DBT-5: A Fair Usage Open-Source TPC-E | mplementation for
Perfor mance Evaluation of Computer Systems

Rilson O. do Nascimento!, Mark Wong?, Paulo R. M. Maciel!

!Centro de Informatica — Universidade Federal de Pernambuco (UFPE)
Caixa Postal 7851 CDU — 50.732-970 — Recife — PE — Brazil

2PostgreSQL Global Development Group
A/C Rilson Nascimento — Caixa Postal 7851 CDU —50.732-970 — Recife — PE — Brazil

{rilson, prmmi@i n.ufpe.br, markwkm@nmail.com

Abstract. The TPC-E is the new benchmark recently approved by the TPC coun-
cil. Itis designed to exercise an On-Line Transaction Processing workload of
a brokerage firm and be representative of current database server work. In this
paper we present DBT-5, a fair usage open-source implementation of the TPC-E
benchmark. In addition to reporting on the design and implementation details
of the tool, experimental results on a system running the PostgreSQL database
engine are also described. The significance of this work is that it provides an
environment where recent innovations in the OLTP workload field can be eval-
uated.

Resumo. O TPC-Eé o novo benchmark aprovado recentemente pelo conselho
TPC. Foi projetado para exercitar uma carga de trabalho de Processamento
de Transago On-Line de uma corretora de @es, sendo centrada no tra-
balho executado pelo servidor de banco de dados. Neste arfig@presen-
tamos a ferramenta DBT-5, uma implemedagle ©digo aberto, para uso

nao comercial, do benchmark TPC-E.&éAl de descrevermos a arquitetura e a
implementago do sistema, mostramos resultados experimentais em um sistema
rodando o banco de dados PostgreSQL. A imjpacta deste trabalho seéadela
provisio de um ambiente onde as ino%ag no campo das cargas de trabalho
transacionais podem ser avaliadas.

1. Introduction

Performance is a significant facet of transaction processing systems. The response time
is critical for end users as much as transaction throughput is important for system admin-
istrators. In this typical corporative scenario, companies cannot waste money on systems
that are unable of sustaining satisfactorily their business with scalability and performance.
Therefore, the companies need an instrument that reports the performance of the systems,
in a way that rational comparisons can be made among different systems.

To answer to this need, vendors formed an independent consortium called the
Transaction Processing Performance Council (TPC), which defines representative trans-
action processing systems workloads that can be used to make such coherent comparisons

[1].

The TPC Benchmark E (TPC-E) [7] is intended to model a complex online trans-
action processing (OLTP) workload. It is patterned after a brokerage firm workload, with

495

multiple transaction types, balanced mixture of disk inpupgattind processor usage.

Like its predecessor TPC-C, the workload specifies also skewed or non-uniform access to
the tables, which better simulates the OLTP activity. The TPC-E aims to replace the ag-
ing TPC-C benchmark, becoming one of the TPC mainstream benchmarks together with
TPC-DS. The DBT-5 performance tool was based on a public draft release of the TPC-E
specification.

In addition to their commercial purpose, the TPC benchmarks have been exten-
sively used in research. Llanos implemented the TPC-C workload to be used in parallel
and distributed systems [2]; Leutenegger and Dias modeled the TPC-C benchmark [6] to
study access patterns; Sivasubramaniam created a synthetic workload generator for TPC-
H [4]; among other papers. It is important that the scientific community and the industry
proceed on their efforts to excel the existing storage systems by counting on a tool that
implements recent innovations in the OLTP workload simulation field. The aim of DBT-

5 is to provide an environment where these innovations can be measured, modeled, and
characterized, so that new advancements might take place.

It is worth notice that the results reported by the DBT-5 workload do not constitute

a TPC-E result, and are incomparable with any TPC-E benchmark. The primary metric
reported by the DBT-5 workload is the number of trade-result transactions executed per
second, which is expressed as Trade-Result Transactions per Second (TRTPS). However,
TRTPS do not and should not be compared to tpsE measurements in any way, since DBT-
5 workload does not constitute a compliant TPC-E benchmark. The rest of this paper is
organized as follows. In the next section we provide a synopsis of the TPC-E workload,
intending to let this paper plausibly self-contained. The Section 3 discusses about DBT-
5's performance metric. The overall design and implementation of the tool is presented in
Section 4, followed by an example of application. Concluding remarks appear in the last
section.

2. TPC-E Workload Synopsis

This section provides an outline of the TPC-E benchmark. For detailed information on the
benchmark and the TPC, please see the TPC-E specification [7], and the TPC web site:
http://www.tpc.org. The TPC-E benchmark exercises a variety of on-line transactions,
simulating current OLTP applications. Due to this fact, some TPC-E features, like the
database schema and the transactions, are more complex than of its predecessor, the TPC-
C benchmark. The main system component being tested is the central database engine,
where the transactions run.

TPC-E models a brokerage firm that interacts with customers and with the market
exchange. The customers can trade requests and inquire the brokerage house; the market
can send feedback from triggered orders. The central database is the repository from these
three entities, Customer, Brokerage House and Market. The database consists of 33 rela-
tions, organized in four sets: Market, Customer, Broker and Dimension. The Dimension
set contain generic data used by the other relations, like tax rates, addresses and zip codes.
The database size is defined as a function of the cardinality of the Customer relation, i.e.,
all other relations must increase according to the size of the Customer table. The maxi-
mum throughput attainable also depends on the Customer’s cardinality. Therefore, to get
a desired throughput, the Customers table must be sized appropriately.

496

Table 1: TPC-E transactions

Transaction Weight | Access| Mix% | 90% Response Time
Constraint
Trade-Order Heavy R/W 10.1 2 sec.
Trade-Result Heavy R/W 10 2 sec.
Trade-Lookup Medium R/O 8 3 sec.
Trade-Update Medium R/W 2 3 sec.
Trade-Status Light R/O 19 1 sec.
Customer Position Mid-Heavy | R/O 13 3 sec.
Broker Volume | Mid-Heavy | R/O 4.9 3 sec.
Security Detall Medium R/O 14 3 sec.
Market Feed Medium R/W 1 2 sec.
Market Watch Medium R/O 18 3 sec.
Data Maintenance Light R/W - -
Trade-Cleanup | Medium R/W - -

The TPC-E benchmark defines twelve transactions; ten of themaapecific
mix to be respected during the run. The transactions differ on the type of access (read-
only or read-write) and on the load it imposes on the system, as depicted in Table 1.
The TPC-E specification does not describe in details the meaning of each weight, it only
briefly mentions about it for each transaction. This attribute is just to give a general idea
of the load that each transaction imposes on the system in terms of I/O and CPU.

To publish an official TPC-E result the sponsors must include the primary metrics
that the specifications requires: the throughput rating, expressed in tpskg; the price/tpsE
ratio, which takes into account the cost of the pre-configured system evaluated; and the
availability date, which states when all products used in the run will be commercially
available. The tpskE represents the number of trade-result transactions executed per second
during a run. Unlike TPC-C, the TPC-E workload neither defines display layouts, nor
thinking/keying times. The absence of these characteristics leads to simplifications in
user emulation.

EGen is a TPC provided software package that accompanies TPC-E and it is de-
signed to facilitate its implementation. The main components of the EGen are EGen-
Loader, EGenDriver and EGenTxnHarness. The EGenlLoader is used to generate data for
the database, it comes with two loaders, one that generates output flat files, and other that
loads a Microsoft SQL Server database; it can be extended to support direct loading of
other databases. We extended the EGenLoader to support PostgreSQL, as we will show
in the next section. The EGenDriver facilitates the implementation of a Driver, and it
has the following components: EGenDriverCE (Customer Emulator), EGenDriverMEE
(Market Exchange Emulator) and EGenDriverDM (Data Maintenance). The EGenTxn-
Harness is a TPC provided C++ class defining the transaction logic, which is not allowed

497

to be changed by the sponsors. This logic is used together witinatheactions defined
on the database server.

One of the main goals of TPC-E was to use data that would more accurately repre-
sent today'’s real-world applications and OLTP systems. The TPC-E database is populated
with data distributions based on 2000 U.S. and Canada census data and actual listings on
the New York Stock Exchange and Nasdaqg. It is also important to also mention that
TPC-E was designed to ensure a level playing field between participants, by defining a
common software package that all players should use to implement the benchmark. Raj
Jain in [3] comments that a benchmarking study must always follow a fair process, to
avoid the misleading and biasbdnchmarking games.

3. Performance Metrics

The primary metric reported by the workload is the number of trade-result transactions ex-
ecuted per second, which is expressed as Trade-Result Transactions per Second (TRTPS).
This metric is calculated by the following expression:

n
\ = MR
t

whete nri denotes the number of completed trade-result transactions executed during the
test run, and is the time length in seconds of the test run.

Given the required mix and the wide range of complexity and types among the
transactions, this metric closely simulates a complete business activity. For this reason,
TRTPS is considered business throughputThe importance of reporting performance
with a single number [5] is that it is easy to understand and easy to be used for apple-to-
apple comparisons between different systems, regardless of hardware, operating system
or transaction processing system being used. In addition, it might be used for comparing
configuration alternatives on the same system.

4. Design and Implementation

The workload was written mostly in C++ and PL/pgSQL, which is a loadable pro-
cedural language for the PostgreSQL database system. It was used to create the
functions that defined the TPC-E transactions. C++ was used to code the servers,
the emulators, the transaction tester and the extended database loader. Figure 1
depicts the modules of DBT-5. The other components were coded in scripting
languages. Currently, the software only supports Linux as runtime environment.
DBT-5 can be freely downloaded from the internet (a subversion client is needed):
https://svn.sourceforge.net/svnroot/osdldbt/trunk/dbt5.

Five main modules collaborate to provide the activities that run the workload. The
modules are:

e Test Controller This module controls the other components to launch a perfor-
mance run. This is the main interface available for the user to interact with the
workload. It is an optional piece since the other modules can be launched individ-
ually. However, its utilization simplifies and automates the test.

498

Database Loader

Customer

e Emulator

..)

Brokerage House

Market Exchange
. ¥ Emulator (server)

Lo Test Controller |-

«++)> File access
---@ Signals
<> TCP/IP Socket

(server)

Database Engine

PostgreSQL

Transaction
Tester

System
monitor

Post-processing
analyses

Figure 1. DBT-5 Architecture

Customer Emulator

499

Customer Emulator A key piece of the driver system. It is responsible for em-
ulating customers: requesting trades, providing input, sending transaction data,
receiving replies, measuring and logging response times.

Market Exchange Emulator It is part of the driver system. It is responsible for
emulating the stock market: receiving trade requests from the Brokerage House,
performing the trades, sending transaction data, receiving replies, measuring and
logging response times.

Brokerage House This component represents the multi-threaded server in the bro-
kerage firm. It receives the transaction requests from the drivers, communicates
with the database engine and sends replies back to the drivers.

Database loader The database loader is part of TPC-E EGen. Our loader is an
extension of the base loader oriented to generate and direct loading data into the
PostgreSQL database.

The following subsections describe the modules in more detail and the communi-
cation between them.

Test Controller

The Test Controller is a bash script responsible for launching a DBT-5 test. Its
main options are: number of customers, duration of the test, number of users and seed.
The other seven options have defaults defined. This module performs the test in four
stages: 1) Starting the Brokerage House server; 2) Starting the Market Exchange Server;
3) Starting the Customer Emulator (driver); and 4) Processing the test results. One of the
limitations of the Test Controller is that it cannot operate in a multi-machine environment;
it can only start the other modules when they are all on the same machine.

The Customer Emulator (CE) is a two-fold component: the core part is provided
by EGen (EGenDriverCE), the rest is implemented by the sponsor. In a TPC-E compliant
driver, the EGenDriverCE must be used when implementing the CE. The sponsor imple-
ments the platform-specific features, i.e., sending the transaction requests and input data
to the database, receiving transaction replies and output data from the database, measur-

ing and logging. Both the CE and MEE log the transaction respom&stn a file to be
evaluated at a later time by the Post-processing analyzer. The EGenDriverCE is respon-
sible for the core functions of the emulator, which involves deciding which transaction to
perform next (following the transaction mix), and generating data for the transaction.

Market Exchange Emulator

The Market Exchange Emulator (MEE) follows the same design and implemen-
tation of the Customer Emulator. It is divided in two parts, one part provided by EGen
(EGenDriverMEE) and the other part sponsor-implemented.

It is important to notice that unlike the CE, the MEE is not only an emulator, but
also a server. Since it represents the Market, it receives and performs trade requests from
the Brokerage House. The MEE is an executable file, implemented as a multi-threaded
server that listens on a user-defined port.

Brokerage House

The Brokerage House (BH) is composed by the following parts: Driver-SUT (Sys-
tem Under Test) connector, EGenTxnHarness, Frame Implementation and the database
interface. The EGenTxnHarness is provided by the TPC and calls the sponsor’s imple-
mentation of the transaction frames. The Frame Implementation provides the transac-
tion functionality; the database interface is used in the communication with the database
server. In the project, we used libpgxx as the client API for PostgreSQL. The BH is
implemented as a multi-threaded server that listens on a user-defined port.

Database L oader

The Database Loader produces and loads data into the test database. It generates
the correct number of rows for each table based on defined rules in the TPC-E. The EGen-
Loader is part of EGen, it was designed to generate all data necessary to a test while still
allowing sponsors the freedom to customize how the data gets loaded into the database
(TPC, 2006). As a result, it can be extended to populate different database management
systems.

EGen provides a C++ template class, named CBaselLoader, which can be used to
extend the base loader, while the generator element remains unchanged. We implemented
a CPGSQLLoader class derived from the base loader to support direct loading of a Post-
greSQL database. The flat file loader that accompanies EGen can still be used to populate
any database via the flat files.

System Monitor and Post-processing Analyzer

The System Monitor is responsible for collecting performance data from the sys-
tem resources, including disks, memory and processors during the test. The gathered data
is stored in files in raw format, which are processed to generate plots and reports. The
plots are very useful to analyze the system performance. For instance, it helps the tester
to understand the system behavior during the workload, to find bottlenecks and to tune
the system. This module is written in scripting language and uses gnuplot to generate the
graphs; other Linux tools are used to collect performance data from the system: vmstat,
iostat and OProfile.

OProfile is used for system-wide profiling. It profiles the Linux kernel as well

500

as all user applications running on the system to generate: acdwmmmary including
libraries, call-graph output, and annotated mixed source and assembly. The data is useful
in determining what the system is doing in userspace or kernel spaces and the code path
exercised.

The Post-processing Analyzer works on the log files generated by the emulators
during the test. It performs statistical computation based on the transactions response
time, generating graphs that describe the transactions behavior, like the Cumulative Dis-
tribution Function plots. In addition, a throughput graph is produced that portrays the
main DBT-5 metric, TRTPS, all over the test phase. This module is written in perl and
uses gnuplot to generate the graphs. The next section presents an example of application
of DBT-5, where the main plots and reports are shown.

Communication

TCP/IP sockets are used to enable the communication between the server (Bro-
kerage House) and the emulators (Customer and Market), and between the server and
the database engine. The binaries created for each of these components do not need to
be in the same machine, since they can communicate via the network. Therefore, it is
possible to create different scenarios for performance testing. A current limitation of the
Test Controller is that it cannot control the components when they are not on the same
machine. However, it is possible to launch and run the test without the controller when
you have a more complex testbed. At the programming level, the TPC-E specification
defines interfaces that must be used to derive classes that govern the communication be-
tween each emulator and the server. The TPC provided interface classes are: CCESUTIn-
terface, CMEESUTInterface and CDMSUT Interface. We derived CCESUT, CMEESUT
and CDMSUT classes from these interfaces, which are used by the Customer Emulator,
the Market Emulator and the Data-Maintenance transaction, respectively.

In comparison with TPCC-UVa [2], which is a software tool that implements
the TPC-C benchmark, our architecture provides an important feature. TPCC-Uva uses
shared-memory for inter-module communication. It enables efficient communication but
encloses all modules inside the same host. DBT-5's client/server approach using TCP/IP
sockets enables the creation of a networked testbed where the modules can reside on dif-
ferent machines. This networked environment includes the following benefits: alleviation
of the interference of the workload’s instrumentation on the system under test, providing
more reliable results; improved characterization of a typical database application environ-
ment, due to the presence of the network by itself.

5. Experimental Results

We present DBT-5 on a system with an Intel Xeon CPU 3.00GHz, 3 GB of RAM, running
Gentoo 2006.1 on kernel 2.6.19-r5, and PostgreSQL 8.2.1.

After running the workload for forty minutes, on a database loaded with 1000
customers, scale factor 500, the Test Controller gathers all outputs in a numbered directory
which is automatically assigned for each performance run. The main reportis presented in
Figure 2. It shows the average response time and the 90th percentile for each transaction,
together with the total number of transactions executed and the number of rolled back
transactions. 1% of Trade Orders rollback by design.

501

Response Tine (s)

Transaction % Aver age : 90th % Tot al Rol | backs %
Trade Order 10. 10 0.072 : 0. 057 7490 74 1.00
Trade Result 10. 08 0.151 : 0.113 7416 0 0.00
Trade Lookup 8. 10 0. 655 : 0. 696 6006 0 0.00
Trade Update 2.15 0. 405 : 0.417 1594 0 0.00
Trade Status 18. 94 0. 137 : 0.132 14045 0 0.00
Customer Position 12. 84 0.492 : 0. 479 9522 0 0.00
Broker Vol une 4. 95 0.026 : 0.016 3670 0 0.00
Security Detail 13. 84 0.117 : 0. 084 10263 0 0.00
Mar ket Feed 1. 00 0. 269 : 0. 262 741 0 0.00
Mar ket Watch 17.94 0.116 : 0. 154 13304 0 0.00
Dat a Mai ntenance --- 0.143 : 0. 226 59 0 0. 00

2.06 trade-result transacti ons per second (TRTPS)
40.0 m nute duration

0 total unknown errors

5 second(s) ranping up

Figure 2: DBT-5's main report

7000

6000+

5000

4000

3000+

Frequency

2000+

1000+

0 130 260 390 520 650 780 910
Customer ID

Figure 3: Frequency Distribution of Customer ID

The gdots can be divided in two groups: System Resources and Transactions. The
Figure 4 presents some of the plots for both groups. The System Resources group, which
reports CPU, input/output, context switches per second, memory and paging activity, pro-
vides a server-wide view of performance. These plots are useful for finding bottlenecks
and for performance tuning. The plots in the Transactions group show statistical informa-
tion about each transaction. For each graph there is a correspondent data file in flat format
that can be used to easily generate other types of graphs.

Besides evaluating the performance of the system under test, our tool might be also
used to analyze some aspect of the benchmark itself. The TPC-E benchmark assumes ac-
cess to the rows are skewed, i.e., within a table some rows are referenced more frequently
than others. For example, in the Customer table, it is expected that some customers be
exercised more than others, in order to model the behavior of a real OLTP application.

To verify this, we collected one million values of the Customer ID field generated
by the workload during a test run. These values are created by the non-uniform random
number generator, as specified by the TPC-E EGen software package. In figure 4 we plot
the frequency distribution of Customer ID. The non-uniformity of access is visible.

502

6. Conclusion

In this paper we described DBT-5, a fair usage open-source implementation of the TPC-E
benchmark. The workload exercises a modern OLTP system, which simulates an en-
vironment for performance evaluation of computer systems. An outline of the TPC-E
specification was also presented, together with a description of the DBT-5 architecture
and implementation. An example of application was given and the main graphs were
shown.

The significance of this work is that it provides an environment where recent in-
novations in the OLTP workload field can be studied. For example, using DBT-5 one can
model TPC-E with the intent of studying buffer miss rate; a similar investigation was per-
formed by Leutenegger and Dias in [6] in regards to the TPC-C benchmark. Traces can
be generated from DBT-5 execution and further analyzed to characterize some aspect of
the workload. Presently, we are working towards creating an I/O synthesizer for TPC-E
based on traces generated from DBT-5. To our knowledge this is the first FOSS (free
open-source software) implementation of the TPC-E specification.

Acknowledgment

The authors would like to thank Google for funding the development of this software tool
through the Google Summer of Code 2006 program.

References

[1] A. Bernstein, P., and E. Newcomélrinciples of Transaction Processing for the Systems
ProfessionalMorgan Kaufmann, 1997.

[2] D. R. Llanos and B. PalopTPCC-UVa: An Open-Source TPC-C Implementation for
Parallel and Distributed SystemEEEE 6th International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel and Distributed Systems, 2006.

[3] J. Raj.The Art of Computer Systems Performance Analysis Techniques For Experimental
Design Measurements Simulation And Modeling. Wiley Computer Publishing, John
Wiley & Sons, Inc, 1991.

[4] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Y. Zhang, S. Nagathesiz-
ing Representative 1/0 Workloads for TPC-H. Proceedings of the 10th International
Symposium on High Performance Computer Architecture, 2004.

[5] K. John, L., and L. EeckhouPerformance Evaluation and Benchmarking. CRC Taylor
& Francis Group, 2006.

[6] S. T. Leutenegger and D. Dia8.Modeling Study of the TPC-C BenchmafiCM SIG-
MOD, 2003.

[7] Transaction Processing Performance Council, TPC BencHMErkDraft Revision 0.30
for Public Release, August, 19, 2006.

503

100

LR e it R
c
S B0
5 —user
S oo ——system
> —!dle)
S o i/o wait
B
30
20t -
———— — ——
0 HF T T T T e e
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Time (Minutes)
(a) YCPU Utilization
400

Context Switches/sec

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
Time (minutes)

(b) Context Switches per second

03

0,25 4

Response Time (s)

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131
Trade Order

(c) Trade-Order Response Times

Figure 4: :Response Time and System Resources Graphs

504

