An exploratory study on machine learning frameworks
Caio Flexa'>", Walisson Gomes', Sérgio Viademonte'

"nstituto Tecnoldgico Vale,
Rua Boaventura da Silva 955, Nazaré, Belém, 66055-090 Para, Brazil.

2Applied Electromagnetism Laboratory, Federal University of Par4,
R. Augusto Corréa, Guama 01, Belém, 66075-110 Par4, Brazil

{caio.rodrigues,walisson.gomes}@icen.ufpa.br,

sergio.viademonte@itv.org

Abstract. This document describes a preliminary study on computing frame-
works and technologies, for the purpose of developing machine learning (ML)
system applications. Several frameworks, application programming interfaces
and programming libraries for ML algorithms have been developed in the last
few years, in a relatively short period of time, making difficult a decision on
which one to chose in a particular application. This study reviews some criteria
and performs a preliminary evaluation of some of the most used ML technolo-
gies for developing system applications, with the purpose to guide and facilitate
the decision on which of them to apply, given a particular application.

1. Introduction

In the last few years several computing technologies have emerged for the processing of
large data set, such as computing frameworks, application program interfaces (APIs) and
programming libraries. Processing large amount of data is a mean to acquire knowledge
implicitly distributed on such data volumes, with the purpose to developed smart comput-
ing applications. Examples of such smart applications in industry are predictive systems
for operational failures, applications for preventive maintenance of industrial assets, tai-
loring energy consumption according to optimal use, among others.

The research described in this document is part of a major investigation on tech-
nologies for processing large volumes of data, focusing on artificial intelligence, machine
learning and data analytic capabilities. This investigation aims to guide and facilitate the
decision on which technologies for processing large volumes of data to chose for the de-
velopment of smart computing applications. This document describes the motivations of
this investigation, and presents some preliminary results. This research project has been
developed as part of Vale S.A (Vale) initiatives in the Industry 4.0 [MICS 2019]. Vale is
a multinational mining organization, headquartered in Brazil, with operations that spread
over various countries.

An industrial problem has been selected for our investigation. We have used a data
set about railways incidents obtained from Vale’s operations to evaluate the predictive per-
formance of ML algorithms on computing the likelihood of an incident occurrence. The

2Supported by Instituto Tecnoldgico Vale and Brazilian National Council for Research and Develop-
ment (CNPq), under the research grant 402748/2018 — 2.

data set covers a period of 9 years, with 59 features, and approximately 25 thousand in-
stances. To illustrate some of the features used in our investigation were: the time, date,
municipality and the position along the railway (given in kilometers) where an incident
occurred, the existence of level crossings, the occurrence of mechanical or electric failure,
among others. For the reason of data confidentiality, we have labeled the incidents in our
study as I-A, I-B, I-C and I-D. Therefore, the analysis becomes a classification problem,
with 4 classes. A series of ML algorithms were applied to build classifiers, as we are con-
cerned in identifying classes of incidents, and later to evaluate the predictive performance
of the obtained classifiers. Readers interested in detailed information about this initiative
of railways incidents analysis, should refer to specific literature, [Viademonte et al. 2018].

The focus of this paper is in the APIs and respective ML algorithms and their suit-
ability for the choosen industrial problem. It is important to note that the main purpose
of this research is to investigate the suitability of technologies to specific problems, not
a direct comparison among the selected technologies. This document describes the cur-
rent stage of the investigation on technologies for processing large volumes of data, and
presents some preliminary results. Section 1, Introduction, describes the context of our
work. Section 2 describes the frameworks and APIs and briefly comments some of their
particularities, in Section 3, they are applied to the railway incidents problem. Finally,
Section 4 concludes the paper and gives the some final remarks.

2. Technology descriptions

This section briefly describes and highlights some of the key aspects of the technolo-
gies under study in this research project. Initially, four technologies were chosen for
both theoretical and practical analysis: Apache Spark, TensorFlow, Scikit-learn and Py-
Torch. These technologies are subject of study in a number of recent papers, including
[Shi et al. 2016, Giannini et al. 2017, Mavridis and Karatza 2017].

2.1. Apache Spark

Originally developed in AMPLab of the University of California, Apache Spark® is an
open source framework for distributed computing, later passed on to the Apache Software
Foundation that has maintained it ever since. Spark is a Big Data framework that provides
an interface for computing cluster parallelism and fault tolerance, whose main purpose is
to process large volumes of data. Another important aspect is that Spark supports different
programming languages: Java, Python and Scala.

One of the strongest points in Spark is that it provides several components, work-
ing in an integrated fashion. The main components are: Spark Streamming: enables the
processing of flows in real time; GraphX: provides a graphs processing capability; Spark-
SQOL: SQL language for data queries and processing; MLIib: machine learning library
with several algorithms for classification, regression and clustering.

2.2. TensorFlow

TensorFlow* is an open source library for numerical computation developed by Google
Brain Team. It’s mostly applied for deep neural networks applications, but can also be

30nline source: https://spark.apache.org/documentation.html.
4Online source: https://www.tensorflow.org/api_docs.

used for others machine learning system applications. TensorFlow supports different pro-
gramming languages, such as Python, Javascript, C++, Java, Go, and Swift.

The library is called TensorFlow due its fundamental processing structure, Ten-
sors, which are graph structures that implement a distributed data flow. Tensors flow
along the graph, being submitted to several computations implemented by nodes. This
type of structure is applied in both fast experimentation and large-scale projects, regard-
ing its modular and parallel computing capabilities. TensorFlow provides several capabil-
ities for data processing, regression, classification and clustering. The implementation of
neural network models is further facilitated by Keras, a high-level API that encapsulates
many of TensorFlow inherent complexities.

2.3. Scikit-learn

Scikit-learn’ is an open source ML library for Python programming language. It provides
a large set of ML algorithms for classification, regression, clustering, dimensionality re-
duction, among others. For example, it includes implementations of following ML al-
gorithms: support vector machine, random forest, gradient boosting and K -medians. In
addition, it provides a seamlessly integration with Numpy and SciPy libraries.

The scikit-learn project started as scikits.learn, as part of Google Sum-
mer of Code project, coordinated by David Cournapeau. The name results from
the idea that it is a “SciKit” (SciPy Toolkit), an extension of the SciPy library
(https://scipy.org/scipylib/index.html) developed by third parties and distributed sepa-
rately. Scikit-learn library is currently under active development, sponsored by INRIA,
Telecom ParisTech and Google.

2.4. PyTorch

PyTorch® is a Torch-based library for Python using GPUs and CPUs. It was released by
Facebook’s artificial-intelligence research group on October of 2016. PyTorch has been
used in applications such as natural language processing and the Pyro software. Pyro is a
probabilistic programming language built on Python developed at Uber Research labs. At
the end of March 2018, Caffe2 (Convolutional Architecture for Fast Feature Embedding),
a deep learning framework originally developed at University of California, Berkeley was
merged into PyTorch. However, it is not a simple set of wrappers to support a popular
language. PyTorch was rewritten and adapted to be fast and look native, often used as a
substitute for Numpy. PyTorch provides two high-level capabilities:

e Tensor computation with strong GPU acceleration;
e Deep Neural Networks (package torch.autograd).

3. Theoretical Comparison

Each technology has been developed with one or more objectives in mind. For exam-
ple, Spark is able to deal with huge amounts of data and it is also a cluster manager for
commodity hardware. TensorFlow and Pytorch are flexible and focus on deep learning,
while Scikit-learn is easier to install and use, and has been developed for machine learn-
ing applications, such as classification and clustering, but not necessarily deep learning.

5Online source: https://scikit-learn.org/stable/documentation.html.
%Online source: https://pytorch.org/docs/stable/index.html.

Therefore, the selection of these technologies will depend on the task to be addressed
and its requirements. We have applied an industrial problem, the predictive analysis of
railway incidents, to evaluate those frameworks and APIs. The selected criteria in this
research are: capabilities for parallel computation, data ingestion and processing, easy of
use and function availability.

License: the four technologies are open source and have community support.

e Apache Spark and TensorFlow — Apache License 2.0.
e Scikit-learn and Pytorch — Berkeley Software Distribution (BSD).

Parallel computation: all technologies support execution in CPU with multiple
cores and in clusters. Tensorflow and Pytorch both have support to GPU platforms. In
fact, they try to take full advantage of GPU’s numerical processing capabilities to train
neural networks. Apache Spark was designed for distributed computing environment and,
although some libraries are necessary, it can also include GPUs. Scikit-learn does not have
GPU support. The main reason for this is to keep fewer dependencies and avoid issues
with specific platforms.

Preprocessing: all selected technologies can benefit from Python built-in func-
tionality and science libraries. Scikit-learn presents a simple and direct way to transform
data into the desired formats. In fact, the library can also be employed to prepare them
beforehand passing to other ML frameworks. Each of the libraries has its own way to
implement data preprocessing, such as one hot encoding, normalization, filtering, etc.
Tensorflow and Pytorch also provide a nice interface for preprocessing images with, re-
spectively, image and tourchvision modules. Apache Spark stores the data in-memory
during processing to aid operations, enabling for optimized performance. At the core
of the Spark framework data structure is termed DataFrame, which represents a set of
data that can be implicitly processed using parallelism and distribution. This level of ab-
straction allows programmers to focus on the implementation of the ML. models without
requiring additional knowledge. Its pipeline, a high-level abstraction, allows to create a
stream of data processing where each stage performs a data preprocessing task.

Data ingestion: data ingestion can directly affect the overall time to build a model.
With Scikit-learn, data can be passed using well-known libraries such as Numpy and Pan-
das. Other technologies can commonly use those libraries, but they have their own way
of dealing with data ingestion and the creation of data processing pipelines. Tensorflow
uses the #f.data API mainly to deal with data ingestion when using GPU and TPU; Py-
torch allows a certain level of control of data ingestion with pre-defined interfaces for
data loading and sampling, keeping parallelism transparent; Apache Spark, was designed
to be efficient with distributed computation and large data sets, therefore it presents better
capabilities for ingesting and preprocessing (very) large datasets.

Easy of use: Scikit-learn is the simplest and easiest to start with, among the four
technologies studied in this research. If a more complex architecture is necessary, spe-
cially when implementing neural network models, Tensorflow and Pytorch are the way
to go. They have a similar and straight forward installation process, with good docu-
mentation and active community. Tensorflow supports Keras API layer, which offers a
good abstraction for the creation of deep neural network models. At the other hand, Py-
torch is more dynamic, allowing a simple definition and debugging. Apache Spark is a
powerful tool for large-scale data applications, since it encapsulates all the complexity

Predicted Predicted
I-A I-B I-C ID I-A I-B I-C ID
_1-A GBIFEN NSONNGIEN 1-A [PEEN TS R22N TN
A8 (826 o | LT RRE LT 72,9 AT
S [[472] mRe | [464] |
L-DFOATFT0T F04T [EER] 1-D[I6:S T 2.9 0T [TEE]
(a) Apache Spark (b) Scikit-learn
I-A I-B I-C ID I-A I-B I-C ID
1A NS 0 NS - ST 2
% 1.5 (22N EAC) SN N4S) 15 B8N Y 1S S9)

Sic B - EESNESE-L] M
1-D ROUNR00N B 1) 1-D 000 K001 H0S I ELL]

(c) Tensorflow (d) Pytorch

Figure 1. Confusion matrices for all four technologies. Classes I-A, I-B, I-C, and
I-D represent four common incidents.

of parallelism. However, the use of Apache Spark is not trivial, mainly considering data
structures manipulation and programming.

Function availability: all the selected technologies implement a considerable
number of commonly used ML algorithms for data clustering, regression, classification
and dimensionality reduction, specially Scikit-learn and Apache Spark. TensorFlow and
Pytorch provide better capabilities, such as high level libraries, for building and process-
ing neural network models, including deep learning.

4. Empirical Evaluation

With the purpose of evaluating the applicability of the selected technologies, they were
applied to the railway incident prediction problem. Since the technologies have different
design purposes, they implement different algorithms and specific functionalities. Apache
Spark and Scikit-learn were evaluated through their respective implementation of CART
decision tree generator algorithm. Tensorflow and Pytorch were evaluated through of a
neural network model with three dense layers, with RMSprop optimizer and 500 epochs.

The evaluation has been done numerically and qualitatively, using ML algorithms
with a ten fold cross-validation procedure. Table 1 displays the mean accuracy, balanced
accuracy and precision, with the respective standard deviations. Figure 1 shows the four
confusion matrices on our experiments.

Apache Spark | Scikit-learn Tensorflow Pytorch
Accuracy 0.820 £ 0.014 | 0.760 £ 0.019 | 0.781 £ 0.015 | 0.781 + 0.022
B. accuracy | 0.754 +0.019 | 0.737 £0.022 | 0.716 £ 0.026 | 0.708 £ 0.030
Precision 0.817 £0.020 | 0.768 £ 0.020 | 0.770 £ 0.017 | 0.773 + 0.029

Table 1. Performance measures on a ten fold cross-validation. The results are

represented by mean and standard deviation.

It can be observed that there is a small difference among the four technologies and
two algorithms. Taken the accuracy and precision measures, Apache Spark shows the best

performance. The confusion matrices show that the algorithms tend to misclassify I-A.
This effect was reduced only in Scikit-learn’s. The class I-A refers to important incident.

The ML algorithms were not complex to use, specially with Scikit-learn. Ten-
sorflow and Pytorch have abstraction libraries, helping to define the sequential network,
and the use of Keras in Tensorflow significantly reduces its complexity. Apache Spark
demonstrated good results, but it is less intuitive to use, specially due to its more complex
procedures for data processing.

The results discussed above are not conclusive, in terms of which of those tech-
nologies performs better, in general. The results illustrated in Figure 1 and Table 1 provide
an indication of which, among the selected technologies, would be more appropriate to
apply for a problem similar to the incident analysis, introduced in Section 1.

5. Conclusions and further work

This document presents some preliminary results, as part of an exploratory study on com-
puting frameworks and technologies for developing ML system applications. Four ML
technologies have been selected, Apache Spark, Scikit-learn, Pytorch and TensorFlow.
This initial evaluation was taken based on the criteria of parallelism, data processing and
ingestion, usability and the availability of ML algorithms. An empirical evaluation of ML
algorithm performance, on the railway incidents prediction problem, has been carried out.

All technologies presented similar performance on test data, therefore they can
be considered equally efficient on this criteria. Apache Spark shows more suitable for
distributed computation of large dataset, although more complex to use, mainly regarding
its data processing capabilities. TensorFlow and Pytorch work well for deep learning
applications, and the use of Keras significantly reduces the complexity of implementation.
Scikit-learn showed the simplest API to use, although not the best alternative for deep
learning applications, or for highly distributed computation. The results discussed are
preliminary, as they are part of the initial research and investigation on the technologies.
Further studies and performance evaluation, including on different applications, will be
performed as part of the research project discussed in this document.

References

Giannini, F., Laveglia, V., Rossi, A., Zanca, D., and Zugarini, A. (2017). Neural net-
works for beginners. A fast implementation in matlab, torch, tensorflow. CoRR,
abs/1703.05298.

Mavridis, I. and Karatza, H. (2017). Performance evaluation of cloud-based log file anal-
ysis with apache hadoop and apache spark. Journal of Systems and Software, 125.

MICS (2019). Ministério da indudstria, comércio e servigo. industria 4.0. http://www.
industria40.gov.br/. [Online; accessed 18-March-2019].

Shi, S., Wang, Q., Xu, P., and Chu, X. (2016). Benchmarking state-of-the-art deep learn-
ing software tools. CoRR, abs/1608.07249.

Viademonte, S., de Souza, C., Carneiro, N., Junior, J. F., and Lyra, W. (2018). A computa-
tional framework for railway incident analysis: from data mining to data visualization.
In AMCIS2018, New Orleans, Louisiana US.

