
Arquitetura de Escalonamento Ortogonal de Tempo-Real para
garantias de QoS em Servidores Web

Maycon L. M. Peixoto, Rogerio Tott, Michelle Nery, Francisco J. Monaco

1Instituto de Ciências Matemáticas e de Computação (ICMC)
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Abstract. Despite the significant body of results in Quality of Service (QoS) for
Web-Servers, many real-world problems are not easily supported. While the
current approaches limit to provide relative QoS through service differentiation,
this work presents and compares three models aiming at providing absolute QoS
to Web Server on a heterogeneous cluster by means of an Orthogonal Scheduling
Architecture. Performance evaluation of the Orthogonal Architecture demons-
trates that it performs well in providing absolute QoS in face of instantaneous
changes in the workloads. Results show that the combination of EBS (Exigency
Based Scheduling) as the queue discipline with the resource discipline proposed
in this work outperforms the other studied.

Resumo. Em relação aos significativos resultados em Qualidade de Serviço
(QoS) para servidores Web, existem ainda muitos problemas não resolvidos.
Enquanto as abordagens atuais se limitam a prover QoS relativa através
de diferenciação de serviço, este projeto apresenta e compara três modelos
que têm por objetivo prover QoS absoluta para um array de servidores Web
heterogêneos por meio de uma arquitetura de escalonamento ortogonal. A
avaliação de desempenho da arquitetura ortogonal demonstra que a mesma
obtém um bom desempenho na provisão de QoS absoluta com relação a
mudanças instantâneas das cargas de trabalho no ambiente Web. Os resultados
demonstram que a combinação da EBS na polı́tica de fila com a disciplina de
recurso proposta neste trabalho é superior às outras combinações examinadas.

1. Introdução
Ao longo dos últimos anos a Web tem agregado funcionalidades em atendimento às
necessidades de um crescente número de utilizações inovadoras e tornado-se uma das
mais populares e importantes aplicações da Internet. Por outro lado, tem sido submetida
a mudanças substanciais na infra-estrutura de comunicação e de negócios para atender a
todos esses requisitos de serviços. O incremento de pesquisas para prover qualidade de
serviço em aplicações destinadas a servidores Web se dá com maior rigor nas aplicações
que possuem uma relação temporal para atendimento de um serviço, por exemplo,
aplicações de e-commerce, e-banking, VoIP, tele medicina, TV digital, entre outras
aplicações de Internet. Nessas situações torna-se difı́cil para um servidor Web prover
um serviço em um tempo especı́fico dadas as condições de seu ambiente temporalmente
não-determinı́stico [Rashid et al. 2005] [Traldi et al. 2006] [Ye et al. 2005].
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Tipicamente um servidor Web recebe numerosos pedidos de serviços, não sendo
capaz de gerenciar todos ao mesmo tempo. Por isso, normalmente é usado um buffer ou
uma fila para armazenar os pedidos que chegam e ficam esperando por um serviço. Essas
requisições são mantidas exatamente na ordem em que chegam ao sistema. O servidor
Web recebe a primeira requisição da fila e a atende. Este é o modelo comumente utilizado,
denominado escalonamento FIFO (primeiro a chegar primeiro a ser servido) [Ye et al.
2005]. Com essa abordagem não é possı́vel atender a nenhuma restrição temporal para
os clientes. Por exemplo, a ocorrência de tráfego de rajada tende a causar atrasos em
aplicações sensı́veis ao tempo, além de oferecerem um pobre desempenho em situações
de sobrecarga. Por isso, a polı́tica FIFO não é especialmente adequada para aplicações
que requerem QoS 1 também em nı́vel de aplicação [Traldi et al. 2006].

No escopo das estratégias para prover QoS em servidores Web encontra-se a
predição estimada de demanda e correspondente alocação de recursos. Porém, além
de ser difı́cil prever com precisão a demanda, superestimar recursos para tratar curtos
perı́odos de sobrecarga pode ser economicamente ineficiente. Uma medida alternativa
para contornar esse problema é incluir mecanismos e algoritmos que gerenciam os
recursos do servidor para implementar prioridades no serviço prestado.

Para buscar confiabilidade nesse tipo de ambiente imprevisı́vel, diversos algorit-
mos de escalonamento adaptativos têm sido desenvolvidos nos últimos anos por [Vasiliou
and Lutfiyya 2000] [Zhang et al. 2002] [Abdelzaher et al. 2003] [Teixeira et al. 2005]
[Traldi et al. 2006] [Barbato et al. 2006]. O modelo de melhor esforço baseado em
diferenciação de serviço [Almeida et al. 1998] [Kang et al. 2003] [Lee et al. 2003]
[Stankovic et al. 1998] em servidores Web prioriza os clientes dependendo de sua classe
mas não provê qualquer garantia em relação ao tempo em que a requisição será atendida.

A QoS pode ser definida em termos relativos ou absolutos. Diferenciação de
serviço geralmente está relacionada à QoS relativa, e é a abordagem mais utilizadas em
servidores Web [Eggert and Heidemann 1999] [Franklin 1993] [Henriksson et al. 2004]
[Kang et al. 2003] [Lu et al. 2001], uma vez que garante apenas que a classe mais alta2

receberá um serviço melhor (ou no mı́nimo não pior) que qualquer classe mais baixa,
baseando-se em algum critério para distinção dos serviços oferecidos. Por outro lado, a
confiabilidade é tipicamente especificada em termos de valores absolutos, por exemplo:
na média o cliente será atendido em 10 ms ou nenhuma requisição do cliente atrasará
mais do que 15 ms [Vasiliou and Lutfiyya 2000].

QoS Absoluta acresce substancialmente o nı́vel de complexidade dos mecanismos
destinados a prover garantias temporais em ambientes não-determinı́sticos. Nesse modelo
uma classe não possui maior prioridade do que outra, mas, ambas devem cumprir o
contrato estipulado previamente. Implementar QoS absoluta dessa forma implica em
considerar o servidor Web um sistema de tempo-real. Para isso, existem diversos
algoritmos de escalonamento projetados para atender restrições temporais.

Dentre os algoritmos clássicos, têm-se o EDF (Earliest Deadline First) [Liu and
Layland 1973], que trata primeiro as requisições que estão mais próximas de perder
o seu prazo de conclusão, e possui bons resultados para determinados cenários em

1Quality of Service.
2Classe mais alta: de maior prioridade; classe mais baixa: de menor prioridade.
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ambientes uniprocesados. Entretanto, utilizado de maneira isolada em um ambiente
multiprocessado, degrada rapidamente o desempenho em condições de sobrecarga do
sistema [Stankovic et al. 1998]. Por isso, outros algoritmos de escalonamento têm sido
propostos [Bampis and Kononov 2001] [Ramamritham et al. 1990] para resolver esse
problema de escalonamento em ambiente multiprocessado, o qual é caracterizado como
NP-difı́cil [Stankovic et al. 1998] [Liebeherr et al. 1995] [Ramamritham et al. 1990]. Há
assim, um vasto campo de investigação sobre abordagens de escalonamento de tempo-real
para ambientes distribuı́dos, principalmente sobre conjunto de recursos heterogêneos.

1.1. Motivação e Objetivos

Fundada na crescente relevância dada à Web, no domı́nio dos sistemas de informação, a
motivação deste trabalho está concentrada na importância de aprimoramento de técnicas
de gerência e manipulação de recursos com o intuito de oferecer garantias de QoS e
atender as exigências de novas aplicações.

No contexto do predomı́nio de trabalhos que abordam a garantia de QoS para os
sistemas uniprocessados, o objetivo deste trabalho é desenvolver e avaliar uma abordagem
para oferecimento de suporte à QoS absoluta também para o modelo de sistemas
multiprocessados, contribuindo, assim, para o fornecimento de suporte de qualidade de
serviço em escala maior. Este trabalho propõe um modelo ortogonal que utiliza uma
disciplina de recursos original aliada à disciplina de fila EBS, onde o escalonador da fila
está na horizontal e o escalonador de recursos na vertical, atuando assim, nessa visão, de
forma ortogonal. Para avaliar as propriedades desse modelo foi simulado e comparado
com os algoritmos clássicos mais amplamentes empregados.

2. Arquitetura Ortogonal

Para avaliar o desempenho dos algoritmos desenvolvidos foi utilizado o modelo de rede de
filas do servidor Web distribuı́do, sistema de fila M/M/4, limitando-se às suas principais
caracterı́sticas. Para solucionar o problema envolvido utilizou-se a extensão funcional
SMPL escrita na linguagem de programação C. SMPL é uma extensão funcional baseada
em simulação orientada a eventos.

Assim, dois tipos de escalonamento são executados: escalonamento na fila (job),
e escalonamento de recursos (processador); constituindo este segundo problema, uma
contribuição deste trabalho em relação ao estudo desenvolvido por [Casagrande et al.
2007] e demais abordagens clássicas.

2.1. Modelo de Recursos

Neste trabalho considera-se um array de servidores modelado como um conjunto de
processadores paralelos ou nós, K = (K1, K2, ..., Kn), formado por uma arquitetura
heterogênea. Foi utilizado n igual a quatro.

O modelo considera que o tempo de escalonamento (tomada de decisão e
despacho) é nulo, por ser este insignificante comparado à ordem de grandeza dos outros
tempos que definem a dinâmica do processo, tais como de processamento das requisições
e tempo de espera em fila.
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2.2. Modelo de Tarefas

O modelo inicial de tarefas assume que todas as tarefas são independentes, a execução
ocorre sem restrição de precedência, sem preempção e sem recirculação. O modelo
adotado é caracterizado por tarefas aperiódicas com o deadline calculado dinamicamente,
ou seja, a cada ciclo de execução, os jobs são atualizados segundo os seus deadlines em
função de outros fatores relevantes, tais como a carga imposta a cada processador do
cluster. Para cada tarefa i, existe um nı́vel de QoS N correspondente, que é cumprido de
acordo com o contrato previamente estipulado.

Os atributos de cada tarefa que ocorrem no texto são descritos da seguinte forma:

• τ p
i é o tempo de término (estimado) do job i no nó p;

• Cp
i é o custo (carga de trabalho ou tempo de processamento) do job i no nó p;

• T p
r é o tempo restante necessário para que o nó p seja liberado;

• T p
i (f) é o tempo de processamento em relação aos atributos (Di, Fi) do job i no

nó p, onde, Di é o deadline e Fi é o fator de carga;
•
∑

Cp
n representa o custo total dos jobs que aguardam na estrutura da fila virtual;

• Cp
j (t) é o tempo restante de processamento do job j atualmente em execução no

nó p;

2.3. Controle de Admissão

Foi proposto um mecanismo de controle de admissão tal como em [Teixeira et al. 2005].
Esse mecanismo é sensı́vel a mudanças na carga de trabalho oferecida ao sistema, o qual
foi implementado em todas as polı́ticas elaboradas.

O mecanismo de controle de admissão tem como métrica de sobrecarga a
utilização média do cluster de servidores Web. O cálculo é realizado através de uma média
exponencialmente ponderada. O algoritmo funciona da seguinte forma: a utilização atual
do cluster é medida a cada nova requisição que chega ao servidor e este valor é combinado
com dados históricos a fim de obter a média exponencialmente ponderada, MEcor. Caso a
mesma esteja acima de um limiar pré-estabelecido (THRESHOLD) adotado nesse projeto
igual a 0, 77, então o controle irá recusar quaisquer novas requisições, independentemente
de sua classe, até que MEcor caia para nı́veis aceitáveis, isto é, abaixo do limiar
determinado. O cálculo da média exponencialmente ponderada é definido pela equação
(1).

MEcor = ((1− p) ·MEant) + (p ·MEatual) (1)

MEant é o valor anterior da média, é o histórico. Enquanto MEatual é o valor
atual observado para a utilização do cálculo. O peso p tem a função de um coeficiente de
sensibilidade das mudanças de carga de trabalho que chegam ao sistema, à medida que:

• p −→ 1: o mecanismo de controle torna-se bastante sensı́vel a mudanças na
utilização do sistema.

• p −→ 0: o mecanismo de controle reage mais lentamente a mudanças na utilização
do sistema. Nesse projeto, adotou-se essa configuração, sendo p igual a 0, 001.
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2.4. Satisfação do Cliente

Considera-se que um usuário estará satisfeito com o serviço a ele oferecido quando obtiver
uma alta porcentagem de requisições atendidas em média abaixo do limiar de qualidade
contratado. Logo, analiticamente, o escalonador pode tomar como ı́ndice de satisfação
do usuário a equação (2), em que são relacionadas a quantidade total de requisições
submetidas pelo i-ésimo usuário (Ri) e o número de vezes em que a média do tempo
de resposta de sistema dessas requisições ficou abaixo do limiar contratado (Ni).

Uma requisição é bem atendida quando seu tempo médio de resposta de sistema
observada (real) for menor ou igual ao tempo médio de resposta somado a um desvio
padrão aceitável contratados. Quanto mais próximo de Ri for o valor de Ni, maior será
a satisfação proporcionada ao usuário i. Esta é uma métrica suficiente para avaliar o
desempenho de um escalonador no cumprimento dos nı́veis de QoS por ele oferecidos.

Si =
Ni

Ri

(2)

Especificou-se melhorias na métrica de Satisfação do Cliente: pode ser conveni-
ente transformar a variável Si de hard para soft, ou seja, ao passo que uma requisição
não é atendida dentro do contrato estipulado ela é julgada segundo o critério de tempo
de extrapolamento (Texi), (Equação 3) faixa que varia de 0 a 1, que representa a
porcentagem do tempo ultrapassado com referência o contrato, isso torna eficiente o
emprego de polı́ticas com menores tempos médios de resposta, ainda que esses tempos
tenham sido ultrapassados.

Si =
Ni + (1− Texi)

Ri

(3)

Essa métrica também proporciona um sistema de promoção para as requisições
atendidas abaixo do contrato estipulado. (Tanti) representa a porcentagem do tempo
médio de resposta atendido abaixo da referência do limite contratado, dado pela
equação 4.

Si =
Ni + Tanti

Ri

(4)

O mecanismo de controle de admissão pode influenciar na satisfação de um dado
usuário. Se alguma requisição é descartada pelo algoritmo do controle de admissão é
criada uma penalização. A cada requisição descartada é decrementado o número de vezes
em que a média do tempo de resposta do sistema dessas requisições ficou abaixo do limiar
contratado (Ni).

Especificou-se a penalização pelo descarte do Controle de Admissão: tornar o
sistema de controle de admissão de Hard para Soft. Dado a satisfação do cliente na
equação 2, pode ser conveniente incluir uma taxa de descarte de requisições, equação 5.
Esta taxa (di) representa o peso que uma requisição descartada pelo controle de admissão
influencia o i-ésimo usuário, tendo seu valor variando entre 0 e 1. Isso significa que pode
ser instituı́do por meio de um contrato qual o peso que um usuário dá para uma requisição
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descartada, colaborando com o mecanismo de negociação. Enquanto fixar di = 0 significa
ausência desse tipo de controle, fixar di = 1 significa que nenhuma requisição do usuário
i pode ser descartada. Conforme a taxa de descarte aumenta, a satisfação do cliente
diminui, como é o esperado.

Si =
Ni · (1− di)

Ri

(5)

3. Fluxo da Arquitetura Ortogonal
No modelo de estudo, a fila de requisições é composta por jobs que contêm um par de
atributos (Di, Ci), representando o deadline e o fator de carga3 do job, respectivamente.

A abordagem proposta consiste em combinar ao escalonador de jobs um segundo
escalonador, de recursos. As duas polı́ticas de escalonamento, assim, atuam ortogonal-
mente (Figura 1), a primeira ordenando a fila de jobs e a segunda, atribuindo o job ao
recurso para atendimento.

Figura 1. Modelo Ortogonal

A arquitetura de escalonamento ortogonal é descrita por meio de um escalonador
que seleciona a ordem de execução de um job e um recurso, ou seja, para qual processador
será enviado para ser executado. Esse projeto compara um conjunto de combinações de
polı́ticas de fila (EDF e EBS) e polı́ticas de recursos MQ (Multiple Queue), SQ (Single
Queue) e DSQ (Dynamic Single Queue). É possı́vel assim, traçar algumas conclusões das
vantagens e limitações de cada abordagem.

3.1. Polı́tica de Fila

O escalonador de requisições possui a estratégia inicial de manipular os tempos de fila
das requisições de acordo com o parâmetro contratual de cada classe. As requisições que

3É uma propriedade inerente ao job associado ao seu custo computacional relativo. O custo (tempo de
processamento) do job no processador p é então dado por uma função Tp(Fi).

SBC 2008 23



estão mais próximas ou foram descumpridas receberão maior prioridade do escalonador,
ao contrário daquelas que toleram maiores tempos de fila.

Dentre os vários algoritmos clássicos, utilizou-se o FIFO que é um algoritmo
que possui larga utilização e overhead de escalonamento nulo, porém possuindo nesse
ambiente pobres resultados. Também foi utilizado o SJF (Shortest Job First) o qual realiza
a priorização dos jobs mais curtos. Utilizou-se também o EDF, o qual simplesmente lida
primeiro com as requisições que estão mais próximas de perder seus deadlines [Liu and
Layland 1973]. Apesar de possuir os melhores resultados dos algoritmos clássicos, o
algoritmo EDF, caso seja aplicado de forma isolada, irá exibir ainda um resultado pobre.

3.1.1. EBS - Exigency-Based Scheduling

A EBS [Casagrande et al. 2007], baseada em uma estratégia hı́brida que leva em conta o
custo de execução de uma requisição e o tempo de espera em fila, distingue-se por buscar
impor ao sistema a menor demanda de recursos possı́vel, garantindo um compromisso
entre desempenho e estabilidade no atendimento de contratos individuais. Em sistemas
interativos online, como servidores Web, a EBS proporciona resultados superiores às
polı́ticas convencionais.

A polı́tica atua com base na teoria de feedback scheduling, construindo a
atualização instantânea do deadline, ou seja, sempre que o servidor terminar de atender
uma dada requisição j do usuário u o valor de Ωu (Tempo Médio de Resposta) será
recalculado. Como mostra a equação 6, este cálculo é a média entre o antigo tempo
de resposta real de u (Ω′

u) e o tempo de residência da requisição j recém atendida. O
valor de time() representa o tempo atual, timeStampj o tempo de chegada da requisição
j e Ru o número de requisições anteriormente submetidas por u.

Ωu =
(Ω′

u ·Ru) + (time()− timeStampj)

Ru + 1
(6)

À medida que as requisições chegam ao sistema e não encontram servidor
disponı́vel são transferidas para uma fila única de espera. Ao término da execução de
uma requisição, o escalonador recalcula o tempo médio de resposta real daquele usuário,
e em seguida busca na fila a requisição mais urgente, ou seja, aquela que tolera o menor
tempo de espera dentre todas as existentes no sistema. Essa terá acesso ao servidor, e o
ciclo se repete.

O deadline representa o quanto uma requisição ainda pode esperar na fila antes de
começar a descumprir seu contrato. Para obtê-lo, isola-se na inequação 7 a variável Dj ,
que representa o deadline da requisição j. Como o interesse é obter o máximo tempo de
espera aceitável pelo usuário u antes que o valor do seu tempo médio de resposta real (Ωu)
ultrapasse o seu tempo médio de resposta contratado, igualam-se os termos. Os valores
Ru e Twj

expressam respectivamente o número de requisições feitas pelo usuário u e o
tempo de espera em fila da requisição j, até o momento.

(Ωu ·Ru) + Twj
+ Dj

Ru + 1
≤ Ωci

(7)
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O valor de Dj representa maior prioridade a requisição ao passo que se torna
menor, pois tem maior urgência. Basicamente este é o mesmo princı́pio utilizado pela
polı́tica de escalonamento EDF, porém tratada de forma mais flexı́vel, pois visa manter
valores médios de tempo de resposta de sistema, e não-preemptiva.

Em alguns casos podem existir algumas requisições urgentes com os mesmos
valores de deadline. Apesar de apresentar a mesma urgência, as requisições desse
conjunto podem impor pesos distintos ao sistema, uma vez que, além do parâmetro de
serviço (requisição operacional), o custo de processamento é outro fator de impacto sobre
a exigência imposta ao sistema. Minimizar esse impacto é importante, pois um sistema
sob menor carga terá melhores condições para lidar com os requisitos de serviço de suas
requisições.

Proporcionam-se tempos médios de espera menores do que aqueles obtidos com
a FIFO através do uso da polı́tica de escalonamento SJF. Nela as requisições em espera
por atendimento são organizadas em uma fila segundo o tempo de processamento (Tp).
Realocar as requisições mais curtas primeiras possibilitam uma diminuição na média de
tempo de resposta oferecida pelo sistema.

Na abordagem de escalonamento desenvolvida atribui-se prioridades baseado no
deadline e no valor esperado do tempo de processamento da requisição. Como ilustra a
equação (8), a prioridade de uma dada requisição j em fila, do usuário u, é dada por Pj .
Quanto menor for o valor de Pj maior será a prioridade de escalonamento da requisição
j, conseqüentemente as requisições que apresentarem maior urgência (menores valores
de Dj) e menor custo esperado de processamento (Tpj

) serão classificadas como mais
prioritárias.

Pj = Dj · Tpj
(8)

Pj =

((
Ωcu · (Ru + 1)

)
−
(
Ωu ·Ru

)
− Twj

)
· Tpj

Não ocorre com a EBS o problema de starvation que é apresentado pela polı́tica
SJF, pois utiliza o deadline como critério de priorização. Assim, mesmo requisições
mais longas não serão indefinidamente preteridas com a chegada de outras mais curtas,
pois quanto mais tempo elas ficarem no sistema, menor se tornarão seus deadlines, o
que permite serem eventualmente atendidas. Existe uma contribuição para o aumento da
priorização, que são o aumento do tempo em fila (Twj

) das requisições.

Em alguns casos podem existir valores negativos4 de deadline, como nos cenários
onde o sistema está saturado por requisições mais exigentes, o resultado do escalonamento
é completamente o oposto quando aplicado às requisições que estão em descumprimento
de contrato. Nesses casos é realizada uma correção da abordagem para a disciplina para
manter o objetivo proposto. A correção resulta na equação (9), para as requisições mais
urgentes que ainda não tiveram seus deadlines descumpridos, a prioridade é diretamente

4Um valor negativo de deadline significa que o contrato foi violado, i.e. o tempo que uma requisição
pode aguardar na fila é menor que zero.
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proporcional ao seu deadline e ao custo esperado de processamento. Para aquelas
com descumprimento de deadline a prioridade é inversamente proporcional a seu custo
esperado de processamento, já que quanto menor for esse custo menor será o valor de Pj

resultante, e assim maior será sua prioridade de escalonamento.

Pj =

{
Dj · Tpj

se Dj ≥ 0
Dj · 1

Tpj
se Dj < 0 (9)

Dessa forma garante-se que as requisições mais urgentes, independente de terem
descumprido ou não seus deadlines, e com menores custos esperados de processamento
sejam escalonadas primeiro.

3.2. Polı́tica de Recurso

A polı́tica EBS é capaz de atender a contratos de QoS absoluto baseado em limite
superior para média de tempo de resposta, o que configura um caso de tempo-real
estocástico. A partir dessa premissa foi investigado a aplicabilidade da EBS demonstrado
por [Casagrande et al. 2007] para o caso de um array de servidores. Foram aplicadas
também as estratégias FIFO, SJF e EDF os quais não são adequadas para sistemas
multiprocessados [Mok 1983] [Stankovic et al. 1995].

3.2.1. Modelo Multiple Queue

O primeiro modelo construı́do, o modelo Multiple Queue ou Web Switch, é formado
por um componente central da arquitetura que atua como um despachante, mapeando
o endereço virtual para um endereço de servidor real. As requisições são encaminhadas
para o módulo switch que, por sua vez, os envia para um servidor qualquer do array, de
acordo com algumas regras de escalonamento (por exemplo, polı́ticas que levam em conta
as caracterı́sticas de carga do servidor).

3.2.2. Modelo Single Queue

Um modo trivial de transpor o referido método para o caso multiprocessado consiste em
organizar a fila de requisições baseando-se nos resultados obtidos com sua heurı́stica e
enviar, então, o primeiro job da fila para ser executado no primeiro servidor livre do array
(Figura 2).

Nota-se, contudo, que este simples critério de enviar o job para o primeiro servidor
livre pode não ser a melhor solução, comparado ao caso em que aguardar por um
processador mais eficaz resulte em ganho sob uma perspectiva do sistema como um todo.

3.2.3. Modelo Dynamic Single Queue

Uma primeira tentativa de melhorar esse esquema utiliza o critério tempo de término
(τ ) em cada nó do cluster e seleciona o processador que possibilita a conclusão do
processamento do job primeiro (Figura 3).
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1. Aguarda-se até que um nó fique livre.
2. Organiza-se a fila segundo alguma polı́tica {FIFO, SJF, EDF ou EBS}.
3. Retira-se o primeiro job da fila e o envia para o primeiro nó livre do cluster.
4. Repete passo 1.

Figura 2. Modelo Single Queue.

Determina-se o tempo de término do job i no processador p, τ p
i , como a soma do

tempo de processamento do job i no processador p, Cp
i , adicionado ao tempo de espera

pela liberação do processador p, T p
r , mostrado a partir da equação 10:

τ p
i = Cp

i + T p
r (10)

Cp
i = T p

i (f) (11)

T p
r =

∑
Cp

n + Cp
j (t) (12)

A fila virtual é apenas uma representação abstrata que serve para prover controle
de gerenciamento da ordem dos jobs que já foram selecionados para execução, porém
aguardam a vez de processamento. Não existe na realidade transposição dos elementos
entre a fila principal e as fila virtuais. Acontece um gerenciamento implı́cito, que é
a atribuição de um contador para cada servidor (

∑
Cp

i ). Esse contador armazena a
carga imposta aquele servidor e a estrutura principal da fila armazena todos os ı́ndices
envolvidos.

4. Planejamento de Experimentos
Foram utilizadas cargas de trabalho sintéticas com a distribuição exponencial para
descrever tanto os intervalos de chegada quanto o tempo de serviço das requisições, a
fim de garantir a taxa de utilização do sistema. Essa é uma distribuição amplamente
utilizada para analisar sistemas de filas [MacDougall 1989]. Os comportamentos podem
ser também examinados mediante as estatı́sticas de utilização do sistema, e de satisfação
dos requisitos. Considerando que o ambiente de simulação foi configurado da seguinte
maneira:

• média de taxa de chegada λ = 2, 35.
• média de taxa de serviço µ = 4, 0.
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1. Aguarda-se até que um nó fique livre.
2. Organiza-se a fila segundo alguma polı́tica {FIFO, SJF, EDF ou EBS}.
3. Determina-se o τ em cada nó para o primeiro job da fila.
4. Retira-se o job para ser executado no nó do cluster onde τ seja o menor.
5. Se o estado do nó for ocupado: insere-se o job em uma lista virtual associada ao

nó e retorna-se
ao passo 3. Se ele esta livre o job é executado, as filas esvaziadas e
retorna-se ao passo 1.

Figura 3. Modelo Dynamic Single Queue.

• cluster 4 servidores heterogêneos com potências relativas P1 = 1, 00, P2 = 0, 50,
P3 = 0, 33 e P4 = 0, 25.

Obtém-se uma potência resultante do cluster de PR = 2, 08 e uma utilização
efetiva média, segundo a equação 13, em torno de 82%.

ρ =
µ

λ
· 100

PR

(13)

4.1. Caracterização do Ambiente
O ambiente de simulação foi configurado com três classes de usuários {A,B e C} com
diferentes variações contratuais. Os cenários utilizados neste projeto são os seguintes:

• Cenário 1: Proporção de requisições de 20%, 35% e 45% para as classes A, B e
C, nessa ordem.

• Cenário 2: Proporção de requisições são iguais para todas as classes.
• Cenário 3: Proporção de requisições de 10%, 80% e 10% para as classes A, B e

C, nessa ordem.
• Cenário 4: Proporção de requisições de 45%, 35% e 20% para as classes A, B e

C, nessa ordem.
• Cenário 5: Proporção de requisições de 45%, 10% e 45% para as classes A, B e

C, nessa ordem.

Os cenários foram assim construı́dos de forma a abranger a maior parte das
possı́veis configurações de utilizações dos usuários naquele ambiente. Uma vez definida
as proporções de requisições, o valor do contrato da classe A (CtA) e da classe C (CtC)
são fornecidos a partir do contrato da classe B (CtB), empiricamente medido com valor
de referência de 15 ut. Durante as simulações, atribuiu-se à P os seguintes valores para
as variações contratuais: 10%, 20%, 30%, 40% e 50%. Assim, segundo as equações 14
são definidos os contratos das classe A e C a serem cumpridos previamente.
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CtA = CtB − (CtB · P )

CtC = CtB + (CtB · P )
(14)

A classe a qual o usuário pertence é definida através do parâmetro de tempo
médio de resposta de sistema a ser garantido às requisições de um dado usuário, pois
nele está incluso o tempo de fila gerenciado pelo escalonador, o que permite controlar
a qualidade do atendimento. Este parâmetro, neste texto denominado tempo médio de
resposta contratada pela i-ésima classe (Ωci

), é especificado previamente por um acordo
entre o provedor de serviços e o cliente, e é utilizado pelo escalonador como base para
atribuição de prioridades. O valor que será comparado com Ωci

é o do tempo médio de
resposta real (Ωu), que é o tempo de resposta médio de sistema atualmente oferecido para
o usuário u.

4.2. Taxa de Utilização do Sistema

A Tabela 1 relaciona a utilização individual de cada servidor. Os valores são representa-
tivos de um único cenário, porém não se alteram apreciavelmente para outros cenários de
carga, resultando que podem ser considerados tı́picos para efeito de comparação.

Tabela 1. Taxa de Utilização dos Servidos do Sistema (%)

MQ SQ DSQ

Servidor utilização utilização utilização

0 93,52 77,50 96,51

1 77,35 78,24 82,16

2 56,72 76,38 51,67

3 38,57 74,64 23,67

Esses valores mostram que a polı́tica DSQ (em combinação com a disciplina de
fila EBS ) tende a uma maior utilização dos servidores mais rápidos, atribuindo-lhe, as
requisições mais impactantes (conforme o conceito de exigência anteriormente definido)
no sistema. Não obstante exibindo a mesma caracterı́stica, entretanto, o MQ perde por
ter visões parciais de trechos das filas de requisições pendentes, ao passo que a DSQ tem
condições de executar a tomada de decisão de escalonamento mediante uma visão global
de todos os jobs. O SQ, por outro lado, utiliza os servidores de forma igual, favorecendo
o sistema como um todo em questões de desempenho, porém não é orientada para o
cumprimento das garantias contratuais.

5. Comportamento do Escalonador

Para se ter uma ampla amostragem dos dados fixou-se como 100.000 o número de
requisições submetidas em cada cenário a ser simulado, e com o intuito de alcançar
confiabilidade estatı́stica realizou-se os experimentos 15 vezes, simulando todos os
cenários em cada uma das vezes. Cada simulação utilizou-se de uma semente diferente já
fornecida pelo simulador SMPL.
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Com referência a um valor médio de atendimento P de 15 unidades de tempo,
empiricamente medido para um sistema sem diferenciação de serviço, o contrato da classe
A é tal que as requisições a ela pertencentes devem ser atendidas em um tempo médio de
resposta que deve ser inferior em P% do valor de referência; ao passo que o limite de
tempo médio de resposta da classe C é P% superior ao valor de referência.

Nota-se, portanto, que este é um cenário de baixa exigência, em que a variação
contratual entre as classes é baixa e a classe mais exigente (A) tem poucos usuários. Com
tal carga leve, frente à potência computacional do conjunto de 4 servidores, excluindo-se
a abordagem MQ-FIFO, todas as polı́ticas de escalonamento restantes os quais foram
simuladas atenderam os contratos para todas as classes. O resultado interessante a
destacar nesse cenário é que é atendido o critério de confiabilidade (cumprimento do
contrato de QoS ).

Primeiramente, a abordagem DSQ foi comparada com as abordagens tradicionais,
comumente chamadas de clássicas, que é a abordagem MQ ou também conhecida como
Switch Web com um balanceador de carga. A Polı́tica de recurso MQ foi combinada às
politicas de fila FIFO e SJF, enquanto a DSQ foi combinada a EDF e EBS.

Nesse caso configura-se uma condição de exigência mais elevada para o Cenário
1. Em todos os gráficos da Figura 4, para as classes A, B e C, nota-se que as combinações
(FIFO e SJF) para a abordagem MQ não foram capazes de cumprir os contratos da classe
A. Entretanto, mantiveram as garantias nos cumprimentos dos contratos das classes B e
C.

(a) CONTRATO A (b) CONTRATO B (c) CONTRATO C

Figura 4. Comparativo do Cenário 1 (MQ-(FIFO,SJF) X DSQ-(EDF,EBS)) com
Variação Contratual de 50%

Fato igual acontece com a abordagem EDF-MQ e EBS-MQ. Os gráficos da
Figura 5 mostram que a abordagem MQ é limitada quando a taxa de variação contratual
torna-se alta, fazendo com que o cenário em questão apresente um caráter de maior
exigência para com as requisições da classe A.
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(a) CONTRATO A (b) CONTRATO B (c) CONTRATO C

Figura 5. Comparativo do Cenário 1 (MQ-(EDF,EBS) X DSQ-(EDF,EBS)) com
Variação Contratual de 50%

Apesar da abordagem SQ possuir tempos médios de resposta menores, segundo
os gráficos da Figura 6 não foi capaz de cumprir os contratos da classe A. Isso mostra que
apesar do desempenho empregado por essa abordagem ser eficiente, isso não é suficiente
para que todas as classes recebam um tratamento de forma diferenciada, criando assim a
diferenciação de serviço.

(a) CONTRATO A (b) CONTRATO B (c) CONTRATO C

Figura 6. Comparativo do Cenário 1 (SQ-(EDF,EBS) X DSQ-(EDF,EBS)) com
Variação Contratual de 50%

Contudo, é a polı́tica DSQ, principalmente a combinação EBS-DSQ, que apre-
senta o fenômeno singular (entre os casos estudados, Figuras 4, 5 e 6) de inverter-se
nessa relação de desempenho, passando a ser a que oferece menores tempos médios de
resposta para a classe A mais exigente, à custa de uma ligeira diminuição de desempenho
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para a classe B, embora ainda plenamente cumprindo o contrato daquela classe. Essa
propriedade de buscar a garantia de contratos diferenciadamente, balanceando a exigência
imposta ao escalonador no atendimento de cada classe, demonstra que a DSQ, dentre os
três algoritmos ensaiados, é a que opera de modo mais coerente com as caracterı́sticas da
polı́tica EBS, sendo a única que realiza o cumprimento dos contratos da classe A.

A validação estatı́stica confirma que os menores intervalos para o tempo médio
de resposta do Cenário 1 é realmente da abordagem EBS-DSQ, segundo uma estipulação
de variação contratual de 50%. A Tabela 2 mostra o intervalo de confiança dos dados
da classe A que foram traçados para as principais abordagens desenvolvidas em todos os
Cenários.

Tabela 2. Intervalo de Confiança de Ω
Classe A - Cenário 1 com 50%

FIFO-MQ SJF-MQ EDF-MQ EBS-MQ EDF-SQ EBS-SQ EDF-DSQ EBS-DSQ

Inferior 13,19 11,78 9,87 9,84 8,89 8,81 7,67 7,30
Superior 15,33 13,28 10,62 10,55 9,25 9,08 8,08 7,63

Classe A - Cenário 2 com 40%
FIFO-MQ SJF-MQ EDF-MQ EBS-MQ EDF-SQ EBS-SQ EDF-DSQ EBS-DSQ

Inferior 13,18 11,77 10,17 10,05 9,09 9,03 8,07 8,42
Superior 15,34 13,24 10,95 10,68 9,53 9,27 8,85 8,78

Classe A - Cenário 3 com 50%
FIFO-MQ SJF-MQ EDF-MQ EBS-MQ EDF-SQ EBS-SQ EDF-DSQ EBS-DSQ

Inferior 13,11 11,76 9,14 9,74 8,68 8,59 7,30 6,89
Superior 15,32 13,23 11,51 10,50 9,26 9,02 8,00 7,41

Classe A - Cenário 4 com 30%
FIFO-MQ SJF-MQ EDF-MQ EBS-MQ EDF-SQ EBS-SQ EDF-DSQ EBS-DSQ

Inferior 13,19 11,83 10,65 10,32 9,98 9,49 9,98 10,21
Superior 15,32 13,16 12,35 11,04 11,34 9,81 11,39 10,57

Classe A - Cenário 5 com 40%
FIFO-MQ SJF-MQ EDF-MQ EBS-MQ EDF-SQ EBS-SQ EDF-DSQ EBS-DSQ

Inferior 13,19 11,83 10,49 10,22 9,43 9,19 8,74 8,76
Superior 15,32 13,16 11,22 10,80 9,68 9,34 9,12 8,95

6. Avaliação da Satisfação do Cliente
A análise dos resultados por meio do tempo médio de resposta é importante pois fornece
detalhes do comportamento do escalonador. No entanto, uma visão mais abrangente,
com maior validade estatı́stica também se faz necessária. Por ela pode-se constatar se a
eficiência e desempenho vistos nos gráficos anteriores são ou não casos isolados.

A satisfação de um dado usuário mostra o percentual de vezes que a média real
oferecida ficou dentro da faixa de tolerância especificada por cada contrato de serviço.
O número dos tempos de respostas oferecidos abaixo da média contratada quantifica a
variação da qualidade de um dado atendimento, pois, em média, a satisfação pode se
manter alta, mas os valores individuais dos tempos de respostas oferecidos podem variar
muito. Esse percentual reflete a estabilidade da qualidade do escalonamento oferecido.
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Os gráficos da Figura 7 apresentam um comparativo estatı́stico da satisfação
contratual, obtidos através da média de todas as classes e pelas diferentes disciplinas
de escalonamento do cenário 1. A parte mais escura da barra dos gráficos representa o
intervalo de confiança da Satisfação dos Usuários no sistema.

(a) Variação Contratual 10% (b) Variação Contratual 30% (c) Variação Contratual 50%

Figura 7. Intervalo de Confiança para a Satisfação dos Usuários do Cenário 1

Pela Figura 7 pode-se verificar como varia a qualidade individual de atendimento
das requisições para o Cenário 1. No escalonamento EBS-DSQ, mesmo sob grandes
variações contratuais das exigências, a qualidade do escalonamento se mantém em nı́vel
bom para os três gráficos de variações contratuais. Para variações contratuais de até 50%
a qualidade individual dos tempos de resposta reais é melhor que a contratada em mais
de 90% dos casos, o que mostra que, mesmo sob graus mais altos de diferenciação, o
algoritmo EBS-DSQ consegue manter ótima qualidade de serviço, quando o sistema não
está saturado por requisições prioritárias. Comparadas às demais polı́ticas, a SJF-MQ
consegue oferecer pouca oscilação de qualidade para classes prioritárias, mas com pouca
diferenciação de serviço, apenas para contratos até 10% mais exigentes. A polı́tica
EDF-DSQ, para o Cenário 1 com alta variação contratual, apresentou qualidade de tempo
de resposta inferior à EBS-DSQ e alta oscilação no intervalo de confiança.

7. Polı́tica Adaptativa
É possı́vel utilizar as vantagens de cada abordagem em relação às caracterı́sticas corrente
do ambiente. A especificação da arquitetura adaptativa motiva o uso de todas as
abordagens em conjunto, realizando a troca entre elas no momento em que uma se mostra
superior. Essa troca é dada de acordo com as caracterı́sticas das variações contratuais
conhecidas a priori. O gráfico da Figura 8 representa os melhores estados de cada modelo
já apresentado para cada Cenário em um dado instante da variação contratual. Essa análise
é realizada exclusivamente através da métrica de tempo médio de resposta da Classe A,
que determina a maior exigência do sistema.

Observa-se que em Cenários que possuem baixa variação contratual a abordagem
EBS-SQ é indicada; quando a variação é intermediária o uso da abordagem EDF-DSQ
apresenta melhores resultados. Por outro lado, é melhor usar a abordagem EBS-DSQ
para variações contratuais altas. Por outro lado, quando a métrica envolvida é a Satisfação
do Cliente, determinada por meio da média das três classes, Figura 9, observa-se que a
métrica preponderante é a EBS-DSQ.

O custo envolvido entre as trocas das abordagens é baixo. Mudar EBS-SQ para
EDF-DSQ significa apenas ativar o cálculo do (τ) utilizando assim a fila virtual na
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Figura 8. Abordagem Adaptativa com Referência o Tempo Médio de Resposta

Figura 9. Abordagem Adaptativa com Referência a Satisfação do Cliente

polı́tica de recurso e desativar o uso da informação de carga de trabalho (Tpj
) no cálculo

das prioridades da polı́tica de fila. A mudança do modelo EDF-DSQ para EBS-DSQ é
feita por meio da inclusão da informação de carga das requisições na polı́tica de fila.

Essas trocas realizadas na polı́tica adaptativa podem ocorrer em alguns momentos
do ambiente, com o objetivo de melhorar os tempos médios de resposta e possivelmente
a Satisfação dos Clientes.

8. Conclusões Gerais

Nesse projeto foi introduzida uma nova técnica que utiliza uma arquitetura ortogonal para
dinamicamente escalonar requisições aos servidores compostos no array. A abordagem
proposta controla automaticamente o tempo de escalonamento para garantir que o serviço
seja entregue segundo o contrato estipulado da QoS. Os algoritmos e modelos foram
simulados considerando diferentes parâmetros e configurações do ambiente.

O objetivo deste projeto foi de investigar um modelo conjugado de escalonamento
— uma polı́tica de fila e uma polı́tica de recurso — adequada às caracterı́sticas dos
sistemas interativos on-line, com foco em uma solução otimizada para array de servidores
Web heterogêneos, proporcionando assim a gerência dos tempos de respostas contratados,
e ao mesmo tempo maximizando a utilização de recursos.
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O modelo clássico Web Switch, MQ, com balanceamento de carga foi utilizado
como referência: nessa arquitetura, as requisições são direcionadas para diferentes
processadores, cada qual com sua fila individual. Nestas, foi a disciplina de fila EBS
que obteve melhores resultados, já demonstrada superior às alternativas clássicas para o
caso de restrições de tempo-real estocásticas.

Um primeiro modelo alternativo baseado em uma fila única foi inicialmente
comparado com a Web Switch clássica. Nesse esquema, denominado SQ, os melhores
resultados para a disciplina da fila única é ordenada segundo o fator de exigência das
requisições presentes. A requisição mais à frente da lista (prioritária segundo o critério
EBS ) é atribuı́da ao mais rápido dos servidores livres a qualquer momento.

Em uma segunda alternativa, a polı́tica DSQ implementa um hı́brido entre o SQ
com fila única, e o Web Switch com balanceamento. Esta terceira modalidade possui
também a visão global da fila de requisições pendentes, mas em lugar de atribuir a
requisição mais prioritária ao primeiro servidor livre, a DSQ faz, segundo o mesmo
princı́pio da EBS, uma previsão do impacto causado ao sistema, buscando atribuir ao
processador livre um job prioritário (não necessariamente o primeiro), que tenha chance
de ser completado mais rapidamente naquele recurso.

Os resultados experimentais mostraram que as melhores combinações foram:
SQ-EBS, DSQ-EDF e DSQ-EBS. As avaliações de desempenho destes modelos de-
monstraram que eles provêem uma taxa de atendimento robusta e garantias de serviços
absolutos com relação às instantâneas mudanças nas cargas de trabalho da Web.

Apesar dos tempos médios de resposta serem significativamente maiores para a
abordagem MQ, é importante ressaltar que a MQ possui a vantagem da tolerância a faltas,
pois ela distribui a carga entre os servidores presentes no sistema não necessitando de
um centralizador para gerenciamento do sistema, como também o overhead nulo para
identificação de um servidor livre, o qual é necessário para as abordagens SQ e DSQ.

No momento em que o cenário corrente apresenta uma alta variação contratual, é
utilizado DSQ-EBS, devido a propriedade de balanceamento inerente ao escalonador. A
DSQ é o algoritmo que melhor adaptou-se às caracterı́sticas da polı́tica de fila EBS.

Finalmente, foi implementado um mecanismo de controle de admissão para todas
as abordagens, que emprega uma média exponencialmente ponderada da utilização do
array de servidores para orientar as decisões de descarte. Este mecanismo consegue
manter a carga de trabalho sempre abaixo do limiar especificado, evitando aceitar no
sistema requisições que não poderão ser atendidas. A variação do peso da média
ponderada permite, ainda, ajustar a sensibilidade do sistema a mudanças no perfil da
carga de trabalho.

Os experimentos realizados permitem concluir que a utilização de um Controle de
Admissão é fundamental para o fornecimento de serviços diferenciados na Web com uma
melhor qualidade para abordagem de sistemas de Tempo-real que lidam com o restrições
temporais, tornando-se a diferenciação de serviços ainda mais eficiente, possibilitando um
serviço com caracterı́stica estável e, principalmente, mais justa. Assim, evita-se penalizar
ou favorecer demasiadamente uma das classes de clientes.
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Devido ao muitos parâmetros que são envolvidos, e certamente não se abordaram
todos eles neste trabalho, mas tentou-se relacionar os mais importantes e que refletissem
alguma medida de desempenho, indicando o quão bom ou ruim seria o atendimento para
uma dada classe de serviço. Aliás, a grande quantidade de variáveis envolvidas quando
se trabalha especificamente com servidores Web é uma dificuldade que surgiu ao longo
do desenvolvimento deste estudo e que continua sendo muito explorada em trabalhos da
área de análise de desempenho em servidores Web ao longo dos anos.
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