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Abstract. A methodology for developing efficient parallel programs must spe-
cify mechanisms capable of characterizing the behavior of applications and al-
low studies on the performance of different solution models. The PEMPIs-Het
methodology allows performance modeling, evaluation and prediction of paral-
lel programs in homogeneous and heterogeneous environments. In this paper
some applications are modeled and the accuracy of predictions is verified by
experimental tests. An evaluation about different models of distributed solutions
is executed and a performance prediction is generated to each approach.

Resumo. Uma metodologia para desenvolvimento de programas paralelos
deve especificar mecanismos capazes de caracterizar o comportamento das
aplicações e permitir estudos sobre o desempenho de diferentes modelos de
soluções. A metodologia PEMPIs-Het permite a modelagem, avaliação e
predição de desempenho de programas paralelos em ambientes homogêneos
e heterogêneos. Neste artigo, algumas aplicações são modeladas e a precisão
das estimativas geradas para o tempo de execução das aplicações é verificada
através de testes experimentais. Uma avaliação sobre diferentes modelos de
soluções distribuı́das é realizada e uma estimativa de desempenho é gerada
para cada abordagem.

1. Introdução
Nos últimos anos, com o aumento da capacidade de processamento dos computadores
pessoais e o desenvolvimento das redes de alta velocidade, sistemas computacionais
como os clusters e os grids [Németh and Sunderam 2003, Nemeth and Sunderam 2002,
Foster and Kesselman 2003, Foster et al. 2002, Foster et al. 2001] e, mais recentemente,
os clouds, se tornaram atraentes para a execução de aplicações de larga escala e/ou de
alto desempenho. Neste contexto, tais ambientes se constituı́ram uma alternativa atraente
aos tradicionais computadores paralelos centralizados [Clark 1995]. Uma comparação
entre os ambientes tradicionais de computação distribuı́da e os grids computacionais, em
particular, pode ser encontrada em [Németh and Sunderam 2002].

Conseqüentemente, surgiram algumas abordagens para o desenvolvimento de
aplicações paralelas distribuı́das, algumas bibliotecas para comunicação remota foram
criadas, como o PVM [Geist et al. 1994] e o MPI [Snir and Otto 1998], e novos mode-
los de programação foram definidos para atender as necessidades e particularidades da
organização de cada uma dessas plataformas. Hoje em dia, podemos citar os modelos
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mestre-escravo, bag of tasks, peer-to-peer e cliente-servidor [Buyya 1999] como sendo
os mais utilizados para organização do processamento paralelo e distribuı́do.

Se a programação paralela em sistemas multiprocessados ou multi-núcleos, ba-
seada em variáveis de memória compartilhada, já é uma tarefa complicada, ainda mais
difı́cil é o desenvolvimento de sistemas paralelos em arquiteturas distribuı́das hete-
rogêneas, como discutido em [Badia et al. 2007]. Isso porque é necessário considerar
diversos aspectos que não estão presentes na implementação das aplicações seqüenciais.
Alguns desses aspectos dizem respeito a comunicação entre os processos remotos, as
sincronizações estabelecidas entre as tarefas e as transferências de dados necessárias na
execução do programa. Além de explorar o paralelismo intrı́nseco às aplicações, o pro-
gramador também deve, na maioria das vezes, especificar como o trabalho será dividido
e distribuı́do entre os nós de processamento.

Normalmente, as aplicações paralelas fazem uso do modelo de programação
mestre-escravo. Nesta organização, o processo mestre é o responsável por organizar a
divisão e a distribuição do trabalho entre os escravos. Estes processos executam a ta-
refa recebida do mestre e devolvem os resultados parciais para que a solução final possa
ser encontrada. Durante a distribuição do trabalho aos escravos é possı́vel fazer uso de
alguma estratégia de balanceamento de carga para maximizar a utilização dos recursos
computacionais e melhorar o desempenho final da aplicação.

Neste contexto, a existência de metodologias de análise, avaliação e predição de
desempenho pode ser fundamental para o desenvolvimento de aplicações paralelas oti-
mizadas. Uma metodologia capaz de analisar, avaliar e estimar o desempenho de dife-
rentes modelos de soluções pode auxiliar os programadores a encontrarem soluções mais
eficientes para um mesmo problema. Os modelos de predição podem estimar o compor-
tamento das aplicações em diversas situações projetadas, bem como avaliar mecanismos
de distribuição de carga e escalabilidade do sistema. Além disso, a utilização de métodos
e ferramentas de modelagem, especificadas por uma metodologia, agregam valores ao
sistema implementado.

Várias metodologias foram propostas para auxiliar atividades relacionadas a estu-
dos de desempenho de aplicações paralelas e distribuı́das [de Oliveira Dias Júnior 2006,
Grove 2003, Culler et al. 1993, Schopf 1998]. No entanto, a maioria desses trabalhos
propõe estratégias para analisar somente trechos da aplicação paralela, como as estruturas
de repetição ou as primitivas de comunicações, por exemplo. Embora este tipo de análise
seja capaz de ajudar a descobrir eventuais gargalos para o desempenho da solução ela não
ajuda os programadores a decidirem qual paradigma ou modelo de programação é mais
adequado para a solução de um problema.

Neste intuito, definimos uma metodologia chamada PEMPIs-Het (Performance
Estimation of MPI Programs in Heterogeneous Systems) [Laine and Midorikawa 2007a,
Laine and Midorikawa 2007b]. Esta metodologia especifica um conjunto de técnicas de
modelagem, avaliação e predição de desempenho que permite avaliar diferentes modelos
de soluções e definir a estratégia mais otimizada para a solução. Em trabalhos publica-
dos anteriormente focamos na apresentação e discussão da metodologia PEMPIs-Het e
nas técnicas que a metodologia utiliza para a modelagem das aplicações paralelas e dis-
tribuı́das. Neste artigo nosso objetivo é demonstrar a capacidade da metodologia PEMPIs-
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Het em modelar e avaliar o desempenho de diferentes modelos de soluções distribuı́das e
prever, ao longo do tempo, o comportamento das soluções analisadas.

Este trabalho está organizado da seguinte forma: a seção 2 apresenta alguns tra-
balhos relacionados. A seção 3 descreve algumas formas de estruturar uma solução dis-
tribuı́da. Na seção 4 descrevemos a metodologia PEMPIs-Het. Na seção 5 apresentamos
a aplicação das estratégias do PEMPIs-Het na modelagem e predição de desempenho de
aplicações paralelas distribuı́das. As conclusões do trabalho são apresentadas na seção 7.

2. Trabalhos Relacionados
Uma metodologia para análise e predição de desempenho deve ser capaz de identificar
os prováveis fatores que podem influenciar o desempenho das aplicações e, além disso,
mostrar como estes fatores interagem. Neste intuito, alguns autores têm utilizado a mode-
lagem analı́tica para alcançar este objetivo [Tam and Wang 1999, Badia et al. 2003]. Com
este enfoque, elaboramos modelos matemáticos capazes de representar o comportamento
das aplicações em sistemas distribuı́dos heterogêneos. A idéia destes modelos é estimar
o tempo de execução das aplicações não só em função do tamanho do problema mas da
quantidade de processos também.

Na literatura existem vários trabalhos sobre modelagem e predição de desempenho
de aplicações paralelas. No entanto, grande parte das publicações acabam restringindo
as análises para alguns elementos do programa, como as estruturas de repetição ou as
primitivas de comunicação.

Em [Lastovetsky et al. 2006], o autor apresenta uma modelagem das primitivas de
comunicação, levando em consideração o impacto da heterogeneidade dos processadores
no desempenho da transmissão dos dados. Modelos analı́ticos, em função do tamanho da
mensagem, são gerados para caracterizar o comportamento das operações ponto-a-ponto
e coletivas. Em [Lastovetsky and Twamley 2005] os autores caracterizam o comporta-
mento da aplicação em uma rede não dedicada de computadores heterogêneos. Para isso,
curvas de desempenho baseadas em intervalos são utilizadas. A estratégia determina que
o desempenho da aplicação pode ser estimado por um limite superior e outro inferior
(intervalo de predição).

Em [Yang et al. 2007] e [Shih et al. 2007] os autores apresentam uma modelagem
para laços de repetição de programas paralelos e também implementam mecanismos de
balanceamento de carga do tipo self-scheduling para estas estruturas em ambientes de
grid.

Em [Grove 2003, Grove and Coddington 2005a] os autores propõem um sis-
tema para modelar o desempenho de programas paralelos que utilizam o modelo de
programação baseado em passagem de mensagem. Esse sistema, denominado PEVPM
(Performance Evaluating Virtual Parallel Machine), faz uso de máquinas paralelas vir-
tuais para realizar as atividades relacionadas à análise e avaliação de desempenho das
aplicações, em uma abordagem bottom-up [Grove and Coddington 2005b]. A estrutura
do programa é dividida em segmentos de código seqüenciais e de comunicação, sendo
cada trecho modelado separadamente.

Em [Laine et al. 2003] realizamos a modelagem de estruturas de repetição, sim-
ples e aninhadas, de programas paralelos MPI e prevemos o tempo de execução dos
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laços de repetição em função do número de iteração. Em [Oliveira et al. 2002] ca-
racterizamos e modelamos as primitivas de comunicação, ponto-a-ponto e coletivas,
da implementação LAM-MPI e verificamos a precisão dos modelos através de tes-
tes experimentais. As primeiras análises sobre modelagem de aplicações MPI foram
apresentadas em [Oliveira et al. 2003]. Entretanto, as estratégias para a modelagem
de aplicações completas foi formalizada com a especificação da metodologia PEMPIs
[Midorikawa et al. 2004, Midorikawa et al. 2005]. No entanto, esta metodologia restrin-
gia as análises para ambientes distribuı́dos homogêneos. Para permitir a modelagem
e a predição de desempenho em sistemas heterogêneos a metodologia foi estendida e
o PEMPIs-Het (Performance Estimation of MPI Programs in Heterogeneous Systems)
[Laine and Midorikawa 2007a] foi especificado.

3. Estruturas de Programas Paralelos
Além de permitir avaliações quantitativas sobre o desempenho de programas paralelos, a
metodologia PEMPIs-Het também admite que os modelos analı́ticos sejam utilizados para
comparar diferentes abordagens ou modelos de soluções distribuı́das. Nesta comparação,
o objetivo é projetar qual modelo de organização do programa é o mais eficiente para ser
utilizado no ambiente.

Com este propósito, preparamos três diferentes versões para o programa de
multiplicação de matrizes: Self-Scheduling, VRP dinâmico e VRP-SS. Todas as versões
utilizam o algoritmo tradicional de multiplicação de matrizes (O(n3)). No entanto,
cada solução implementa uma estratégia diferente para balanceamento de carga. As
soluções geradas com a organização promovida pelas estratégias Self-Scheduling (SS),
VRP dinâmico e VRP-SS são completamente diferentes. As modificações promovidas no
modelo da arquitetura da solução estão diretamente relacionadas ao desempenho final da
aplicação, conforme mostra os resultados apresentados no gráfico da Figura 2.

3.1. Self-Scheduling (SS)

Essa estratégia utiliza o modelo de comunicação mestre-escravo para organizar a solução
distribuı́da. Inicialmente, o trabalho é dividido em pequenas tarefas que serão envia-
das aos processos escravos para que sejam executadas. Estas tarefas representam car-
gas unitárias de processamento. À medida que os processos terminam o processa-
mento e ficam ociosos, eles enviam requisições ao mestre solicitando mais uma fa-
tia de trabalho. Novamente, o mestre atende a solicitação e envia mais uma pe-
quena tarefa ao processo requisitante. Esta dinâmica continua até que todo o traba-
lho tenha sido processado. Na literatura é possı́vel encontrar algumas variações da es-
tratégia SS, tais como o chunk self-scheduling (CSS), o guided self-scheduling (GSS) e o
trapezoidal self-scheduling (TSS) [Polychronopoulos and Kuck 1987, Tzen and Ni 1993,
Shih et al. 2006, Yang et al. 2006, Yang and Chang 2003].

3.2. Vetor de Desempenho Relativo (VRP)

Uma das estratégias elaboradas para promover o balanceamento de carga do sistema faz
uso dos modelos analı́ticos individuais da aplicação (δ(n, p)). Estes modelos são elabo-
rados para estimar o desempenho da solução, em função do tamanho do problema (n)
e da quantidade de processos (p), em cada uma das máquinas do sistema. As relações
entre cada um desses modelos permite definir a capacidade de processamento relativa das
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máquinas e, conseqüentemente, a proporção de trabalho ideal que cada nó computacional
deve receber em relação ao trabalho total. Para determinar a capacidade de processamento
da máquina x (ϕx) em relação a y, considerando valores especı́ficos para n e p, a seguinte
relação deve ser calculada:

ϕx =
δx(n, p)

δy(n, p)
(1)

A partir dessas relações geramos um vetor de capacidades relativas, denominado
VRP. Este vetor caracteriza a proporção de trabalho ideal de cada uma das máquinas, ajus-
tada a capacidade estimada pelos modelos de desempenho. Cada máquina do ambiente
é numerada e tem sua capacidade representada em posições distintas do VRP, conforme
ilustrado a seguir:

V RP = [ϕ1, ϕ2, ϕ3, ..., ϕm−1, ϕm] (2)

onde:

ϕm: representa o valor de desempenho relativo da m-ésima máquina no sistema;

ϕ1: geralmente representa o desempenho da máquina mais lenta do sistema. Se
esta ordem for estabelecida, a máquina de menor capacidade computacional tem seu
parâmetro representado como sendo 1 e a capacidade das demais são calculadas em
função desta.

A distribuição do trabalho é feita utilizando o conceito de carga unitária. A carga
unitária representa a menor unidade de trabalho computável para a aplicação que está
sendo modelada e testada. Na metodologia PEMPIs-Het, essa carga unitária é determi-
nada da seguinte forma:

ul =
τ

m∑

i=1

V RP [i]

(3)

onde ul representa a carga unitária e τ a quantidade de trabalho total a ser compu-
tado pelo programa.

A partir dessas informações é possı́vel calcular a quantidade de trabalho (∆i) que
deve ser enviado para a i-ésima máquina listada no VRP, segundo a seguinte expressão:

∆i = dul × V RP [i]e (4)

Portanto, quanto maior a precisão dos modelos analı́ticos, mais ajustado estará
os valores calculados para o VRP. Na versão estática de balanceamento, os valores de-
terminados para o VRP permanecem os mesmos em todas as configurações de testes,
independente dos valores usados para N . Na abordagem dinâmica, os valores do VRP
estão em função do tamanho do problema (N ). Esta estratégia obtém melhores resultados
pois está sintonizada às modificações de comportamento que as aplicações podem apre-
sentar ao variar o tamanho do N . A versão estática pode oferecer bons resultados em
ambientes homogêneos mas não consegue repetir os resultados da estratégia dinâmica em
sistemas heterogêneos.
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3.3. VRP Self-Scheduling (VRP-SS)
A estratégia self-scheduling e as variações GSS, TSS, entre outras, não conseguem
alcançar bons resultados no balanceamento de carga em ambientes distribuı́dos extrema-
mente heterogêneos [Yang et al. 2007]. Isso porque o tempo gasto com o grande número
de divisões e distribuições de cargas unitárias entre as máquinas pode comprometer o
desempenho da estratégia.

Por outro lado, a estratégia VRP consegue reduzir o número de mensagens tro-
cadas pela rede e ajustar a divisão do trabalho à capacidade individual de cada uma das
máquinas. Logo, o tempo total de execução das aplicações pode ser reduzido. Entretanto,
a estratégia VRP é menos flexı́vel às possı́veis mudanças apresentadas pelo ambiente,
quando comparada ao modelo self-scheduling puro. Isso porque se uma máquina ou mais
máquinas tiver sua carga de trabalho alterada, ao longo do tempo, os ı́ndices do VRP não
permanecerão ajustados adequadamente. Como na versão estática do VRP a distribuição
do trabalho é feita toda no inı́cio do processamento, esta variação pode comprometer o
desempenho final da solução.

Outra situação problemática para a estratégia VRP pode ser observada na Figura
1. Este gráfico representa a variação do tempo de execução em função do número de
iterações para distribuição do trabalho na estratégia self-scheduling. Durante o proces-
samento foi utilizado máquinas e situações idênticas de processamento e mesmo assim
nota-se uma variação significativa entre o tempo de execução apresentado pelas máquinas
para processar uma carga idêntica de trabalho. Isto mostra que mesmo em máquinas
idênticas a capacidade de processamento é algo particular e relacionado ao momento do
nó. Portanto, o ajuste dos ı́ndices do VRP é extremamente importante para o êxito da
estratégia de balanceamento.

Figura 1. Análise por iteração do programa de multiplicação de matrizes.

Para minimizar estes problemas, uma versão hı́brida, mesclando princı́pios das
estratégias VRP e SS, foi especificada e implementada. Na estratégia, denominada VRP-
SS, a distribuição das cargas é realizada por fases, como na estratégia self-scheduling,
mas a quantidade de trabalho enviada a cada nó é calculada de acordo com os valores es-
pecificados no VRP. Assim, a quantidade de mensagens transmitidas para a distribuição
de todo o trabalho é menor, se comparada ao modelo SS, e ajustada a capacidade indivi-
dual de cada máquina. Além disso, a estratégia consegue reagir às eventuais sobrecargas
individuais das máquinas atribuindo mais trabalho aos nós que apresentam uma melhor
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condição de processamento. Isto é possı́vel pois o mecanismo self-scheduling permite
um maior dinamismo nas atribuições de trabalho. A estrutura principal do algoritmo que
implementa a estratégia VRP-SS é apresentada a seguir:

Ler os ı́ n d i c e s do VRP
Para cada p r o c e s s o e s c r a v o f a ç a {

Div id e o t r a b a l h o p r o p o r c i o n a l m e n t e a c a p a c i d a d e da máquina
Envia a c a r g a de t r a b a l h o c a l c u l a d a

}
Enquanto não r e c e b e r todo o t r a b a l h o f a ç a {

Recebe o r e s u l t a d o p a r c i a l do p r o c e s s o e s c r a v o
I d e n t i f i c a o p r o c e s s o que e nv iou o r e s u l t a d o
Se e x i s t i r t r a b a l h o a s e r c a l c u l a d o e n t ã o {

Lê o ı́ n d i c e da p o s i ç ã o do p r o c e s s o no VRP
Dete rmina a q u a n t i d a d e de t r a b a l h o adequada a c a p a c i d a d e da máquina
Envia a c a r g a de t r a b a l h o c a l c u l a d a

}
}

3.4. Comparando as Estruturas SS, VRP-SS e VRP

O desempenho de cada uma das versões comprovam as conseqüências do modelo adotado
na organização da solução. Os testes experimentais com o programa de multiplicação
de matrizes foram feitos em um ambiente heterogêneo formado por 4 máquinas intel, 4
máquinas bio e 6 máquinas taurus. Em cada uma das máquinas foi associado um único
processo para colaborar na execução do programa. Portanto, a quantidade de processos
foi fixado em 14 (p) e os valores avaliados para N foram: 500, 1000, 1500, 2000 e
2500. Uma análise sobre o desempenho de cada abordagem pode ser realizada através
do gráfico da Figura 2, que compara o tempo de execução dos programas. A versão
VRP-SS apresentou melhor desempenho que as demais em quase todas as configurações
de teste. Somente para N = 500 e 1000 o desempenho da solução não foi o melhor.
Isto pode ser explicado pois o modelo SS, em geral, é mais eficiente no processamento
de pequenos trabalhos, onde a quantidade de mensagens trocadas entre os processos é
menor. Para grandes valores de N , como N = 2500, o tempo de execução das versões
VRP e SS supera em 60% o da versão VRP-SS, o que ilustra a eficiência da estratégia na
organização da solução.

Figura 2. Resultados gerados pelas estratégias VRP, SS e VRP-SS.
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4. A Metodologia PEMPIs-Het
A metodologia PEMPIs-Het [Laine and Midorikawa 2007a] define um processo estrutu-
rado de fácil aplicação capaz de auxiliar o desenvolvimento de aplicações de alto desem-
penho. Este processo compreende atividades de modelagem e avaliação de desempenho
de programas paralelos distribuı́dos em ambientes homogêneos e heterogêneos. Além
disso, a metodologia especifica um conjunto de técnicas para balanceamento de carga uti-
lizando ı́ndices de desempenhos gerados através dos modelos analı́ticos. A organização
da metodologia PEMPIs-Het é ilustrada na Figura 3. Conforme apresentado neste dia-
grama, os seguintes módulos foram definidos e implementados:

• AME - Application Modeling Environment: é o subprocesso da metodologia
PEMPIs-Het que especifica um conjunto de atividades relacionadas à modelagem
das aplicações MPI;

• PWD - Performance Estimation and Workload Distribution: é o subprocesso res-
ponsável por especificar e realizar atividades associadas a predição de desempe-
nho da aplicação e determinar os pré-requisitos necessários para as atividades de
balanceamento de carga do sistema;

• MWD - Middleware for Workload Distribution: este subprocesso gera um plano
de execução inicial capaz de otimizar o desempenho das aplicações, aproveitando
ao máximo a capacidade de processamento que os recursos do sistema podem
oferecer;

• PEM - PErformance Monitor: é uma ferramenta implementada para acompanhar,
em tempo real, o desempenho das aplicações em execução no sistema e a carga de
trabalho das máquinas. As informações de desempenho, coletadas pelo monitor,
retornam ao MWD, que avalia se o planejamento inicial está sendo alcançado com
sucesso.

Figura 3. Metodologia PEMPIs-Het.

4.1. Um Passo-a-Passo da Metodologia
As atividades contempladas pelo processo definido na metodologia PEMPIs-Het podem
ser resumidas e compreendidas através do conjunto de passos destacado a seguir. Este
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passo-a-passo descreve, ordenadamente, não só a seqüência das atividades envolvidas no
processo de modelagem e predição de desempenho, mas também as ações envolvidas nas
atividades relacionadas ao balanceamento de carga do sistema.

1. pode ser criado um arquivo com a descrição de cada uma das máquinas do sis-
tema ou somente daquelas utilizadas na execução da aplicação. Nesta descrição,
informações como a quantidade de processadores ou núcleos, a freqüência do(s)
processador (es), a quantidade de memória cache e principal, o tipo de interface
de rede utilizada em cada máquina e o sistema operacional são listadas;

2. o programa MPI é instrumentado com monitores de tempo. A inserção dos mo-
nitores de software acontece para que se possa avaliar e medir o desempenho
de alguns trechos do programa. Os monitores podem coletar informações so-
bre o tempo de execução de instruções de processamento e o tempo gasto em
comunicação entre os processos. Estas informações são utilizadas durante a
elaboração dos modelos analı́ticos de desempenho;

3. a partir do código fonte do programa é elaborado o modelo gráfico DP*Graph++

[Midorikawa et al. 2005]. A simbologia deste modelo gráfico auxilia a modela-
gem da aplicação e facilita o entendimento estrutural do código do programa;

4. com a ajuda do modelo gráfico DP*Graph++ é realizado um estudo sobre a com-
plexidade algorı́tmica da aplicação e o modelo teórico de desempenho é elabo-
rado;

5. as configurações do ambiente de teste são definidas. Neste momento um arquivo,
chamado hostfile, é criado com o nome das máquinas que serão utilizadas pelo
LAM [Squyres and Lumsdaine 2003, Burns et al. 1994] na execução do programa
MPI. As configurações dos testes são planejadas, especificando a quantidade de
processos p e o tamanho do problema n, para que as análises de desempenho
sejam realizadas. Normalmente, um script é criado para controlar a execução dos
casos de testes;

6. os testes experimentais planejados são realizados. Cada configuração prevista é
executada um certo número de vezes e os tempos medidos são armazenados em
arquivos individuais. A quantidade de vezes que o programa é executado não é
um valor fixo, mas o suficiente para gerar uma massa de dados representativa e
confiável;

7. os tempos medidos são selecionados, através de uma função de avaliação es-
tatı́stica, e as anomalias observadas são descartadas. Esta atividade é fundamental
para a qualidade dos modelos de predição, pois permite aumentar a confiabilidade
dos valores selecionados. A partir destes dados é calculado um valor médio para
representar as grandezas avaliadas;

8. um método de ajuste de curvas é aplicado sobre os tempos médios calculados e
os modelos analı́ticos de predição de desempenho são elaborados. Estes modelos,
geralmente, estão em função da quantidade de processos (p) e do tamanho do
problema (n). Para cada tipo de máquina do sistema é elaborado um modelo
individual, capaz de caracterizar o comportamento da aplicação naquele nó de
processamento especı́fico;

9. a partir dos modelos analı́ticos individuais é possı́vel criar um meta-modelo para
a aplicação. Este meta-modelo generaliza o comportamento da aplicação no am-
biente modelado mas não especifica a quantidade de máquinas utilizada para cada
tipo de nó computacional modelado;
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10. estimativas para o desempenho da aplicação podem ser calculadas, variando p e N .
Portanto, além de prever o comportamento da aplicação em situações não anali-
sadas, o meta-modelo permite realizar estudos sobre a escalabilidade da aplicação
e/ou do sistema;

11. relações de desempenho são obtidas através dos modelos analı́ticos individuais.
Instanciando valores para p e N é possı́vel determinar quantas vezes uma máquina
é mais rápida ou mais lenta que a outra na execução da aplicação modelada. Estes
ı́ndices são utilizados no planejamento das atividades de distribuição de carga do
sistema;

12. um plano inicial de execução é elaborado para a aplicação. Este plano utiliza as
relações de desempenho para determinar a quantidade de trabalho ideal que cada
uma das máquinas deve receber durante a execução do programa;

13. o desempenho dos processos distribuı́dos são monitorados em tempo real, através
das funções implementadas no PEM. O objetivo é avaliar se a distribuição de
carga planejada está adequada a situação de momento do sistema. Utilizando as
informações coletadas pelo monitor é possı́vel, dependendo da estratégia de ba-
lanceamento de carga, reajustar a distribuição do trabalho para melhorar o desem-
penho da aplicação.

5. Modelagem de Aplicações
Algumas aplicações foram utilizadas para avaliar a aplicabilidade e precisão das es-
tratégias definidas na metodologia PEMPIs-Het na modelagem e predição de desempenho
de aplicações completas.

Os testes experimentais foram realizados em um ambiente com três tipos diferen-
tes de máquinas: intel, bio e taurus. As máquinas intel possuem um processador dual-core
Intel Pentium D 950, 2GB de DDR2 SDRAM, duas interface de rede gigabit Ethernet. As
máquinas bio possuem dois processadores AMD Athlon MP 2400+, com 1GB de DDR
SDRAM, duas interfaces de rede Intel Ether-Express Pro Fast Ethernet. As máquinas
taurus possuem um Intel Celeron 433MHz, 256 MB de SDRAM, interface de rede Fast
Ethernet. As aplicações MPI usam a implementação LAM-MPI e o sistema operacional
instalado em todas as máquinas é o Fedora Core 6.

As próximas seções descrevem cada uma das aplicações e apresentam os modelos
analı́ticos de desempenho e as estimativas geradas para o tempo de execução dos progra-
mas paralelos avaliados.

5.1. Programa Heat
O programa Heat simula a propagação de calor em uma superfı́cie metálica. Na
simulação, o valor da temperatura de cada um dos pontos da superfı́cie é mapeado através
de uma matriz. Um conjunto de passos é executado e, a cada iteração, um novo valor de
temperatura é calculado para cada elemento da malha bidimensional, até que haja uma
convergência final (método de Jacobi). A temperatura de cada um dos pontos ti,j é deter-
minada com base nos valores dos pontos vizinhos, da seguinte forma:

t
′
i,j = f(ti,j, ti,j−1, ti,j+1, ti−1,j, ti+1,j)

A paralelização utiliza o modelo mestre-escravo e os cálculos da simulação são
divididos entre todos os nós de processamento. Cada processo escravo recebe um sub-
conjunto dos dados, representado por um bloco de linhas da matriz. A matriz caracteriza
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a malha bidimensional de pontos sobre a superfı́cie metálica. No inı́cio de cada iteração,
os processos trocam informações com seus vizinhos para atualizar o mapaemento da tem-
peratura. Cada tarefa paralela é mapeada em um único processador.

O código da aplicação foi mapeado com os sı́mbolos do modelo gráfico
DP*Graph++ e está represenado na Figura 4. Na representação é possı́vel identificar
tanto os trechos de computação (simbolizados através dos retângulos na cor cinza) e as
estruturas de repetição (indicadas pelas linhas pontilhadas) como as comunicações esta-
belecidas entre os processos (triângulos). O processamento da simulação é feito quase
que exclusivamente nos escravos e está mapeado nos trechos de VIII a XIII.
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Figura 4. Modelo gráfico DP*Graph++ do programa Heat.

Na modelagem analı́tica do programa Heat equações parciais foram elabora-
das para representar o comportamento de cada trecho representado no modelo gráfico
DP*Graph++. Estes modelos permitem estimar, individualmente, o tempo gasto em cada
fase do processamento.

Para o desenvolvimento dos modelos de predição foram realizados testes expe-
rimentais com 4, 5 e 6 processos no cluster bio. Os valores utilizados para a matriz de
mapeamento da superfı́cie metálica foram 500, 750, 1000, 1250, 1500, 1750 e 2000. Cada
configuração utilizada no teste experimental foi executada 50 vezes no ambiente e uma
média dos tempos de execução selecionados foi calculada.
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Um estudo sobre a complexidade das principais primitivas do LAM-MPI foi rea-
lizado em [Oliveira et al. 2002]. Neste estudo, modelos teóricos de algumas rotinas MPI
foram especificados. A rotina MPI Init, trecho I do modelo gráfico da Figura 4, pode ser
representada por uma função linear em p (número de processos utilizados na execução do
programa). Assim, na análise do programa Heat, o comportamento da operação MPI Init
foi modelado pela seguinte função:

TI(p) = −1, 9232× 10−3 + 4, 3877× 10−3 × p (5)

As variáveis p, N e m, que aparecem nas equações, representam o número de
processos, o tamanho do problema e o tamanho da mensagem transmitida (em bytes),
respectivamente. Como o processamento final da aplicação é feito pelo mestre, a mode-
lagem é realizada sobre os trechos identificados para este processo.

Um polinômio de segundo grau pode ser utilizado para representar os trechos de
II a VI. Isto porque esta parte do código está associada ao processamento de dois laços
aninhados [Laine et al. 2003]. Portanto, o modelo de predição elaborado para representar
estas estruturas é dado por:

TII−V I(N) = 0, 3425685− 5, 874× 10−4 ×N + 2, 9× 10−6 ×N2 (6)

De VII a X, o processo mestre utiliza uma estrutura de repetição e a primitiva
MPI Send para distribuir a matriz entre os escravos. O comportamento da primitiva
MPI Send pode ser aproximado, de acordo com [Oliveira et al. 2002], por um modelo
linear em m. Assim, o tempo de execução deste trecho pode ser representado por:

TV II−X(m) = (p− 1)× (6, 8114× 10−3 + 5× 10−7 ×m) (7)

O último trecho do processo mestre é composto somente por operações do tipo
MPI Recv. Esta primitiva, assim como o MPI Send, pode ser representada por uma
função linear em m. Assim, o tempo de execução deste trecho é estimado pelo seguinte
modelo:

TXI−XII(m) = (p− 1)× (−4, 487× 10−4 + 4, 899× 10−7 ×m) (8)

Embora os modelos parciais para o processo mestre já tenham sido elaborados,
é necessário incluir no modelo final de predição o tempo gasto no processamento da
simulação. Este processamento é representado pelos trechos de VIII a XIII do processo
escravo. Para modelar este trecho do programa foram elaborados três modelos. O pri-
meiro representa o tempo gasto em comunicações do tipo send e receive. O segundo e
o terceiro determinam o tempo gasto na execução de instruções dentro de estruturas de
repetição simples (sl) e aninhada (nl). Assim, os modelos para cada um dos trechos são:

Tcomm(m) = 3, 5× 10−4 + 1, 3× 10−6 ×m (9)

Tsl(N) = −5, 25× 10−7 + 2, 39× 10−8 ×N (10)
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Tnl(N) = −3, 6341× 10−3 − 8, 1× 10−6 ×N + 1, 66× 10−7 ×N2 (11)

Finalmente, o modelo analı́tico final da aplicação Heat é determinado pela
composição de todos os modelos parciais apresentados. Com este modelo para o
tempo total de execução é possı́vel estimar o desempenho da aplicação em diferentes
configurações de p e N .

Ttotal(N, p, m) = TI(p) + TII−V I(N) + TV II−X(m) + TXI−XII(m)
+Tcomm(m) + Tsl(N) + Tnl(N) (12)

Tabela 1. Comparação entre os tempos medidos e os estimados (segundos).
Dimensão 6 processos 8 processos
da Placa Estimado Medido Erro (%) Estimado Medido Erro (%)

2000 14,938 15,338 -2,61 14,93 14,745 1,27
2500 23,527 24,653 -4,57 23,52 23,914 -1,64
3000 34,090 39,021 -12,64 34,08 38,682 -11,89
3500 46,627 53,137 -12,25 46,62 52,547 -11,28
4000 61,139 68,420 -10,64 61,13 68,080 -10,20

Dimensão 10 processos 12 processos
da Placa Estimado Medido Erro (%) Estimado Medido Erro (%)

2000 14,926 14,786 0,95 14,92 14,866 0,36
2500 23,515 23,790 -1,16 23,51 23,953 -1,85
3000 34,078 38,415 -11,29 34,07 39,505 -13,75
3500 46,616 51,727 -9,88 46,61 53,014 -12,08
4000 61,128 66,836 -8,54 61,12 67,253 -9,12

A Tabela 1 apresenta os valores estimados, medidos e o erro percentual da
predição. Analisando os dados é possı́vel verificar que a maioria dos valores estimados é
menor que o tempo medido na execução do programa. Como o modelo não caracteriza
nem expressa a influência de todos as possı́veis alterações que o ambiente pode sofrer
durante a execução real da aplicação, como contenções na rede e alterações pontuais na
carga computacional das máquinas, a tendência é que os tempos medidos sejam maiores.

Embora os modelos analı́ticos tenham suas restrições em relação aos aspectos
representados, o maior erro percentual das estimativas foi de -13,75% (N = 3000 e p =
12). O valor negativo na porcentagem indica que o tempo predito foi menor que o valor
medido na execução do programa.

5.2. Partı́culas sob Forças Gravitacionais - PGF

O programa de simulação de partı́culas sob forças gravitacionais implementa uma
aplicação semelhante a um problema bem conhecido, denominado problema dos n-corpos
[Franklin and Govindan 2003]. Cada uma das n partı́culas é caracterizada por sua massa,
sua posição no campo gravitacional e pelo seu estado. O algoritmo usado adota um
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método chamado PP (Particle-Particle) para calcular as forças de interações entre cada
uma das partı́culas.

A paralelização da aplicação consiste em distribuir entre os nós de processamento
um conjunto de partı́culas para que sejam calculadas as interações gravitacionais. O pro-
cesso mestre mantém uma estrutura de dados que armazena o estado atual de cada uma das
partı́culas. Esta estrutura é enviada aos demais nós, por broadcast, no inı́cio da simulação
do problema.

Antes de começar o cálculo de cada uma das iterações envolvidas na solução do
problema, cada máquina deve se comunicar com o mestre a fim de enviar o estado atual
das partı́culas. Depois que o mestre adquire estas informações ele retransmite a estrutura
novamente a todas as tarefas. A memória utilizada para armazenar as estruturas de dados
são alocadas dinamicamente, o que otimiza o uso da memória.

Na modelagem das aplicações em ambientes heterogêneos o programa deve ser
caracterizado em cada tipo de máquina do sistema. Os modelos analı́ticos individuais são
combinados para estimar o desempenho do programa no ambiente. Portanto, os aspectos
modelados não estão associados somente às caracterı́sticas da aplicação (software). O
modelo também contempla, implicitamente, a influência de elementos relacionados à he-
terogeneidade do hardware no desempenho do programa. Como descrito na apresentação
da metodologia, antes de gerar o modelo de predição final é preciso definir o modelo
teórico da aplicação. Para o programa analisado, em particular, o seguinte modelo é
válido:

δPGF (n, p) = C3
p × n2 + C2

p × n + C1
p (13)

Tabela 2. Coeficientes em função de n (intel).

C1 -1,125736 5,790233 8,578502
C2 0,000073 -0,000157 -0,000247

C3×10−7 3,206325 2,163252 1,640802

Tabela 3. Coeficientes em função de p (intel).

C1 18,569761- 39,199647×(1/p)
C2 0,0005777+0,0012943×(1/p)
C3 0,0756705×10−7 + 6,26157×10−7(1/p)

Durante os testes experimentais foram utilizados 2, 3 e 4 processos sobre as
máquinas do tipo intel. O processo de modelagem apresentado para o programa Heat
foi repetido para gerar o modelo final de desempenho do programa PGF. Inicialmente,
a modelagem foi feita em função de n e depois em função de p. Analisando o desen-
volvimento do modelo para as máquinas intel, as Tabelas 2 e 3 apresentam os coefici-
entes encontrados para elaborar o modelo de predição através da aplicação dos métodos
de modelagem analı́tica descritos na metodologia PEMPIs-Het. Após a substituição dos
coeficientes apresentados na Tabela 3 no modelo teórico da aplicação (Equação 13), o
tempo de execução dos processos atribuı́dos às máquinas intel pode ser estimado através
da seguinte equação:

δPGF (p, n) = (7, 57× 10−9 +
6, 26× 10−7

p
)n2 + (−5, 78× 10−4 +

1.3× 10−3

p
)n + (−1, 99 +

8, 74

p
) (14)

SBC 2008 213



6. Avaliando Estruturas de Soluções Diferentes

A partir das predições geradas para as aplicações, decidimos modelar diferentes estrutu-
ras de soluções para um mesmo problema e comparar o desempenho de cada uma através
dos modelos analı́ticos gerados com a metodologia PEMPIs-Het. O intuito desta análise
é verificar se os modelos gerados com a metodologia PEMPIs-Het podem ser utiliza-
dos para determinar qual modelo de solução é mais adequado na implementação de uma
aplicação especı́fica. Para isso, implementamos três versões diferentes do programa de
multiplicação de matrizes - Self-Scheduling, VRP dinâmico e VRP-SS - e modelamos
cada uma das versões para realizar as análises de desempenho.

6.1. Modelagem

As versões implementadas foram avaliadas experimentalmente em um ambiente hete-
rogêneo formado por 4 máquinas intel, 4 máquinas bio e 6 máquinas taurus. Os valores
usados para a dimensão das matrizes foram: 500, 1000, 1500, 2000 e 2500. A partir dos
resultados experimentais, aplicamos as estratégias de modelagem definidas na metodolo-
gia PEMPIs-Het sobre os resultados de cada versão do programa e os seguintes modelos
de desempenho foram elaborados:

VRP-SS:

δMM
V RP−SS(n) = −2, 14494 + 7, 445× 10−3 × n− 5, 2× 10−6 × n2 + 3, 008× 10−9 × n3 (15)

SS:

δMM
SS (n) = 2, 42258− 6, 5303× 10−3 × n + 4, 5× 10−6 × n2 + 2, 29× 10−9 × n3 (16)

VRP:

δMM
V RP (n) = −4, 48182 + 1, 64541× 10−2 × n− 1, 61× 10−5 × n2 + 7, 38× 10−9 × n3 (17)

Figura 5. Precisão dos modelos
das estratégias VRP, SS e VRP-SS.

Figura 6. Projeção das predições
de cada estrutura de solução.
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O gráfico da Figura 5 apresenta os valores pontuais medidos durante os testes
experimentais e as curvas geradas com os modelos de predição destacados nesta seção. É
possı́vel observar a precisão da modelagem e o comportamento de cada uma das curvas de
predição. Até N = 1115 a solução VRP-SS não é a que apresenta os melhores ı́ndices de
desempenho. No entanto, a partir deste valor existe uma inversão na posição das curvas
de predição e a solução VRP-SS passa a ser melhor.

Até N = 2400 a versão SS gera resultados piores que a versão VRP, mas a partir
deste ponto o comportamento das soluções é invertido e o desempeho da versão SS passa
a ser melhor, conforme mostra as curvas exibidas no gráfico da Figura 5. Portanto, estas
e outras análises podem ser realizadas em relação a projeção do desempenho de cada
uma das versões. Uma continuação destas análises é realizada na seção 6.3 para valores
extrapolados de N .

6.2. Precisão dos Modelos

Para verificar a precisão dos modelos gerados podemos analisar os resultados apresenta-
dos nos gráficos da Figura 7. Neste gráfico apresentamos os erros percentuais das estima-
tivas de desempenho geradas para cada uma das versões do programa. Como é possı́vel
observar, os maiores erros percentuais estão localizados nos menores valores de N . Isso
porque o ajuste realizado pelo método dos mı́nimos quadrados prioriza os valores mais
significativos da análise. Com os resultados é possı́vel observar que o modelo de desem-
penho da versão VRP-SS está melhor ajustado que os demais. Pelos resultados, 86%
das predições apresentaram erros menores que 10%, o que é muito satisfatório para uma
modelagem analı́tica.

Figura 7. Erros obtidos nas predições de desempenho.

6.3. Projeção de Desempenho

Pelas curvas de projeção, apresentadas na Figura 6, é possı́vel verificar que o desempenho
das soluções VRP-SS e SS é semelhante ao longo de toda análise. Até N = 11.500, o
desempenho do programa estruturado com a abordagem VRP-SS é ligeiramente melhor
que o SS. Entretanto, a partir deste valor a curva de projeção da solução SS cruza a da
versão VRP-SS e começa a apresentar melhores resultados de desempenho. Portanto,
a estratégia VRP-SS inicia com um desempenho melhor mas tende a ser superada pela
versão SS, segundo as previsões geradas pelos modelos. Mesmo assim, o desempenho
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das duas versões segue próximo e, portanto, é um indicativo de que qualquer uma destas
estratégias poderia ser utilizada na organização da solução para o problema. É possı́vel
concluir também que a única que deve ser desconsiderada como uma opção viável é a
versão VRP, pois tem um desempenho sempre pior que as demais. Assim, podemos
verificar que os modelos gerados com as estratégias definidas na metodologia PEMPIs-
Het também podem ser utilizados para analisar estruturas de soluções diferentes de um
mesmo problema.

7. Conclusões
Neste artigo apresentamos o uso de modelos analı́ticos, elaborados com as técnicas
propostas pela metodologia PEMPIs-Het, na modelagem e predição de desempenho de
aplicações paralelas completas. Além de estimar o desempenho das aplicações demons-
tramos que é possı́vel gerar modelos parciais para estruturas especı́ficas das aplicações,
como trechos de processamento ou comunicações. A precisão das estimativas geradas
pelos modelos foi verificada através dos testes experimentais. Para o programa Heat, o
maior erro percentual das predições do tempo de execução foi de 13, 75%.

Os modelos analı́ticos também foram utilizados para comparar o desempenho de
diferentes versões de um mesmo programa. O intuito desta modelagem é estimar qual ar-
quitetura de solução distribuı́da é mais eficiente para a aplicação modelada. Dessa forma,
é possı́vel realizar uma predição sobre o comportamento do programa e estimar, através
dos modelos analı́ticos, qual a estratégia capaz de oferecer melhor desempenho no am-
biente de execução. A precisão desta análise está diretamente relacionada a acurácia
dos modelos gerados. O maior problema desta atividade é que o comportamento da
aplicação tende a ser alterado ao modificar os valores de N e p, por questões relacio-
nadas ao hardware das máquinas, como quantidade de memória principal e tamanho do
cache, principalmente. Como os modelos analı́ticos são elaborados com base em resulta-
dos de execuções para intervalos restritos de N e p, a precisão das estimativas pode ser
comprometida.

Neste intuito, fizemos uma previsão para o desempenho de três diferentes modelos
de soluções para o programa de multiplicação de matrizes: SS, VRP-SS e VRP. Através
das estimativas verificamos que o desempenho das versões SS e VRP-SS tende a ser muito
próximo ao variar o tamanho de N . Embora até N = 11.500 a solução VRP-SS seja um
pouco melhor, a partir deste valor a solução SS passa a oferecer melhor desempenho. As-
sim, demonstramos que é possı́vel aplicar os modelos de predição para analisar estruturas
de soluções diferentes de um mesmo problema.
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