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Abstract. The accurate estimating of the traffic matrices origin-destination 
from the traffic measured in links of an IP network is a complex problem for 
which has not been found suitable solution. This paper applies genetic 
algorithms (GA) to the problem of estimating and compares the results with 
those obtained by three other techniques already applied: Linear 
Programming, Bayesian Inference and approximation for Expectation 
Maximization (EM) algorithm. Besides the use of GA, another contribution of 
this work is an initialization algorithm of parameters that decreases the 
computational effort and aids the convergence for expected result. The 
experiments show a better performance of the genetic algorithm in terms of 
the estimated error. 

Resumo. A estimação precisa da matriz de tráfego origem-destino a partir do 
tráfego medido nos enlaces de uma rede IP é um problema complexo para o 
qual ainda não foi encontrada solução satisfatória. Este trabalho aplica 
algoritmos genéticos (AG) a este problema de estimação e compara os 
resultados com aqueles obtidos através de três outras técnicas aplicadas 
anteriormente: Programação Linear, Estimação Bayesiana e aproximação 
pelo algoritmo Esperança-Maximização (EM). Além da utilização de AG, uma 
outra contribuição deste trabalho é um algoritmo de inicialização de 
parâmetros que diminui o esforço computacional e auxilia a convergência 
para o resultado esperado. Os experimentos apontam para um melhor 
desempenho do algoritmo genético do ponto de vista do erro de estimação. 

1. Introdução 
Matrizes de Tráfego Origem-Destino (MT) refletem o volume de tráfego que flui entre 
todos os possíveis pares de nós de uma rede. Uma MT tem múltiplas utilizações na 
engenharia de tráfego e operação de redes, incluindo balanceamento de carga, 
configuração de protocolo de roteamento, dimensionamento, implementação de 
políticas de QoS, provisionamento e estratégias para superar falhas. A localização e o 
tamanho dos fluxos que compõem a MT são informações importantes para o 
planejamento do crescimento de uma rede e diagnósticos de problemas. [Medina et al 
2002] 
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Os métodos atuais de medição direta dos fluxos que compõem a matriz de 
tráfego são dispendiosos ou quase sempre inviáveis. Por outro lado, a partir da MIB 
(Management Information Base) do SNMP (Simple Network Management Protocol), as 
medições dos fluxos agregados dos enlaces ponto-a-ponto são facilmente obtidas. 
Assim, a abordagem comumente utilizada para obter a MT é estimá-la a partir das 
medições de tráfego nos enlaces. Entretanto este processo de estimação não é trivial. 

As dificuldades desta estimação surgem de várias origens. Primeiro, as redes em 
geral apresentam baixa conectividade de forma que o número de enlaces resulta ser 
menor que o número de fluxos origem-destino (OD). Isto dá origem a um problema 
inverso sub-determinado que permite infinitas soluções. Segundo, pode não ser fácil 
obter a matriz de roteamento correspondente aos fluxos medidos. 

Existem várias técnicas propostas para estimação de uma MT dentro do contexto 
da Internet, redes de transporte e redes de telecomunicações. Este trabalho foca o 
problema da estimação de tráfego em rede IP, baseada nos algoritmos genéticos (AG). 
Que seja do nosso conhecimento, algoritmo genético não foi aplicado anteriormente a 
este problema. No entanto, o AG aplicado ainda é incipiente, pois usa somente o 
operador de mutação, ou seja, é do tipo mais simples: subida de encosta (Hill 
Climbing). Uma classe de algoritmos de busca estocástica é, em geral, muito 
dependente de uma boa solução inicial. Outra contribuição original deste trabalho é um 
algoritmo de inicialização de parâmetros que se mostrou eficiente na redução do tempo 
computacional e do erro médio de estimação.  

As técnicas utilizadas anteriormente para estimação da MT são de duas classes: 
baseadas em programação linear e baseadas em métodos estatísticos. 

Dentre essas classes, o trabalho de Medina et al (2002) faz um estudo 
comparativo entre a abordagem baseada em Programação Linear (PL) [Goldscmidt 
2000], Técnicas de Inferência Bayesianas [Tebaldi e West 1998] e Maximização de 
Expectativa [Cao et al 2000], onde são propostos, também novos direcionamentos 
baseado em seus resultados. Tebaldi e West (1998) desenvolvem um framework teórico 
de variantes do problema de fluxo origem-destino e utiliza modelos Bayesianos para 
análise de tráfego de rede em problemas de inferência [Vardi 1996] sobre tráfego 
direcionado entre pares de origens e destinos em redes. Podemos ver ainda que em 
[Zhang et al 2003(a)] é utilizado teoria da informação como abordagem para esse 
problema. Soule et al (2004) adotam um estimador da variância das matrizes de tráfego. 
Em [Soule et al 2005] é feita uma avaliação do equilíbrio entre a adoção de medições, o 
uso de inferência e modelagem para a estimação de matrizes de tráfego. Teixeira et al 
(2005) avaliam o efeito de mudanças no roteamento na variação das matrizes de tráfego. 

O resultado obtido nesse trabalho foi melhor do que os métodos estatísticos que 
requerem um grande poder de processamento de informações e também melhor do que 
a Programação Linear descrita em [Goldscmidt 2000]. Silva et al (2007) propõem um 
novo conjunto de restrições para o uso em programação linear que limita o conjunto de 
soluções viáveis para estimar medidas de tráfego entre pares de nós, proporcionando 
melhores resultados que os de [Medina et al 2002]. 

Para a validação deste trabalho foi utilizada a topologia de rede apresentada por 
Tebaldi e West (1998) e Medina et al (2002) e também os dados reais de tráfego da rede 
GÉANT [Uhlig et al 2006]. 
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Este trabalho está organizado como a seguir. A seção 2 traz uma revisão dos 
métodos de estimação de MT relevantes ao estudo. A metodologia do trabalho e a 
descrição das topologias de redes usadas estão presentes na seção 3. A seção 4 descreve 
os resultados obtidos a partir do estudo e as seções 5 e 6 apresentam respectivamente as 
conclusões e agradecimentos e por fim a bibliografia. 

2. Revisão dos Métodos 

2.1. Estimação de Matrizes de Tráfego 
O tráfego observado em um enlace da rede é formado pela superposição de fluxos OD, 
onde cada um desses fluxos consiste de todo o tráfego que entra em um ponto de 
ingresso comum e sai em outro ponto da rede. Seja c o número de pares OD de uma 
rede formada por n  nós. Então )1( −×= nnc . Conceitualmente, os fluxos de tráfego 
podem ser representados em uma matriz X, onde a quantidade de dados transmitida do 
nó i  para o nó j  é denotada pelo elemento ijx . Entretanto, é mais conveniente utilizar 
uma representação de vetor para representar os fluxos, onde os pares OD ficam 
ordenados na forma jx , cj ...1= . Seja ),...,,( 21 ryyyY =  o vetor das medidas do tráfego 
nos enlaces, onde ly  é a medida do tráfego no enlace l , e r  representa o número de 
enlaces da rede. O relacionamento entre os enlaces e os fluxos OD pode ser evidenciado 
através de uma matriz de roteamento A do tipo }1,0{ , onde as linhas representam os 
enlaces da rede e as colunas representam os pares OD. A matriz A tem tamanho r  
(enlaces) por c  (fluxos), onde 1=ijA se o fluxo j  passa pelo enlace i  e toma o valor 
zero caso contrário. 

A relação entre o vetor de pares ordenados X e o vetor de tráfego de enlaces Y é 
dada por: 
 AXY =  (1) 

A matriz de roteamento pode ser obtida através de pesos de enlaces utilizando os 
algoritmos OSPF (Open Shortest Path First) ou IS-IS (Intermediate System) e 
calculando o caminho mais curto entre todos os pares OD. Os dados dos enlaces estão 
disponíveis através do SNMP. Assim, o problema principal consiste em estimar X, ou 
seja, encontrar um conjunto de fluxos OD que poderá reproduzir Y o mais próximo 
possível do real. Este problema, representado pela equação (1), é indeterminado, pois 
em praticamente todas as redes o número de pares OD é muito maior que o número de 
enlaces na rede, cr << . Isto significa que há um número infinito de soluções possíveis 
para o vetor X. 

2.2. Modelo de Programação Linear (PL) 
O problema de estimação do vetor X (fluxos OD) está fortemente ligado aos 
relacionamentos lineares descritos pelo sistema da equação (1); Este problema pode ser 
facilmente formulado como um modelo de Programação Linear. Sabendo que o tráfego 
em cada enlace iy  é formado pela soma dos fluxos OD que utilizam esse enlace, uma 
função objetivo para este problema de otimização da estimação do vetor X é dada por: 

 ,max
1
∑
=

c

j
jj xw  (2)  
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onde jw  é um peso para um par OD j.  

Além da função objetivo, o modelo básico de PL referenciado na literatura para 
este problema é composto por três conjuntos de restrições: 

• restrições de enlace; 
• restrições de conservação de fluxo; e 
• restrições de positividade. 

As restrições de enlace estabelecem que a soma dos fluxos OD que passam pelo 
enlace iy  não pode ser maior que o valor do tráfego medido nesse enlace. Estas 
restrições são dadas por:  

 ∑
=

≤
c

j
ljij yxA

1
  rl ,...,1=  (3)  

As restrições de conservação do fluxo [Goldscmidt 2000] estabelecem que o 
tráfego total obtido na saída de um nó é igual à quantidade de tráfego que chega mais a 
quantidade de tráfego gerada por esse nó, menos a quantidade de tráfego que permanece 
no nó. Estas restrições são dadas por: 

∑∑∑∑ −=− odse xxyy                                           (4) 

onde ey  representa a quantidade de tráfego de entrada de cada enlace, sy  a quantidade 
de tráfego de saída de cada enlace, dx representa a quantidade de tráfego destinado ao 
nó e ox  a quantidade de tráfego originada no nó. 

As restrições de positividade são dadas por ,0≥jx  para todo j , significando 
que nenhum fluxo pode ser negativo. 

2.3. Abordagem Bayesiana 
A abordagem Bayesiana para a estimação do vetor X, proposta por [Tebaldi e West 
1998], calcula a distribuição de probabilidade condicional, )|( YXp , de todos os fluxos 
OD (representados pelo vetor X) dado o vetor de enlaces Y. Para alcançar esse objetivo é 
necessário ter a distribuição a priori de X, X)(p . Tebaldi e West (1998) assumem que 

)( jXp  segue uma distribuição de Poisson com média jλ , isto é, jX  ~ Poisson ( jλ ). 
Seja },...,{ 1 cλλ=Λ o vetor que representa as taxas médias das distribuições dos 
elementos do vetor X. Como Λ  é desconhecido e precisa ser estimado, torna-se 
necessário então definir uma distribuição para Λ . Isto nos conduz a um modelo de 
distribuição conjunta dado por ).,( ΛXP  A idéia é então observar os valores dos enlaces 
e verificar se eles condicionam o valor de X para obter uma distribuição condicional 
conjunta dada por ).|,( YXP Λ  

A obtenção de distribuições a posteriori, como )|,( YXP Λ , é 
computacionalmente muito difícil. A abordagem adotada por [Tebaldi e West 1998] 
para facilitar esse cálculo é aplicar métodos de simulação iterativa como Cadeia de 
Markov Monte Carlo (MCMC). A simulação da distribuição significa obter um grande 
número de amostras para representar um histograma completo da distribuição desejada. 
O objetivo final dessa simulação é calcular ).|( YXP  
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O mecanismo de simulação iterativo mencionado relaciona a distribuição de 
probabilidade de X dado Y que se quer obter com a distribuição conjunta que envolve 
tanto X eΛ  pela seguinte equação:  

∑
Λ

Λ= Y),|P(XY)|(Xp                                             (5) 

Assim, o problema consiste em calcular as probabilidades a posterior de 
),|( YXP Λ  e ),|( YXp Λ . O procedimento de simulação começa com uma matriz 0X  

que pode ter valores quaisquer e as iterações seguintes são executadas da seguinte 
forma:  

 

Algoritmo Bayesiano 
 

1. Inicializar 0Λ  
2. Calcular 0X  a partir de 0Λ  
3. Obter valores de iΛ  a partir de ),|( YXP iΛ  
4. Usando este iΛ , obter valores para o vetor 1+iX  a partir de ),|( YXp iΛ  
5. Repetir os passos 3 e 4 até uma solução viável ser encontrada.  

2.4. Abordagem Esperança-Maximização (EM) 
Nesta abordagem os pares OD são modelados de acordo com uma distribuição 
Gaussiana, X ~ Normal ),λ( Σ , onde os jX  são modelados como variáveis aleatórias 
normais independentes. Em função disso e considerando a relação da equação (1), a 
suposição Gaussiana sobre X implica que Y também segue uma distribuição Gaussiana, 
Y ~ Normal(AΛ, A∑A '), onde },...,{ 1 cλλ=Λ  é o vetor das taxas média dos pares OD e 
a matriz de covariância é dada por φ=Σ  diag ( b

c
b
1 λ,...,λ ).  

A relação entre a média e a variância da Gaussiana pode sob certas condições ser 
assumida por b

jλφ=Σ j ,onde φ  precisa ser estimado juntamente com os jλ ’s.  

Seja kyy ,...,1  um conjunto de k  medições SNMP consecutivas dos enlaces. Este 
método assume que essas medições correspondem a variáveis aleatórias independentes e 
identicamente distribuídas [Cao et al 2000]. Seja ),( φθ Λ=  a equação que representa o 
conjunto de parâmetros que se quer estimar. A estimativa de máxima verossimilhança é 
calculada para encontrar o valor máximo da seguinte função: 

 ( ) ( )∑
=

− Λ−′Σ′Λ−−′Σ−=
K

k
kkk AyAAAyAAKyyl

1

1
1 )(

2
1||log

2
),...,|(θ                (6) 

O algoritmo EM é usado para calcular uma estimativa para θ , chamada de 
).ˆ,ˆ(ˆ φθ Λ=  Cao et al (2000) sugerem os seguintes passos: 

 

Algoritmo EM 
 

1. Inicializar θ  
2. Cada par OD, índice j, é estimado no tempo t por ],ˆ|[ ,, YXEX tjtj θ=  
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3. Estimar um novo θ  a partir de X. 

2.5. Algoritmos Genéticos (AG) 
Os algoritmos genéticos (AG) são uma família de modelos computacionais inspirados 
na evolução, que incorporam uma solução potencial para um problema específico numa 
estrutura semelhante a de um cromossomo (cadeia de bits que representa uma solução 
possível para o problema). Os algoritmos AG aplicam operadores de seleção e "cross-
over" a essas estruturas de forma a preservar informações críticas relativas à solução do 
problema [Whitley 1993]. Normalmente, os AG são vistos como otimizadores de 
funções, embora os AG sejam amplamente aplicados para resolver problemas nos mais 
diversos campos. De um modo geral, os algoritmos genéticos tentam imitar o princípio 
de Darwin da seleção natural: um indivíduo adaptado de uma população tende a 
reproduzir e transmitir seus genes para a próxima geração, tornando as gerações 
seguintes cada vez melhores. Está provado na literatura que os AG são uma ferramenta 
eficiente e flexível que pode encontrar a solução ótima ou sub-ótima para problemas 
lineares ou não-lineares, através da exploração simultânea de várias regiões do espaço. 
Esta exploração das áreas promissoras é feita exponencialmente através de operadores 
de seleção, mutação e cruzamento. Diferentemente de outras técnicas de otimização, 
algoritmos genéticos não exigem condições favoráveis das funções de otimização para 
que possam ser aplicados [Michalewicz 1996]. 

Goldberg (1989), um dos precursores dos algoritmos genéticos, descreveu-os 
como sendo uma pesquisa baseada no mecanismo de seleção e genética natural 
objetivando a otimização. Os Algoritmos genéticos superam os outros métodos 
tradicionais de otimização encontrados na literatura por terem as seguintes vantagens: 

a) Trabalham com a codificação dos parâmetros e não com os dados reais; 

b) Fazem busca numa população e não num único ponto; 

c) Usam a informação de aptidão e não outro conhecimento auxiliar; e 

d) Usam regra de transição probabilística e não determinística. 

Lutton e Martinez (1994) caracterizaram os algoritmos genéticos como uma 
técnica estocástica, relativamente lenta, mas de grande eficiência no processo de busca 
em espaço dimensional elevado. 

Whitley (1993) relata que a execução de um algoritmo genético começa com 
uma população aleatória de cromossomos. Essas estruturas são, então, avaliadas e 
associadas a uma probabilidade de reprodução de tal forma que as maiores 
probabilidades são associadas aos cromossomos que representam uma melhor solução 
para o problema de otimização. A aptidão da solução é tipicamente definida com 
relação à população atual. 

A função objetivo de um problema de otimização é construída a partir dos 
parâmetros envolvidos no problema. Ela fornece uma medida da proximidade da 
solução em relação a um conjunto de parâmetros. Estes podem ser incompatíveis, ou 
seja, se um aumenta o outro diminui. O objetivo é encontrar o ponto de otimalidade. A 
função objetivo permite o cálculo da aptidão bruta de cada indivíduo, que fornecerá o 
valor a ser usado para o cálculo de sua probabilidade de ser selecionado para 
reprodução. 
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Em [Mitchell 1996], outros conceitos podem ser encontrados sobre os AG: o 
gene é a representação de cada parâmetro de acordo com o alfabeto utilizado (binário, 
inteiro ou real). O cromossomo codificado é chamado de fenótipo. A população 
constitui-se do conjunto de pontos (indivíduos) no Espaço de Busca. Quando existe uma 
iteração completa do AG que gera uma nova população, temo uma geração. Aptidão 
bruta é a saída gerada pela função objetivo para um indivíduo da população. Já a aptidão 
normalizada é a aptidão bruta normalizada, entrada para o algoritmo de seleção. A 
aptidão máxima será o melhor indivíduo da população corrente e a aptidão média é o 
meio termo da população corrente. 

Deve ser observado que cada cromossomo, chamado de indivíduo no AG, 
corresponde a um ponto no espaço de soluções do problema de otimização. O processo 
de solução adotado nos algoritmos genéticos consiste em gerar, através de regras 
específicas, um grande número de indivíduos, população, de forma a promover uma 
varredura tão extensa quanto necessária do espaço de soluções. 

3. Cenário e Metodologia 
Este trabalho foi desenvolvido com base em dois estudos de casos. O primeiro estudo de 
caso consiste de um cenário proposto por Tebaldi e West (1998) de uma rede com 4 
(quatro) nós. O segundo caso consiste de um cenário real da rede GÉANT [Uhlig et al 
2006] com 23 nós. 

Em ambos os casos foram realizadas 30 rodadas (simulações). No primeiro caso 
as simulações diferem uma das outras pela quantidade de enlaces utilizados, 
permanecendo constante o número de nós. No segundo caso, os dados usados nas 
simulações são diferentes, ou seja, cada simulação usava medições obtidas em 
momentos diferentes. A implementação computacional do algoritmo genético foi 
modelada e testada no Matlab [Matlab 1991].  

A inicialização das variáveis ocultas, neste caso o vetor X, e dos parâmetros do 
modelo com valores razoáveis auxilia o algoritmo na convergência para um resultado 
esperado [Russel e Norvig 2003]. Nessa linha de raciocínio, o modelo (algoritmo) 
implementa um método de inicialização baseado nos enlaces e nos fluxos OD que se 
utilizam desses enlaces. O passo principal do procedimento de estimação é calcular 
todos os parâmetros das distribuições que regem os dados envolvidos na equação (1) 
para as componentes da matriz de tráfego [Medina et al. 2002]. Neste trabalho, o 
algoritmo analisa cada coluna da matriz de roteamento (matriz A) à procura dos 
elementos com valores iguais a 1. A cada valor 1 encontrado na coluna da matriz A, o 
algoritmo percorre as linhas à procura de incidência de {1s}, o que indica se um 
determinado fluxo usa o enlace indicado. Portanto, este método consiste na soma dos 
valores dos enlaces utilizados por um determinado fluxo dividido pela quantidade de 
fluxos que passam nesses enlaces. 

Uma vez que os parâmetros iniciais são obtidos, o próximo passo é, a partir do Λ 
inicial (vetor que representa as proporções entre o enlace e todos os seus fluxos 
passantes), fazer perturbações (mutação) de modo a inferir novos valores de X, 
seguindo uma distribuição de Poisson. Em cada iteração, é avaliada a resultante da 
matriz X em função do vetor de tráfego de enlaces Y, buscando sempre a melhor 
estimação entre todas. Com isso, através dessas avaliações sucessivas dos resultados a 
estimação pode ou não ser incorporada ao novo conjunto de estimação.  
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3.1. Estudo de Caso 1 – Topologia com quatro nós 
A primeira rede considerada está baseada em [Medina et al 2002] conforme a Figura 
1(a). Essa rede é constituída por 4 nós e 7 enlaces. Considera-se inicialmente esse 
cenário simples pela vantagem de enumerar todos os pares de nós e facilitar a 
explicação do comportamento do método. Os valores nas conexões dos nós representam 
as quantidades de tráfego nos enlaces. Cada conexão representa a conectividade entre os 
pares adjacentes aos PoP (pontos de presença) e cada nó está representando um PoP. 
Será estimado a quantidade de tráfego em cada fluxo OD, dada a quantidade de tráfego 
total coletado na entrada e saída de cada nó, respectivamente, oriunda e direcionada 
para os nós. Os resultados obtidos a partir da estimação proposta são comparados com 
os valores reais de fluxos OD para cada par, mostrados na Figura 1(b). 

 

 

 

 

 

 

 

 

 
Figura 1: (a) Topologia de quatro nós; (b) Valores reais do tráfego para cada 
par de fluxo OD 

A equação AXY =  compõe, para o caso em estudo, o sistema linear a seguir: 

 

 

 

 

 

 

3.2. Estudo de Caso 2 – Rede GÉANT 

A topologia da rede para esse estudo de caso, mostrada na Figura 2(a) está baseada na 
rede GÉANT [Uhlig et al 2006], uma rede de comunicação de dados multi-gigabit pan-
Européia usada para investigação e usos educacionais conectando universidades e 
instituições de pesquisa. Desenvolver matriz de tráfego exige dados reais para validar os 
modelos propostos. A rede possui um PoP em cada país europeu. Todos os roteadores 
são roteadores de borda. É constituída de 23 roteadores interconectados usando 74 
enlaces. As rotas intradomínio são obtidas do BGP (Border Gateway Protocol) e a 
quantidade de tráfego entre fluxos é coletada usando o Netflow. Assim como no estudo 
de caso 1, os valores nas conexões dos nós representam as quantidades de tráfego nos 

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
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XAB 318 
XAC 289 
XAD 312 
XBA 294 
XBC 292 
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XCB 289 
XCD 394 
XDA 283 
XDB 277 
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(a) (b) 
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enlaces. Cada nó na topologia representa um PoP da GÉANT e cada conexão representa 
a conectividade entre os pares adjacentes a esses PoP. Utiliza-se o mesmo procedimento 
de estimação do caso anterior para o segundo cenário. Essa topologia tenta expressar a 
consistência da convergência uma vez que trata de dados reais. Os resultados obtidos a 
partir da estimação proposta são comparados com os valores reais da rede. Valores reais 
de fluxos OD para cada par são mostrados na Figura 2(b). 

 

 

 

 

 

 

 

 

 

 

 
Figura 2: (a)Topologia usada GÉANT; (b) Exemplo de valores reais do tráfego 
para cada par de fluxo OD 

Essa topologia apresenta pares de nós com enlaces próprios, com ligação direta 
entre os nós, e pares sem uma ligação direta, ou seja, o tráfego precisa ser roteado 
através de nós intermediários. Exemplo do primeiro caso é o par (1,3). Existe caminho 
de ‘1’ para ‘3’ passando por ‘7’ e ‘21’. Contudo, como há um link direto entre ‘1’ e ‘3’, 
a rota via ‘7’ e ‘21’ não é utilizada devido o caminho (1,3) ser mais curto. O segundo 
caso pode ser visto com o tráfego que sai do nó ‘1’ para o nó ‘2’. Parte do fluxo com 
2.276.165 unidades que sai de ‘1’ é destinado ao nó ‘7’ e outra parte ao ‘2’. 

A equação AXY =  está representada a seguir: 
 

 

 

 

 

 

 
 

Há um número infinito de soluções para o vetor X, pois existem mais incógnitas 
do que equações. O sistema linear gerado pelo problema foi resolvido neste trabalho 
através de algoritmo genético. Correspondem a 506 fluxos OD estimados. 
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X(1,3) 

X(1,4) 

X(1,5) 

X(1,6) 

X(1,7) 
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. 
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X(23,17) 

X(23,18) 

X(23,19) 

X(23,20) 

X(23,21) 

X(23,22) 

x

16377409 
26983248 

104787085 
80597391 
28952052 
92348785 

. 

. 

. 
8405377 

53991705 
16160816 
9519418 

31804336 
26394286 

=

X(1,2) 2276165
X(1,3) 13824330
X(1,4) 2857357
X(1,5) 36580714
X(1,6) 1467221
X(1,7) 1891468

. . 

. . 

. . 
X(23,17) 298672
X(23,18) 50251
X(23,19) 13904
X(23,20) 243006
X(23,21) 182364
X(23,22) 61980
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4. Resultados e Discussão 
Os resultados obtidos do processamento de cada um dos casos descritos estão 
apresentados a seguir:  

No caso 1, tabela 1 tem-se os resultados da estimação usando Programação 
Linear (PL), inferência Bayesiana e Esperança-Maximização (EM), para a mesma 
topologia de rede e os mesmos dados de entrada, obtidos e apresentados em [Medina et 
al 2002]. Para PL e inferência Bayesiana, usou-se uma MT Poisson, e para o método 
EM foi usado MT Gaussiana. Os pesos foram fixados em 1 para cada enlace e as rotas 
foram computadas de acordo com o número de salto mais curto. 

Os resultados obtidos neste trabalho com algoritmo genético foram acrescidos e 
apresentados à tabela, comparativamente com os valores reais do tráfego da rede e, de 
uma maneira geral, com os demais métodos. A tabela mostra a MT original, o valor 
estimado para cada par OD e a coluna ERRO mostra a diferença percentual entre os 
resultados estimados pelo modelo e os valores reais de cada método. 

A partir destes resultados pode-se avaliar a precisão das soluções obtidas para as 
diversas combinações de conjuntos de restrições e função objetivo utilizadas. O erro 
médio foi de 98,2% para o método PL, 12,9% para o método Bayesiano e 7,4% para o 
método EM. Com AG o erro médio foi de 3,9%. O método PL é claramente pior do que 
os demais. Pode-se ver que este método usa valores zero para alguns pares OD. Com 
isso temos várias estimações de erro 100% ou mais o que gera uma taxa média muito 
alta. No caso dos métodos Bayesianos e EM, mais ou menos, metade das estimativas 
são excessivas em suas previsões e a outra metade é de estimativa baixa. Entre esses 
dois métodos, EM apresenta um ganho em relação a Bayesiana.  

Com AG, foram estimados valores com variação menor, ou seja, a taxa de erro 
girou entre 0% e 6,7%, o que possibilitou uma taxa média de erro baixa. Com isso, vê-
se que a estimação apresenta o equilíbrio, independente de fluxos que compartilham 
ligações ou não, diferentemente do caso de inferência Bayesiana, que apresenta seu pior 
erro para o par OD CB, ou seja, sua estimativa de erro pode ser fortemente 
correlacionada com ligações compartilhadas. 

Tabela 1. Estimação para Topologia de quatro nós 

 

 

 

 

 

  

 

 

 

 

PL Bayesiana EM AG Original MT 
(Poisson) MT Estimada Erro (%) MT Estimada Erro (%)

Original MT
(Gaussiana) MT Estimada Erro (%) MT Estimada Erro (%)

AB: 318 318 0 318 0 318,65 318,65 0 317 0,3 
AC: 289 601 107 342 18 329,48 289,98 13 277 4,2 
AD: 312 0 100 259 17 277,18 318,36 15 322 3,2 
BA: 294 579 96 334 14 298,14 298,14 0 279 5,1 
BC: 292 559 91 310 6 354,81 360,97 1,6 280 4,1 
BD: 267 0 100 249 7 355,39 347,94 2 279 4,5 
CA: 305 303 0,6 291 5 327,20 317,34 3 301 1,3 
CB: 289 0 100 361 25 330,04 373,65 13 274 5,2 
CD: 324  903 178 395 22 253,01 217,32 14 303 6,5 
DA: 283 0 100 257 9 320,50 329,07 3 302 6,7 
DB: 277 851 207 245 12 291,52 246,60 15 277 0 
DC: 291 0 100 349 20 310,40 344,82 11 272 6,5 

 Erro Médio: 98,2 Erro Médio: 12,9  Erro Médio: 7,4 Erro Médio: 3,9 
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Os resultados do uso de AG na topologia do Caso 1 são apresentados na Figura 
3. O gráfico mostra o percentual de erro médio sobre o número de vezes que o método 
encontra uma taxa de erro de Y inferior a uma taxa de erro anterior. Nessa simulação, 
fora estipulado um valor inicial de 3% para taxa de erro da matriz Y. Cada valor médio 
inferior a este é tomado como o valor mais baixo e assim sucessivamente. Em relação à 
taxa de erro médio de estimação de X, não é possível simulá-la controladamente como 
em Y, uma vez que se trata do objetivo do método. Vimos nesse caso o bom 
desempenho da taxa de erro de X, encerrando a simulação com a taxa de 3,9%, uma 
melhora de 46% em torno da taxa de erro inicial para a matriz X. 
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Figura 3: Percentual de erro de estimação da Matriz X e Matriz Y - Topologia de 
quatro nós 

No caso 2, tabela 2 tem-se os resultados da estimação usando algoritmo genético 
para rede GÉANT. Estes resultados são comparados com os valores reais do tráfego da 
rede. A coluna ERRO, da mesma forma, mostra a diferença percentual entre os 
resultados estimados pelo modelo e os valores reais. A ilustração dos dados fora 
suprimida por se tratar de um expressivo número de fluxo OD contido nessa rede. 
Diferentemente dos resultados apresentados no caso 1, a aplicação do resultado na rede 
GÉANT trouxe valores altos de taxa de erro o que gerou um valor médio acima de 60%. 
O erro individual variou de 1,1% até 295%. Ao ser considerado dados reais podem 
existir fluxos com valor zero para um fluxo OD, indicando que no momento de coleta 
dos dados não havia fluxo entre um determinado par. Esses casos são tratados pelo AG 
proposto. 

Tabela 2. Estimação para rede GÉANT 

 

 

 

 

 

 

 

 

 
 

AG 
Dados Reais 

Dados Estimados Erro 

X(1,2): 2276165 1612244 70,8 
X(1,3): 13824330 6471120 46,8 
X(1,4): 2857357 5302016 185,6 
X(1,5): 36580714 17200493 47,0 
X(1,6): 1467221 67913 4,6 
X(1,7): 1891468 1303698 68,9 

. . . 

. . . 

. . . 
X(23,17): 298672 588862 197,2 
X(23,18): 50251 78492 156,2 
X(23,19): 13904 18395 132,3 
X(23,20): 243006 457337 188,2 
X(23,21): 182364 267528 146,7 
X(23,22): 61980 91421 147,5 
 Erro Médio: 62,8
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5. Conclusões e Trabalhos Futuros 
O uso de algoritmos genéticos para estimação de matrizes de tráfego OD constitui-se 
algo inédito nesta área de pesquisa. Este trabalho utiliza AG com o objetivo de melhorar 
a precisão até então obtida por outros métodos. Os resultados obtidos quando 
comparados com aqueles de Medina et al (2002) e com a mesma topologia de rede e os 
mesmos dados de entrada mostram que há uma melhora significativa na estimação dos 
fluxos OD. 

Resultados obtidos em trabalhos anteriores apresentam erros médios de 
estimação da ordem de 98,2% para PL, 12,9 % para abordagem Bayesiana e 7,4% para 
o algoritmo EM. Trabalhos mais recentes mostram que a programação linear e a adição 
de novas restrições [Silva et al. 2007] proporcionam resultados significativamente 
superiores aos anteriormente citados. Contudo, o esforço de estabelecer restrições para 
redes com mais de dez nós e com o dobro de enlaces e fluxos OD não estimulam a sua 
utilização. 

Este trabalho conseguiu obter erros médios de estimação na ordem de 3,9%, em 
alguns testes, para uma topologia de rede com quatro nós, sete enlaces e doze fluxos 
OD. Foram realizados testes com um número maior e menor de enlaces para a mesma 
quantidade de nós e os resultados estão na mesma ordem. 

Os resultados obtidos no segundo estudo de caso, com uma rede de 23 nós 
(GEANT), mostram que o percentual de erro médio é muito grande (62,8%), 
desestimulando a utilização do AG. Contudo, o AG aplicado neste trabalho ainda é 
incipiente, pois usa somente o operador de mutação. Planeja-se tentar heurísticas mais 
elaboradas e espera-se que esta abordagem, com as implementações dos demais 
operadores, venha mostrar resultados significativamente melhores. 

Os resultados obtidos até o momento estimulam a continuação nessa direção. 
Trabalhos futuros planejados são: i) teste do algoritmo com outras topologias de redes 
de backbone, como a RNP (Rede Nacional de Pesquisa), cujos os dados já estão sendo 
armazenados; ii) uso de novas meta-heurísticas e comparação dos resultados. 
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