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Resumo. O aprendizado federado (FL) permite treinar modelos de aprendizado
de máquina (ML) por clientes distribuídos sem a necessidade de compartilhar
seus dados locais com um servidor central (CS). Ao compartilhar somente os
parâmetros locais dos modelos dos clientes, FL mitiga problemas de segurança
e privacidade do treinamento tradicional de ML, reduzindo a exposição de da-
dos sensíveis. No entanto, FL introduz uma nova classe de aplicações de rede,
caracterizadas por troca de parâmetros frequentes e de grande tamanho, fa-
zendo um uso significativo dos recursos de rede e computação, gerando desa-
fios em situações com largura de banda e recursos de processamento limitados.
Vários fatores estão diretamente relacionados à carga gerada na rede, como o
tamanho do modelo e o número de clientes envolvidos. Embora a configura-
ção desses parâmetros tenha como objetivo principal maximizar a precisão e a
convergência do modelo, alcançar um equilíbrio entre a qualidade do modelo
e os recursos de rede disponíveis é essencial. Este estudo analisa o impacto de
diferentes aplicações de FL e seus parâmetros na rede de acesso. Para isso, foi
desenvolvido um simulador de rede, e uma metodologia para gerar tráfego de
FL a partir do simulador LEAF, que é um benchmark para aprendizado em am-
bientes federados. Os resultados da simulação mostram um aumento na latência
do tráfego de FL à medida que o número de clientes aumenta ou o tamanho do
batch diminui.

Abstract. Federated learning (FL) enables the training of machine learning
(ML) models by distributed clients without sharing their local data with a cen-
tral server (CS). By sharing only the local model parameters of the clients, FL
addresses security and privacy challenges of traditional ML training, reducing
sensitive data exposure. However, FL introduces a new class of network ap-
plications, characterized by frequent and large-size model parameter exchan-
ges and significant network and computational resource utilization, leading to
challenges in situations with limited bandwidth and processing resources. Se-
veral factors are directly related to the network traffic load generated, such as
model size, the number of clients involved, and hyperparameter configuration.
Although the configuration of these parameters primarily aims to maximize the
model’s accuracy and convergence, achieving a balance between model quality
and available network resources is essential. This study analyzes the impact
of relevant FL application factors under the same access network on the FL
model and network performance. To this end, a homemade network simulator
was developed, including a methodology for generating FL traffic and obtaining
application-level performance from the LEAF framework, which is a benchmark
for learning in federated settings. Simulation results show an increase in latency
in FL traffic as the number of clients increases or the batch size decreases.

1. Introdução
A Aprendizagem de Máquina (ML) tem atraído considerável atenção da academia e a
industria devido à sua capacidade de resolver problemas complexos com baixo custo de
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implementação. No contexto de redes Sexta Geração de Redes Móveis (6G), espera-se
que ML otimize a alocação de recursos, preveja padrões de tráfego e melhore a experiên-
cia dos usuários. No entanto, os métodos tradicionais de ML exigem que para treinamento
do modelo os clientes transmitam dados brutos para um Servidor Central (CS). Esse pro-
cedimento envolve requisitos relacionados à segurança e à privacidade dos dados, além
de aumentar o trafego na rede. As regulamentações recentes sobre privacidade de dados
impõem desafios ainda maiores na implementação dos paradigmas tradicionais de ML
[Parliament 2016], ao exigir altos níveis de segurança para que os dados sejam transmiti-
dos para servidores.

O Aprendizagem Federativo (FL) surgiu como uma abordagem para o treinamento
de modelos de ML, preservando a privacidade [McMahan et al. 2017]. No FL, os clientes
treinam modelos de ML localmente com seus dados, sem compartilhar os dados brutos
com o CS, reduzindo o risco de vazamentos de dados. Em vez de transmitir os dados
brutos, os clientes compartilham os parâmetros do modelo com o CS, o qual os agrega
em um modelo global. Esse modelo global é então reenviado aos clientes para o próximo
ciclo de treinamento. O processo iterativo continua até que o modelo atinja um precisão
predefinida ou um número especificado de ciclos de treinamento seja completado.

Embora o FL melhore a privacidade, permitindo que os clientes treinem o modelo
localmente, FL também introduz uma sobrecarga de trafego significativa na rede. Isso
se deve ao grande tamanho dos modelos locais e à frequência das atualizações dos mo-
delos entre os clientes e o CS. O tamanho dos modelos varia de kilobytes a gigabytes,
dependendo da aplicação. Por exemplo, modelos simples como um classificador linear e
o LeNet têm tamanhos de modelo, de 1,10 kB e 350 kB, respectivamente. Já arquiteturas
baseadas em Transformer apresentam tamanhos de modelo significativamente maiores,
por exemplo modelos Vision Transformer (ViT) alcançam 329,62 MB e modelos BERT
ultrapassam 417,72 MB [Jin et al. 2023]. Como resultado, as aplicações de FL podem
exigir grandes recursos de rede e de computação, o que representa um desafio para a im-
plementação de modelos de FL em redes com largura de banda limitada ou dispositivos
com poder computacional restrito.

No entanto, uma mesma aplicação FL pode gerar diferentes cargas de tráfego,
dependendo da sua configuração. Hiperparâmetros como taxa de aprendizado, tamanho
do lote (i.e., batch size) e número de épocas, definem o tempo de treinamento e, portanto,
a frequência com que os pacotes são enviados entre os clientes e o CS. A arquitetura
e a complexidade da rede neural definem o número de parâmetros do modelo, o que
determina o tamanho dos pacotes a serem enviados. Além disso, o número total de clientes
impacta o volume geral de tráfego gerado durante o treinamento. Isso significa que é
necessário configurar a aplicação de FL de acordo com os recursos computacionais e de
rede disponíveis.

Aplicações com um alto consumo de recursos usualmente tem pacotes da ordem
de centenas de MB, com alta frequência nas atualizações. Essas aplicações são apropria-
das para cenários cross-silo, onde são poucos clientes federados implantados em compu-
tadores de alta capacidade, como data centers ou clusters, e conectados ao CS por acesso
de banda larga. Por outro lado, aplicações que geram pacotes com tamanho no ordem dos
kB com ciclos de treinamento longos são apropriados para cenários cross-device, onde os
clientes possuem recursos computacionais limitados e um canal não confiável com largura
de banda restrita.

Além disso, o tráfego das aplicações de FL compete com outros tipos de tráfego
que coexistem nas redes de acesso, o que torna ainda mais desafiador o fornecimento de
qualidade de serviço. Por exemplo, o tráfego FL pode competir com tráfegos sensíveis
ao atraso, como multimídia ou VoIP. Como ilustrado na Figura 1, esses tráfegos provêm
de clientes residenciais, empresariais ou até mesmo de operadoras de rede móvel, que
utilizam a mesma rede de acesso em banda larga para enviar o tráfego de suas estações.

A seleção apropriada das configurações nas aplicações de FL é importante para
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Figura 1. Arquitetura de Aprendizado Federado sobre Redes de Acesso em
Banda Larga

gerar um equilíbrio entre o desempenho do modelo e os recursos de rede e computação
disponíveis, especialmente ao implementá-las em ambientes com recursos limitados. Ao
ajustar os parâmetros, é possível minimizar a sobrecarga de comunicação e as deman-
das computacionais, garantindo a viabilidade prática das aplicações FL em cenários com
recursos restritos. Compreender a relação entre a configuração do modelo federado e o
consumo de recursos da rede é essencial para equilibrar a precisão do modelo e o desem-
penho da rede, garantindo uma implementação escalável das aplicações FL em redes de
comunicação existentes.

A caracterização dos tradeoffs entre o desempenho das aplicações e a comunica-
ção tem sido recentemente abordada na literatura. Diversos estudos investigam o impacto
de fatores como tráfego de fundo, perdas de pacotes e o tempo sincronização de clientes na
carga da rede e no desempenho do modelo. Por exemplo, [Eriş et al. 2021] explora o im-
pacto do tráfego de fundo na desempenho das aplicações FL, enquanto [Rodio et al. 2023]
propõe o algoritmo para lidar com perdas de pacotes FL em redes sem fio. Além disso,
[Tedeschini et al. 2023] apresenta um modelo de tráfego para otimizar a comunicação em
redes sem fio com clientes heterogêneos. Essas estratégias visam melhorar a convergên-
cia dos modelos FL em redes com recursos limitados. No entanto, esses trabalhos ainda
não avaliam o impacto das configurações das aplicações FL tanto no desempenho dos
modelos quanto nas redes de comunicação. A falta de uma análise mais profunda sobre
como as configurações podem afetar simultaneamente a eficácia do modelo e a eficiência
da rede limita a aplicabilidade dessas abordagens em cenários reais, onde as condições de
rede e os requisitos de desempenho podem variar consideravelmente.

Este trabalho analisa como o acesso a rede pode impactar diferentes configurações
de aplicações de FL. Através dessa análise, é possível estabelecer uma relação entre os
recursos computacionais e a demanda de largura de banda requeridos para diferentes con-
figurações de aplicações FL. Dessa forma, busca-se contribuir para o desenvolvimento
de estratégias mais eficientes que equilibram a qualidade do modelo com os recursos
das redes de comunicação. Neste estudo, foi possível compreender como o ajuste de
parâmetros das aplicações FL influencia o custo de comunicação. Para alcançar esse ob-
jetivo, propôs-se uma metodologia que integra o benchmark LEAF [Caldas et al. 2018],
responsável pelo treinamento do modelo e pela geração do tráfego de FL, com um simu-
lador do acesso à rede baseado em traces desenvolvido internamente. Essa integração
visa criar uma plataforma robusta, capaz de modelar de forma realista os comportamen-
tos e impactos do tráfego de FL em cenários complexos de comunicação, onde outros
tráfegos estão competindo por recursos, como pode ser o caso do tráfego multimídia.
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Foram utilizados dois conjuntos de dados FEMNIST [Cohen et al. 2017] e Shakespeare
[Shakespeare 2014]. Em resumo, este artigo apresenta as seguintes contribuições:

• Desenvolvimento de um simulador de acesso baseado traces e propomos uma
metodologia para a sua integração com emulador de aplicações de FL chamado
LEAF. Este simulador, modela, de forma geral, a camada de enlace, para analisar
o comportamento do acesso à rede quando submetida a tráfego FL, permitindo
avaliar o desempenho do modelo e a influência do acesso no treinamento.

• Análise do impacto do acesso à rede no treinamento de aplicações FL.
• Recomendações para a configuração dos parâmetros das aplicações FL em cená-

rios com recursos limitados, auxiliando os profissionais a equilibrar o desempenho
do modelo e a utilização dos recursos de rede.

O restante deste artigo está organizado da seguinte forma: a Seção 2 apresenta
os principais trabalhos relacionados a esta pesquisa. A Seção 3 introduz a metodologia
do trabalho, incluindo o modelo de sistema e os detalhes de nossa proposta. A Seção 4
aborda os parâmetros de simulação e a discussão dos resultados obtidos. Por fim, a Seção
5 apresenta as conclusões e direções para trabalhos futuros

2. Trabalhos Correlatos
O estado da rede representa um fator importante no tempo de convergência e precisão do
modelo FL. Estudos recentes analisam como as condições da rede afetam o desempenho
do modelo [Kairouz et al. 2021]. Ao mesmo tempo, a configuração das aplicações de FL
impacta a carga de trafego FL introduzida na rede. Assim, é necessário buscar um equilí-
brio entre as variáveis que modificam a carga da rede a fim de otimizar o desempenho do
modelo.

Em [Eriş et al. 2021] foi avaliado o impacto do trafego de fundo no desempenho
do modelo. Foi simulado tráfego de FL utilizando o protocolo UDP. O tráfego de fundo
foi simulado seguindo uma distribuição de Poisson, de forma a competir pela largura de
banda disponível. Os resultados da simulação mostraram que o tráfego de fundo aumenta
a perda de pacotes, a qual prejudica significativamente o desempenho do FL, especial-
mente em condições de congestionamento. Isso destaca o papel crítico das condições de
rede na convergência e na acurácia do modelo FL.

Em [Rodio et al. 2023] foram abordados os desafios do suporte do treinamento
federado em redes sem fio com perdas de pacotes. O trabalho propõe considerar perdas
heterogêneas de pacotes entre os clientes. Dando maior peso aos clientes que demora-
ram mais rodadas em enviar com sucesso os seus parâmetros ao servidor. Foi proposto
uma abordagem que mitiga os efeitos das perdas de pacotes sem aumentar o consumo de
recursos. O trabalho conclui que uma alta confiabilidade de transmissão não é um fator
necessário para o treinamento federado.

Em [Tedeschini et al. 2023] foi modelado o tráfego FL em redes sem fio com or-
questração assíncrona e clientes heterogêneos. O modelo proposto ressalta a necessidade
de adaptar os parâmetros da aplicação de FL para o ambiente no qual será colocada. O
artigo também apresenta um algoritmo para selecionar o número ideal épocas de treina-
mento local feitas por cada cliente antes de compartilhar os pesos com o servidor. Tal
abordagem, busca equilibrar a largura de banda com o tamanho da base de dados do cli-
ente e o seu poder de processamento.

Em [Paolini et al. 2024] é proposto a integração de Fountain Codes (FC) para mi-
tigar os efeitos da perda de pacotes nas atualizações dos modelos. FC é uma classe de
códigos de correção de erros usado principalmente em sistemas de comunicação e arma-
zenamento de dados. O uso de FC demonstraram melhorias significativas em condições
de alta perda de pacotes, típicas de redes sem fio instáveis. Ao empregar FC e cumulative
acknowledgment (ACK), o sistema pode recuperar dados perdidos e melhorar transmis-
são dos parâmetros do modelo. No entanto, as vantagens dos FC diminuem em ambientes
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de baixa perda de pacotes, onde a sobrecarga computacional dos FC torna-se não ne-
gligenciável. Isso ressalta a necessidade de abordagens adaptativas, como a seleção do
protocolo mais adequado com base nas condições da rede.

Alguns trabalhos propõem uma análise sobre as diferentes tecnologias de
rede; dadas suas peculiaridades, como latência e largura de banda [Li et al. 2020,
Ciceri et al. 2022]. Esses estudos propõem mecanismos de fatiamento de largura de banda
para redes Passive Optical Network (PONs), com foco na reserva de largura de banda e
multiplexação para atender às demandas de rede do FL. Essa abordagem destaca a impor-
tância de um provisionamento de Quality of Service (QoS) personalizado para melhorar a
comunicação nos sistemas FL. Esses artigos também identificam os desafios enfrentados
pelo FL devido à natureza compartilhada dos recursos de rede, como em PONs.

Ainda, dando suporte aos trabalhos anteriores no estudo do impacto das condi-
ções da rede no desempenho dos modelos federados, diversos simuladores têm sido uti-
lizados com essa finalidade. Uma discussão comparativa dos simuladores utilizados na
avaliação do desempenho da federação revela que, enquanto alguns simuladores, como o
FedSim [Varno 2022] e o FedML [He et al. 2020], focam especificamente nos algoritmos
de aprendizado federado, eles apresentam escassa habilidade para configurar a rede. Por
outro lado, simuladores específicos de rede, como o NS-3 [Riley and Henderson 2010],
OMNeT++ [Varga 2010] e Mininet [Kaur et al. 2014], oferecem uma maior flexibilidade
na modelagem das condições da rede, mas necessitam de implementações específicas para
o ambiente federado. Nesse sentido, nenhum dos simuladores oferece a possibilidade de
alterar os parâmetros da rede para uma mesma configuração da federação, sendo iden-
tificado um espaço para o desenvolvimento de um simulador baseado em traces. Dessa
forma, para um mesmo experimento de aprendizado federado será possível observar seu
comportamento em diferentes condições da rede.

Os artigos vistos nesta revisão detectam a importância do estudo da carga gerada
na rede pelos modelos FL. Porém, as abordagens propostas neles focam em tecnologias
e protocolos de comunicação específicos. Deixando de lado uma análise mais geral da
relação que existe entre os tempos de comunicação e computação dos modelos. Nesse
sentido, este estudo propõe uma metodologia para a avaliação de desempenho da rede
FL, considerando a relação entre o tempo de computação e o tempo de comunicação.
Para isso, foi criado um simulador que, usando filas de background e traces, permite uma
visão em alto nível do sistema, permitindo, assim, comparar como os modelos e seus
parâmetros impactam no desempenho da rede de comunicação e do modelo de FL.

3. Modelo do Sistema
Para garantir um processo independente do hardware disponível, propomos um pipeline
que integra a emulação do treinamento FL com um simulador de acesso à rede desenvol-
vido internamente, o qual permite avaliar o impacto da carga de trabalho do FL . O fluxo
do nosso pipeline é apresentado na Figura 2. No estágio 1, são escolhidas as aplicações
FL que serão emuladas, a arquitetura do modelo que será treinado e os hiper-parâmetros
do treinamento, como número de clientes, épocas e rodadas de treinamento. No estágio
2, a aplicação FL é emulada localmente usando o benchmark LEAF. Utilizamos o LEAF
porque ele gera a quantidade de Operações de Ponto Flutuante (FLOPs) a cada rodada de
treinamento por cliente. No entanto, essa implementação pode ser realizada com qualquer
framework que emule aplicações FL. No estágio 3, o número de FLOPs utilizados para
o treinamento dos modelos locais, é convertido no tempo de chegadas dos pacotes FL na
rede. Após isso, no estágio 4, estes tempos de chegada são utilizados como entrada para
o simulador de traces. O simulador realizará a simulação do fluxo de pacotes dos clientes
ao CS e adicionará um tráfego concorrente ao fluxo FL. Por fim, no estágio 5, as métricas
de modelo e da rede como precisão e atraso médio no envio dos modelos locais ao CS são
coletadas.

O benchmark LEAF é um emulador que permite avaliar o comportamento do trei-
namento de aplicações FL (i.e., Estágios 1 e 2). A ferramenta permite variar a configura-
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Figura 2. Pipeline para a Integração do Tráfego de Aplicações FL em um Simula-
dor de Acesso à Rede baseado em Eventos Discretos.

ção da aplicação de FL que será emulada, que inclui o dataset, a arquitetura do modelo,
o número de clientes, a taxa de aprendizado, o número de épocas e a fração dos dados
locais usados para o treinamento (minibatch). O emulador fornece cinco aplicações FL,
que abrangem tarefas de processamento de imagens (Federated EMNIST (FEMNIST),
Celeba) e processamento de texto (Shakespeare, Reddit e Twitter), além de possibilitar
a criação de aplicações personalizados. O dataset é particionado não Independente nem
Identicamente Distribuída (nIID) entre os clientes. Para a agregação dos modelos, a ferra-
menta utiliza o algoritmo Federated Average (FedAvg). O processo de emulação é reali-
zado localmente, portanto o treinamento dos modelos locais de cada cliente e a agregação
no CS são realizados na mesma máquina.

Após o fim do treinamento FL, o LEAF escreve todas as métricas coletadas du-
rante o treinamento em dois arquivos Valores Separados por Vírgula (CSV), um para as
métricas do modelo e outro para as métricas sistema. No arquivo de métricas do modelo
são armazenados os valores de acurácia, perda dos modelos, número de amostras para
treinamento e partição de avaliação (treinamento e teste). Essas métricas são coletadas a
cada número fixo de rodadas da treinamento. Adicionalmente, no arquivo de métricas do
sistema, são armazenados para cada cliente em cada rodada de treinamento os valores de
número de FLOPs, tamanho do modelo, quantidade de bytes enviados para o servidor e
número de amostras empregadas para treinamento local.

Para a criação do arquivo de trilhas, foi implementado um script que converte os
FLOPs em tempo de chegada de pacotes FL (i.e., Estágio 3). O script recebe como en-
trada o arquivo de métricas do sistema, a quantidade de FLOPs dos cliente e tem como
saída um arquivo de trilhas que contém o tempo de chegada e o tamanho de cada pacote
enviado pelos clientes FL ao CS em cada rodada de treinamento. Durante o processo de
conversão, foi considerado que a arquitetura dos modelos possui índices de paralelização
diferentes, o que significa que cada modelo terá um tempo de processamento diferente
para a mesma quantidade de processadores disponíveis. A eficiência da paralelização foi
modelada com base na Lei de Amdahl [Amdahl 1967] que relaciona a porcentagem da
tarefa que pode ser executada em paralelo com a quantidade de processadores disponí-
veis para execução, fornecendo o aumento de velocidade esperado com a paralelização
do processo. Esta lei é definida por S(N) = 1/(1−P + P

N
), onde S(N) é aumento de velo-

cidade esperado (speed-up), N é o número de processadores disponível para a realização
da tarefa e P é a porcentagem do código que pode ser processada em paralelo.

3.1. TraceFL-Net-Sim: um simulador de acesso à rede para aprendizado federado
baseado em Traces

Desenvolvemos um simulador de código aberto para avaliar o impacto do tráfego FL
e background na carga do acesso à rede, chamado de Trace-driven Federated-Learning
Network Simulator (TraceFL-Net-Sim) 1. Como pode ser visto na Figura 2, o simulador

1https://github.com/wocn-unicamp/TraceFL-Net-Sim

https://github.com/wocn-unicamp/TraceFL-Net-Sim
https://github.com/wocn-unicamp/TraceFL-Net-Sim
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Figura 3. Arquitetura do simulador de eventos discretos TraceFL-Net-Sim.

utiliza os resultados gerados pelo LEAF e processados pelo script como arquivo de regis-
tro de eventos para gerar o tráfego FL. O simulador gera um arquivo que contém métricas
de rede, tais como vazão média e atraso médio do tráfego FL. O TraceFL-Net-Sim uti-
liza uma simulação de eventos discretos para o fluxo de quadros Ethernet entre os nós da
rede. Os pacotes de FL são fragmentados em N quadros no início da simulação e o pacote
FL é reconstruído quando todos os N quadros alcançarem o CS. Ademais, a chegada dos
quadros de tráfego de background ao buffer dos nós segue uma distribuição de Poisson,
enquanto o tamanho de cada quadro segue uma distribuição uniforme, em consonância
com as convenções da Teoria das Filas que viabilizam a derivação de modelos analíticos
para o sistema.

TraceFL-Net-Sim utiliza quatro tipos de eventos para simular o fluxo de quadros
na rede, como representado na figura 3. (i) chegada de quadros nas filas dos clientes FL
e M/U/1 (ARRIVAL_Q); (ii) saída de quadros das filas dos clientes FL e M/U/1 (DEPAR-
TURE_Q); (iii) chegada de quadros na fila da rede de acesso (ARRIVAL_A); e (iv) saída
de quadros na fila da rede de acesso (DEPARTURE_A). Todos os quadros gerados pelo
arquivo de registro e os quadros gerados de tráfego de background, fluem das filas dos
respectivos nós (clientes FL e background) para a fila do switch na camada de enlace.
Finalmente, o Switch envia os quadros para alcançar o CS. Foi assumido que o atraso
entre o Switch e o CS é constante, para focar no impacto do tráfego FL na rede de acesso
compartilhada pelos clientes. Por fim, foi considerado que todas as filas na simulação
possuem buffer infinito, buscando facilitar a derivação de modelos analíticos e permitir
simulações mais robustas.

Por outro lado, o processo de fragmentação gera um alto consumo de memó-
ria para a máquina responsável por executar a simulação. Modelos ML possuem uma
alta variabilidade de tamanhos, saindo da ordem dos KBs até GBs, como no caso
do treinamento de modelos de linguagem como BERT [Devlin et al. 2018] e Llama
[Abhinav et al. 2024]. Ademais, este problema é agravado pela carga de trabalho im-
posta pelo tráfego de background. Por isso, o simulador foi implementado na linguagem
de programação Go, aproveitando seus recursos de gerenciamento de concorrência e me-
mória, já validados em aplicações como Docker [Docker 2025] e Ollama [Ollama 2025],
os quais exigem um maior controle do consumo de memória e processamento.

Por fim, a métrica de atraso médio para a chegada dos modelos é calculada ao
fim de cada rodada de treinamento. Para calcular o atraso do pacote FL é feita a diferença
entre a chegada do primeiro quadro no buffer do dispositivo de rede até o último quadro do
pacote FL que chega no CS. Ao fim da simulação, o TraceFL-Net-Sim gera dois arquivos
CSV, de forma análoga ao LEAF. Um arquivo contendo as métricas de atraso médio por
cliente durante as rodadas e um arquivo de métricas que armazena os valores da carga
de trabalho FL e background e os atrasos dos clientes em cada fila do sistema simulado.
O simulador foi validado com base na implementação do simulador de redes ópticas em
[Ciceri et al. 2022], com foco na validação das implementações de geração de tráfego,
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tanto de background como de aplicações FL.

4. Avaliação de Desempenho

Esta seção apresenta uma análise detalhada do desempenho de sistemas de FL sob di-
ferentes parâmetros. Para a simulação do acesso à rede e do tráfego de background,
utilizou-se o simulador de rede TraceFL-Net-Sim, desenvolvido internamente em Golang.
Além disso, o benchmark LEAF [Caldas et al. 2018] foi empregado para a geração do trá-
fego de FL. O TraceFL-Net-Sim implementa a politica First-Come-First-Served (FCFS)
para definir a ordem de enfileiramento dos quadros Ethernet na filas dos dispositivos de
rede. Nossa ferramenta para simular uma rede de acesso com tráfego FL e background
foi validada de forma extensiva.

4.1. Modelo de simulação e configuração

O cenário de simulação considera uma rede de acesso de banda larga, composta por um
único dispositivo de acesso (i.e., switch da camada de enlace) que atende um conjunto de
N nós de rede distribuídos com topologia em árvore, conforme apresentado na Figura 1.
Desses nós, um subgrupo NF suporta o tráfego FL, de aqui em diante nós FL, enquanto
outro subgrupo NB suporta tráfego de background, de aqui em diante nós convencionais,
tal que NF ⊂ N e NB ⊂ N , com NF ∪ NB = N e NF ∩ NB = ∅. No cenário de
simulação adotado, consideramos clientes homogêneos, nos quais cada cliente possui a
mesma capacidade computacional de FLOPs, definida como fi = 250× 106.

Foi utilizada uma largura de banda garantida de bi = 1.5 Gbps para cada um dos
nós de rede i ∈ N , totalizando uma capacidade total do canal de upstream de

∑
i∈N bi.

Além disso, o switch está conectado à internet por meio de um acesso de 2.25 Gbps.
A carga oferecida para os nós convencionais é 1.0 · bi enquanto a carga oferecida

agregada para os nós FL depende da configuração dos parâmetros da aplicação. Foram
variados tanto o número de clientes federados (|NF | = { 5, 10, 30, 50}) quanto o valor do
minibatch (0.1, 0.2, 0.5 e 0.8). Além disso, foi simulada uma única carga que representa
os nós convencionais (|NB| = 1). O tráfego dos nós convencionais foi modelado a partir
de uma distribuição de Poisson. Enquanto, o benchmark LEAF [Caldas et al. 2018], foi
utilizado para gerar o tráfego de FL.

No caso do tráfego de FL, foram avaliadas duas aplicações. Uma aplicação para
classificação de imagens e outra para previsão do próximo caracter, as quais utilizam
os conjuntos de dados FEMNIST e Shakespeare, respectivamente. A primeira aplicação
emprega uma Convolutional Neural Network (CNN) com duas camadas de convolução
5 × 5 para o treinamento do modelo, enquanto a segunda utiliza uma Long Short-Term
Memory (LSTM) de duas camadas de 256 unidades cada. Os clientes de FL geraram 26.4
MB e 32.72 MB de dados a cada rodada de treinamento, empregando a CNN e o LSTM,
respectivamente.

O algoritmo FedAvg foi empregado para agregar os parâmetros locais no servidor
para as dois aplicação. Outras configurações do processo de aprendizado, como taxa de
aprendizado e numero de épocas, seguiram as definições estabelecidas em [Li et al. 2021].
Para converter a quantidade de FLOPs em tempo de processamento, foi utilizada uma
porcentagem da tarefa paralelizável de 0.95 e núcleos com capacidade de processamento
de 0.25 GFLOPs/s.

Além disso, as nós de rede fragmentaram os modelos locais em quadros de acordo
com o protocolo Ethernet, que possui uma Unidade Máxima de Transmissão de 1500 By-
tes e um campo de cabeçalho para sinalização de 18 Bytes. Os comprimentos dos quadros
para o tráfego convencional são distribuídos uniformemente entre 64 e 1518 Bytes. Cada
cenário de simulação teve duração de 1000 rodadas de treinamento para o FEMNIST e
100 rodadas para o Shakespeare.
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(a) FEMNIST - Variando o número de clientes (b) FEMNIST - Variando o tamanho do batch

(c) Shakespeare - Variando o número de clientes (d) Shakespeare - Variando o tamanho do batch

Figura 4. Percentual de clientes envolvidos na agregação versus tempo, utili-
zando o conjunto de dados FEMNIST e Shakespeare.

Em resumo, foram simuladas duas aplicações com diferentes configurações de
parâmetros em uma rede de acesso, na qual os nós possuem uma largura de banda garan-
tida. O tráfego de background foi modelado com uma carga alta, enquanto o tráfego de
aprendizado federado foi ajustado conforme as configurações da aplicação. Dessa forma,
é possível avaliar o desempenho da rede sob diferentes condições de tráfego, analisando
o impacto das variáveis de configuração da aplicação no tempo de processamento e no
atraso do tráfego FL.

4.2. Resultados da simulação
As Figuras 4 apresentam a proporção de clientes envolvidos na agregação em função do
tempo para os datasets FEMNIST e Shakespeare, respectivamente. O tempo de computa-
ção representa o tempo mínimo de sincronização por rodada, desconsiderando qualquer
atraso de comunicação. Além disso, as imagens à esquerda mostram o impacto da varia-
ção do número de clientes, enquanto os gráficos à direita ilustram o impacto do tamanho
do batch na proporção de clientes envolvidos na agregação.

Observou-se que o tempo de computação permanece constante em relação ao nú-
mero de clientes (Figuras 4(a) e 4(c)), enquanto o tempo de computação aumenta à medida
que o tamanho do minibatch aumenta (Figuras 4(b) e 4(d)). Esse comportamento é con-
sequência de que o número de amostras com as quais cada cliente treina o modelo é o
mesmo, independentemente do número de clientes que participam do treinamento. Por
outro lado, o tamanho de minibatch maior resulta em mais mostras sendo processados em
cada cliente, exigindo mais tempo computacional para realizar o treinamento.

No caso do FEMNIST, um maior número de clientes leva ao congestionamento da
rede, aumentando a latência (Figura 4(a)), enquanto no Shakespeare esse efeito é mitigado
pela maior duração do treinamento (Figura 4(c)). Além disso, o tamanho do minibatch
impacta diretamente o tempo de computação, mas seu efeito sobre o atraso de comunica-
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Figura 5. Acurácia de Treino do FEMNIST variando o número de clientes.

ção depende das características do dataset. No FEMNIST, minibatches menores resultam
em maior atraso devido ao aumento na frequência de atualizações (Figura 4(c)), enquanto
no Shakespeare a comunicação não se torna um fator limitante. Esses achados destacam
a necessidade de um balanceamento cuidadoso entre a configuração das aplicações de
FL e a quantidade de recursos disponíveis, uma vez que há um trade-off entre a carga
computacional e a latência de comunicação gerada por essas configurações.

A Figura 5 mostra a acurácia do modelo federado durante as rodadas de treina-
mento no conjunto de dados FEMNIST, utilizando o algoritmo FedAvg. Ao variar o
número de clientes selecionados para participar da federação em diferentes experimen-
tos, observa-se uma tendência de melhora na acurácia do modelo à medida que o número
de clientes aumenta. Isso ocorre porque a maior quantidade de clientes contribui para
uma atualização mais diversificada dos gradientes, o que permite ao modelo generalizar
melhor sobre os dados distribuídos.

As Figuras 6(a) e 6(b) apresentam o tempo total de treinamento, respectivamente,
para os conjuntos de dados FEMNIST e Shakespeare. Para cada um dos modelos treina-
dos com esses conjuntos de dados, varia-se o número de clientes e o tamanho do mini-
batch. O tempo total de treinamento é calculado somando o tempo de todas as rodadas
de treinamento, distinguindo entre o tempo de computação e o tempo de comunicação do
último cliente de cada rodada.

Observa-se que um maior número de clientes tende a aumentar o atraso de comu-
nicação, ao mesmo tempo que se mantém o tempo de computação do modelo. Por outro
lado, o aumento do tamanho do minibatch leva a um aumento significativo no tempo de
computação, enquanto o tempo de comunicação diminui. Esta relação entre o tempo de
computação e o tempo de comunicação se dá pelo fato de que, diante de uma distribuição
mais esparsa dos tempos de computação, a carga sobre a rede na federação é reduzida,
permitindo que o envio do modelo seja mais rápido. Assim, no caso do conjunto de dados
Shakespeare, os últimos clientes a concluir a rodada encontram a rede ociosa, dispondo
de toda a largura de banda disponível para enviar o modelo de forma mais rápida.

5. Conclusão
O treinamento de modelos de FL demanda um alto consumo de recursos de rede devido
ao grande tamanho dos modelos e à alta frequência das atualizações, o que pode resul-
tar em congestionamento em ambientes com largura de banda limitada e capacidade de
processamento reduzida. A configuração dos parâmetros das aplicações, como hiperpa-
râmetros, tipo de rede neural e até mesmo a própria aplicação, impacta diretamente a
carga de tráfego gerada. Este artigo propôs uma metodologia para avaliar o impacto de
configurações de FL no acesso à uma rede de acesso de banda larga. Essa metodologia
integra o TraceFL-Net-Sim, um simulador de acesso à rede desenvolvido em Goland para
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(a) FEMNIST (b) Shakespeare

Figura 6. Tempo total de treinamento.

este estudo, e o benchmark LEAF, onde o treinamento dos modelos é realizado no LEAF.
Nos experimentos, observou-se um aumento no atraso de rede dos pacotes à medida que
o número de clientes e o tamanho dos batches de treinamento aumentam. Ademais, o in-
cremento dessas duas variáveis resulta em uma melhora na precisão do modelo treinado,
indicando um compromisso entre o desempenho do modelo e o tempo de treinamento.
Como trabalhos futuros, pode-se realizar uma avaliação do desempenho dos modelos em
um cenário de FL síncrono, considerando o impacto do tempo de sincronização na quan-
tidade de clientes envolvidos na agregação.
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