € reconstruido quando todos os N quadros alcancarem o CS. Ademais, a chegada dos
quadros de trafego de background ao buffer dos n6s segue uma distribui¢do de Poisson,
enquanto o tamanho de cada quadro segue uma distribui¢do uniforme, em consonancia
com as convencdes da Teoria das Filas que viabilizam a derivacdo de modelos analiticos
para o sistema.

TraceFL-Net-Sim utiliza quatro tipos de eventos para simular o fluxo de quadros
na rede, como representado na figura 3. (i) chegada de quadros nas filas dos clientes FL
e M/U/1 (ARRIVAL_Q); (ii) saida de quadros das filas dos clientes FL. e M/U/1 (DEPAR-
TURE_Q); (iii) chegada de quadros na fila da rede de acesso (ARRIVAL_A); e (iv) saida
de quadros na fila da rede de acesso (DEPARTURE_A). Todos os quadros gerados pelo
arquivo de registro e os quadros gerados de trafego de background, fluem das filas dos
respectivos nds (clientes FL e background) para a fila do switch na camada de enlace.
Finalmente, o Switch envia os quadros para alcancar o CS. Foi assumido que o atraso
entre o Switch e o CS € constante, para focar no impacto do trafego FL na rede de acesso
compartilhada pelos clientes. Por fim, foi considerado que todas as filas na simulagao
possuem buffer infinito, buscando facilitar a derivacdo de modelos analiticos e permitir
simulagdes mais robustas.

Por outro lado, o processo de fragmentacdo gera um alto consumo de memo-
ria para a maquina responsavel por executar a simulagdo. Modelos ML possuem uma
alta variabilidade de tamanhos, saindo da ordem dos KBs até GBs, como no caso
do treinamento de modelos de linguagem como BERT [Devlin et al. 2018] e Llama
[Abhinav et al. 2024]. Ademais, este problema € agravado pela carga de trabalho im-
posta pelo trafego de background. Por isso, o simulador foi implementado na linguagem
de programacdo Go, aproveitando seus recursos de gerenciamento de concorréncia e me-
moria, ja validados em aplicagdes como Docker [Docker 2025] e Ollama [Ollama 2025],
0s quais exigem um maior controle do consumo de memdria e processamento.

Por fim, a métrica de atraso médio para a chegada dos modelos € calculada ao
fim de cada rodada de treinamento. Para calcular o atraso do pacote FL ¢ feita a diferenca
entre a chegada do primeiro quadro no buffer do dispositivo de rede até o dltimo quadro do
pacote FL que chega no CS. Ao fim da simulacao, o TraceFL-Net-Sim gera dois arquivos
CSV, de forma andloga ao LEAF. Um arquivo contendo as métricas de atraso médio por
cliente durante as rodadas e um arquivo de métricas que armazena os valores da carga
de trabalho FL e background e os atrasos dos clientes em cada fila do sistema simulado.
O simulador foi validado com base na implementac¢do do simulador de redes Opticas em
[Ciceri et al. 2022], com foco na validagdao das implementacdes de geracdo de trafego,



tanto de background como de aplicagdes FL.

4. Avaliacao de Desempenho

Esta secdo apresenta uma anélise detalhada do desempenho de sistemas de FL sob di-
ferentes parametros. Para a simulacdo do acesso a rede e do trafego de background,
utilizou-se o simulador de rede TraceFL-Net-Sim, desenvolvido internamente em Golang.
Além disso, o benchmark LEAF [Caldas et al. 2018] foi empregado para a geracdo do tra-
fego de FL. O TraceFL-Net-Sim implementa a politica First-Come-First-Served (FCFS)
para definir a ordem de enfileiramento dos quadros Ethernet na filas dos dispositivos de
rede. Nossa ferramenta para simular uma rede de acesso com trafego FL e background
foi validada de forma extensiva.

4.1. Modelo de simulacio e configuracao

O cendrio de simulacdo considera uma rede de acesso de banda larga, composta por um
unico dispositivo de acesso (i.e., switch da camada de enlace) que atende um conjunto de
N n6s de rede distribuidos com topologia em érvore, conforme apresentado na Figura 1.
Desses nds, um subgrupo N suporta o trafego FL, de aqui em diante nés FL, enquanto
outro subgrupo N3 suporta trafego de background, de aqui em diante nés convencionais,
tal que/\/%r C Ne/\}; CN,comNrUNg =N eNrNNpg = @. No cendrio de
simulacao adotado, consideramos clientes homogéneos, nos quais cada cliente possui a
mesma capacidade computacional de FLOPs, definida como f; = 250 x 10°.

Foi utilizada uma largura de banda garantida de b; = 1.5 Gbps para cada um dos
nés de rede i € N, totalizando uma capacidade total do canal de upstream de ), _, b;.
Além disso, o switch estd conectado a internet por meio de um acesso de 2.25 Gbps.

A carga oferecida para os nés convencionais € 1.0 - b; enquanto a carga oferecida
agregada para os nds FL depende da configuragdo dos parametros da aplica¢do. Foram
variados tanto o nimero de clientes federados (|[N7| = { 5, 10, 30, 50}) quanto o valor do
minibatch (0.1, 0.2, 0.5 e 0.8). Além disso, foi simulada uma tnica carga que representa
os nds convencionais (JN| = 1). O trafego dos nds convencionais foi modelado a partir
de uma distribuicdo de Poisson. Enquanto, o benchmark LEAF [Caldas et al. 2018], foi
utilizado para gerar o trafego de FL.

No caso do trafego de FL, foram avaliadas duas aplicagdes. Uma aplicacdo para
classificagdo de imagens e outra para previsdo do préoximo caracter, as quais utilizam
os conjuntos de dados FEMNIST e Shakespeare, respectivamente. A primeira aplicagao
emprega uma Convolutional Neural Network (CNN) com duas camadas de convolugao
5 X 5 para o treinamento do modelo, enquanto a segunda utiliza uma Long Short-Term
Memory (LSTM) de duas camadas de 256 unidades cada. Os clientes de FL. geraram 26.4
MB e 32.72 MB de dados a cada rodada de treinamento, empregando a CNN e o LSTM,
respectivamente.

O algoritmo FedAvg foi empregado para agregar os parametros locais no servidor
para as dois aplica¢do. Outras configuragcdes do processo de aprendizado, como taxa de
aprendizado e numero de épocas, seguiram as defini¢des estabelecidas em [Li et al. 2021].
Para converter a quantidade de FLOPs em tempo de processamento, foi utilizada uma
porcentagem da tarefa paralelizdvel de 0.95 e nicleos com capacidade de processamento
de 0.25 GFLOPs/s.

Além disso, as nés de rede fragmentaram os modelos locais em quadros de acordo
com o protocolo Ethernet, que possui uma Unidade Médxima de Transmissao de 1500 By-
tes e um campo de cabecalho para sinalizagdo de 18 Bytes. Os comprimentos dos quadros
para o trafego convencional sdo distribuidos uniformemente entre 64 e 1518 Bytes. Cada
cendrio de simulacdo teve duracdo de 1000 rodadas de treinamento para o FEMNIST e
100 rodadas para o Shakespeare.
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Figura 4. Percentual de clientes envolvidos na agregacao versus tempo, utili-
zando o conjunto de dados FEMNIST e Shakespeare.

Em resumo, foram simuladas duas aplicagdes com diferentes configuracdes de
parametros em uma rede de acesso, na qual os nds possuem uma largura de banda garan-
tida. O trafego de background foi modelado com uma carga alta, enquanto o trafego de
aprendizado federado foi ajustado conforme as configuracdes da aplicaciao. Dessa forma,
€ possivel avaliar o desempenho da rede sob diferentes condicdes de trafego, analisando
o impacto das varidveis de configuracdo da aplicacdo no tempo de processamento e no
atraso do trafego FL.

4.2. Resultados da simulacao

As Figuras 4 apresentam a propor¢do de clientes envolvidos na agregagdo em fun¢do do
tempo para os datasets FEMNIST e Shakespeare, respectivamente. O tempo de computa-
cdo representa o tempo minimo de sincronizag¢do por rodada, desconsiderando qualquer
atraso de comunicagdo. Além disso, as imagens a esquerda mostram o impacto da varia-
cdo do ndmero de clientes, enquanto os graficos a direita ilustram o impacto do tamanho
do batch na proporcao de clientes envolvidos na agregacao.

Observou-se que o tempo de computagcdo permanece constante em relagdo ao nu-
mero de clientes (Figuras 4(a) e 4(c)), enquanto o tempo de computacdo aumenta a medida
que o tamanho do minibatch aumenta (Figuras 4(b) e 4(d)). Esse comportamento € con-
sequéncia de que o nimero de amostras com as quais cada cliente treina o modelo é o
mesmo, independentemente do nimero de clientes que participam do treinamento. Por
outro lado, o tamanho de minibatch maior resulta em mais mostras sendo processados em
cada cliente, exigindo mais tempo computacional para realizar o treinamento.

No caso do FEMNIST, um maior nimero de clientes leva ao congestionamento da
rede, aumentando a laténcia (Figura 4(a)), enquanto no Shakespeare esse efeito € mitigado
pela maior duracdo do treinamento (Figura 4(c)). Além disso, o tamanho do minibatch
impacta diretamente o tempo de computacdo, mas seu efeito sobre o atraso de comunica-
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Figura 5. Acuracia de Treino do FEMNIST variando o numero de clientes.

cdo depende das caracteristicas do dataset. No FEMNIST, minibatches menores resultam
em maior atraso devido ao aumento na frequéncia de atualizacoes (Figura 4(c)), enquanto
no Shakespeare a comunicag@o ndo se torna um fator limitante. Esses achados destacam
a necessidade de um balanceamento cuidadoso entre a configuragdo das aplicagcdes de
FL e a quantidade de recursos disponiveis, uma vez que hd um trade-off entre a carga
computacional e a laténcia de comunicacdo gerada por essas configuracdes.

A Figura 5 mostra a acurdcia do modelo federado durante as rodadas de treina-
mento no conjunto de dados FEMNIST, utilizando o algoritmo FedAvg. Ao variar o
nimero de clientes selecionados para participar da federacdo em diferentes experimen-
tos, observa-se uma tendéncia de melhora na acurdcia do modelo a medida que o nimero
de clientes aumenta. Isso ocorre porque a maior quantidade de clientes contribui para
uma atualizacdo mais diversificada dos gradientes, o que permite ao modelo generalizar
melhor sobre os dados distribuidos.

As Figuras 6(a) e 6(b) apresentam o tempo total de treinamento, respectivamente,
para os conjuntos de dados FEMNIST e Shakespeare. Para cada um dos modelos treina-
dos com esses conjuntos de dados, varia-se o nimero de clientes e o tamanho do mini-
batch. O tempo total de treinamento é calculado somando o tempo de todas as rodadas
de treinamento, distinguindo entre o tempo de computacio e o tempo de comunicagdo do
ultimo cliente de cada rodada.

Observa-se que um maior nimero de clientes tende a aumentar o atraso de comu-
nicacdo, a0 mesmo tempo que se mantém o tempo de computacdo do modelo. Por outro
lado, o aumento do tamanho do minibatch leva a um aumento significativo no tempo de
computacio, enquanto o tempo de comunica¢io diminui. Esta relacdo entre o tempo de
computacao e o tempo de comunicagdo se dd pelo fato de que, diante de uma distribui¢do
mais esparsa dos tempos de computacdo, a carga sobre a rede na federacdo € reduzida,
permitindo que o envio do modelo seja mais rapido. Assim, no caso do conjunto de dados
Shakespeare, os tltimos clientes a concluir a rodada encontram a rede ociosa, dispondo
de toda a largura de banda disponivel para enviar o modelo de forma mais rapida.

5. Conclusao

O treinamento de modelos de FLL. demanda um alto consumo de recursos de rede devido
ao grande tamanho dos modelos e a alta frequéncia das atualizacdes, o que pode resul-
tar em congestionamento em ambientes com largura de banda limitada e capacidade de
processamento reduzida. A configuracdo dos pardmetros das aplicacdes, como hiperpa-
rametros, tipo de rede neural e at€é mesmo a prépria aplicacdo, impacta diretamente a
carga de trafego gerada. Este artigo propds uma metodologia para avaliar o impacto de
configuracdes de FL no acesso a uma rede de acesso de banda larga. Essa metodologia
integra o TraceFL-Net-Sim, um simulador de acesso a rede desenvolvido em Goland para
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Figura 6. Tempo total de treinamento.

este estudo, e o benchmark LEAF, onde o treinamento dos modelos € realizado no LEAF.
Nos experimentos, observou-se um aumento no atraso de rede dos pacotes a medida que
o numero de clientes e o tamanho dos batches de treinamento aumentam. Ademais, o in-
cremento dessas duas varidveis resulta em uma melhora na precisdo do modelo treinado,
indicando um compromisso entre o desempenho do modelo e o tempo de treinamento.
Como trabalhos futuros, pode-se realizar uma avaliacdo do desempenho dos modelos em
um cendrio de FL sincrono, considerando o impacto do tempo de sincroniza¢do na quan-
tidade de clientes envolvidos na agregacao.
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