
XXXVI Congresso da Sociedade Brasileira de Computação

2828

Energy Consumption Evaluation of NoSQL DBMSs

Carlos Gomes1, Eduardo Tavares1, Meuse Nogueira de O. Junior 2

1Centro de Informática, Universidade Federal de Pernambuco, (CIn,UFPE)

2Instituto Federal de Pernambuco (IFPE)

{cga,eagt}@cin.ufpe.br, meusejunior@recife.ifpe.edu.br

Abstract. Over the years, NoSQL Database Management Systems (DBMS) have
been adopted as an alternative to the constraints of relational/SQL DBMSs. In
order to demonstrate their feasibility, works have evaluated NoSQL DBMSs re-
garding some performance metrics, but energy consumption has not been as-
sessed. Indeed, energy consumption is an issue that should not be neglected
due to the rise of energy costs and environmental sustainability. This paper
presents a peformance and energy consumption evaluation of NoSQL DBMSs,
more specifically, Cassandra (column), MongoDB (document-oriented), Redis
(key-value). Experiments are based on YCSB benchmark, and results demons-
trate energy consumption can vary significantly among the assessed DBMSs for
different commands (e.g., read) and workloads.

1. Introduction
For building and maintain a data center, high investments are involved, and energy con-
sumption plays a remarkable role. According to reports [NRDC 2015], data centers con-
sumed 91 billions KiloWatts in United States during 2013 at a cost of $ 9 billions USD,
and the consumption is estimated to be 140 billions KiloWatts by 2020 (at a cost of $ 13.7
billions USD). Additionally, governments around the world have tried to regulate energy
demand for data centers, and, thus, designs based on energy saving have been crucial for
modern data centers [NRDC 2015].

Data storage is an important subsystem in data centers, and it has significantly
evolved and increased the capacity due to advent of new paradigms, such as cloud com-
puting. Consequently, Big Data concept has emerged, which requires new tools to deal
with a large volume of complex data [Demchenko et al. 2014, Ji et al. 2012].

No relational database management systems (DBMS), termed as NoSQL, have
been proposed as a solution to deal with the constraints (e.g., performance) of conventi-
onal data management tools, such as relational/SQL DBMSs. Nowadays, there are over
150 NoSQL DBMSs [Kuznetsov and Poskonin 2014], which adopt distinct data models,
such as key-value. The abundance and diversity of NoSQL DBMSs have motivated rese-
arches to evaluate and compare these DBMSs regarding latency and throughput. However,
to the best of our current knowledge, energy consumption is usually neglected, despite its
huge importance for modern data centers.

As previously stated, energy consumption is an important non-functional requi-
rement, and the selection of an appropriate NoSQL DBMS may allow cost reduction
and less environmental impact. Besides, system reliability is impacted by energy con-
sumption due to the influence on operational temperature [Zhang et al. 2014]. Reducing



2829

Wperformance - 15º Workshop em Desempenho de Sistemas Computacionais e de Comunicação

Energy Consumption Evaluation of NoSQL DBMSs

Carlos Gomes1, Eduardo Tavares1, Meuse Nogueira de O. Junior 2

1Centro de Informática, Universidade Federal de Pernambuco, (CIn,UFPE)

2Instituto Federal de Pernambuco (IFPE)

{cga,eagt}@cin.ufpe.br, meusejunior@recife.ifpe.edu.br

Abstract. Over the years, NoSQL Database Management Systems (DBMS) have
been adopted as an alternative to the constraints of relational/SQL DBMSs. In
order to demonstrate their feasibility, works have evaluated NoSQL DBMSs re-
garding some performance metrics, but energy consumption has not been as-
sessed. Indeed, energy consumption is an issue that should not be neglected
due to the rise of energy costs and environmental sustainability. This paper
presents a peformance and energy consumption evaluation of NoSQL DBMSs,
more specifically, Cassandra (column), MongoDB (document-oriented), Redis
(key-value). Experiments are based on YCSB benchmark, and results demons-
trate energy consumption can vary significantly among the assessed DBMSs for
different commands (e.g., read) and workloads.

1. Introduction
For building and maintain a data center, high investments are involved, and energy con-
sumption plays a remarkable role. According to reports [NRDC 2015], data centers con-
sumed 91 billions KiloWatts in United States during 2013 at a cost of $ 9 billions USD,
and the consumption is estimated to be 140 billions KiloWatts by 2020 (at a cost of $ 13.7
billions USD). Additionally, governments around the world have tried to regulate energy
demand for data centers, and, thus, designs based on energy saving have been crucial for
modern data centers [NRDC 2015].

Data storage is an important subsystem in data centers, and it has significantly
evolved and increased the capacity due to advent of new paradigms, such as cloud com-
puting. Consequently, Big Data concept has emerged, which requires new tools to deal
with a large volume of complex data [Demchenko et al. 2014, Ji et al. 2012].

No relational database management systems (DBMS), termed as NoSQL, have
been proposed as a solution to deal with the constraints (e.g., performance) of conventi-
onal data management tools, such as relational/SQL DBMSs. Nowadays, there are over
150 NoSQL DBMSs [Kuznetsov and Poskonin 2014], which adopt distinct data models,
such as key-value. The abundance and diversity of NoSQL DBMSs have motivated rese-
arches to evaluate and compare these DBMSs regarding latency and throughput. However,
to the best of our current knowledge, energy consumption is usually neglected, despite its
huge importance for modern data centers.

As previously stated, energy consumption is an important non-functional requi-
rement, and the selection of an appropriate NoSQL DBMS may allow cost reduction
and less environmental impact. Besides, system reliability is impacted by energy con-
sumption due to the influence on operational temperature [Zhang et al. 2014]. Reducing

consumption in data center provides benefits in terms of heat dissipation and, thus, system
reliability.

This paper presents an energy consumption evaluation of representative NoSQL
DBMSs with distinct data models, more specifically, Redis (key-value), MongoDB
(document-oriented) and Cassandra (column). Experiments are based on Yahoo! Cloud
Serving Benchmark (YCSB), in which insert, read, and delete commands are evaluated
for each adopted DBMS. Besides, we also provide performance metric for these opera-
tions and their correlation to energy consumption. A measurement framework, namely,
EMeter, is also presented, which contemplates hardware components and a software tool
to estimate energy consumption and execution time.

The remainder of this paper is organized as follows. Section 2 summarizes related
works and Section 3 presents an overview of NoSQL DBMS. Section 4 describes the
methodology and the measuring framework, and Section 5 presents the results. Finally,
Section 6 presents closing remarks and future works.

2. Related Works
According to Intel Labs report [Minas and Ellison 2009], in a server, CPU is the main
energy consumer (followed by RAM memory), which indicates processes that require in-
tense CPU usage and memory access, like those utilized by DBMSs, lead to high energy
consumption. However, few works have evaluated the performance and energy consump-
tion of DBMSs. Commonly, researchers assess throughput and latency assuming dis-
tributed applications and high-capacity hardware - memory and processing power - for
evaluating performance under high workloads [Seriatos et al. 2016, Floratou et al. 2012,
Neves and Bernardino 2015]. It is difficult to find works related to energy consumption
for DBMSs, besides, researches assessing energy consumption in NoSQL DBMS are
scarce.

In [Abramova and Bernardino 2013], the authors assessed the execution time of
two NoSQL DBMSs, Cassandra and MongoDB, taking into account distinct worklo-
ads generated by YCSB benchmark. Results demonstrate Cassandra provided an impro-
ved scalability in comparison to MongoDB. [Abubakar et al. 2014] evaluated MongoDB,
ElastickSearch, OrientDB and Redis DBMSs considering distinct workloads for read, in-
sert and update, but energy consumption is not taken into account. [Seriatos et al. 2016]
carried out a performance evaluation comprising HBase, MongoDB and Cassandra in a
cloud adopting YCSB benchmark, considering different scenarios in which different pa-
rameters of each DBMS was assessed.

[Neves and Bernardino 2015] evaluated the performance of Voldemort, a NoSQL
DBMS, using YCSB benchmark considering an enviromnent with 1, 3 and 6 nodes. The
work concluded Voldemort DBMS does not scale considerably, and additional nodes do
not have a significant impact on performance. [Cai et al. 2013] evaluated Hbase DBMS
using also YCSB benchmark, and the work shows issues related to scalability and con-
current client requests. [Li et al. 2014] assessed energy consumption in NoSQL DBMSs
regarding the idle state on cluster configurations. The analysis was performed collecting
the idle time of each node, which may not reflect the dynamics and behavioral variations
of accessing a DBMS.

Different from previous works, this papers provides an energy consumption eva-



XXXVI Congresso da Sociedade Brasileira de Computação

2830

luation and comparison of representative NoSQL DBMSs, also providing a correlation
between performance and energy consumption.

3. NoSQL DBMS
Databases comprise data repositories and a common model for manipulating data. To
access these repositories, DBMSs are adopted, which are set of mechanisms for provi-
ding data storage and manipulation [Abramova and Bernardino 2013]. Over the decades,
several DBMSs have been proposed.

The term NoSQL was adopted for the first time in
1998 [Kuznetsov and Poskonin 2014] for a small DBMS that did not adopt the re-
lational model. Nowadays, the term also encompasses DBMSs, which do not fully
comply to ACID (Atomicity, Consistency, Isolation, Durability) properties and/or the
relational model [Kuznetsov and Poskonin 2014]. Besides, the popularity of NoSQL
DBMSs is related to the advent of Big Data, as huge data volume needs to be quickly
manipulated, and traditional data models or ACID transactions may considerably affect
system performance.

In this work, we evaluate 3 popular NoSQL DBMSs (Redis, MongoDB, Cassan-
dra) with representative data models (key-value, document-oriented, column) (Figure 1),
and they are described as follows.

3.0.1. Column

Column model (Figure 1 (a)) is the closest to the relational model, in which data are
structured using the following column types [Abramova and Bernardino 2013]:

∙ column represents a set of data structured as key-value;
∙ super column provides a group of columns;
∙ column family represents a data set composed of super columns, which resemble

the relational model.

Cassandra [Planet 2015] is a popular column DBMS, which was initially deve-
loped by Facebook using Dynamo DBMS (Amazon) and BigTable (Google) as a basis.
Additionally, Cassandra provides a set of functionalities to facilitate a deployment onto
distributed architectures, and it adopts a query language with a syntax similar to SQL.

3.0.2. Document-oriented

Document-oriented model (Figure 1 (b)) represents data using a document format, usu-
ally, based on well-known standards, such as XML and JSON. Each document may have
several fields, which may include arrays and even other documents. A document has a
unique key, which is the usual mechanism for accessing documents. Besides, documents
can be grouped [Abramova and Bernardino 2013].

MongoDB[Mongo 2015] is a representative document-oriented DBMS, which
adopts JSON for data storage . To avoid performance issues, MongoDB extensively
adopts main memory. Documents are manipulated using conventional operations, such



2831

Wperformance - 15º Workshop em Desempenho de Sistemas Computacionais e de Comunicação

luation and comparison of representative NoSQL DBMSs, also providing a correlation
between performance and energy consumption.

3. NoSQL DBMS
Databases comprise data repositories and a common model for manipulating data. To
access these repositories, DBMSs are adopted, which are set of mechanisms for provi-
ding data storage and manipulation [Abramova and Bernardino 2013]. Over the decades,
several DBMSs have been proposed.

The term NoSQL was adopted for the first time in
1998 [Kuznetsov and Poskonin 2014] for a small DBMS that did not adopt the re-
lational model. Nowadays, the term also encompasses DBMSs, which do not fully
comply to ACID (Atomicity, Consistency, Isolation, Durability) properties and/or the
relational model [Kuznetsov and Poskonin 2014]. Besides, the popularity of NoSQL
DBMSs is related to the advent of Big Data, as huge data volume needs to be quickly
manipulated, and traditional data models or ACID transactions may considerably affect
system performance.

In this work, we evaluate 3 popular NoSQL DBMSs (Redis, MongoDB, Cassan-
dra) with representative data models (key-value, document-oriented, column) (Figure 1),
and they are described as follows.

3.0.1. Column

Column model (Figure 1 (a)) is the closest to the relational model, in which data are
structured using the following column types [Abramova and Bernardino 2013]:

∙ column represents a set of data structured as key-value;
∙ super column provides a group of columns;
∙ column family represents a data set composed of super columns, which resemble

the relational model.

Cassandra [Planet 2015] is a popular column DBMS, which was initially deve-
loped by Facebook using Dynamo DBMS (Amazon) and BigTable (Google) as a basis.
Additionally, Cassandra provides a set of functionalities to facilitate a deployment onto
distributed architectures, and it adopts a query language with a syntax similar to SQL.

3.0.2. Document-oriented

Document-oriented model (Figure 1 (b)) represents data using a document format, usu-
ally, based on well-known standards, such as XML and JSON. Each document may have
several fields, which may include arrays and even other documents. A document has a
unique key, which is the usual mechanism for accessing documents. Besides, documents
can be grouped [Abramova and Bernardino 2013].

MongoDB[Mongo 2015] is a representative document-oriented DBMS, which
adopts JSON for data storage . To avoid performance issues, MongoDB extensively
adopts main memory. Documents are manipulated using conventional operations, such

as read, insertion, exclusion, update. To search for documents, some mechanisms are
available based on projection (adopted by YCSB benchmark) and iteration. Besides, du-
ring an update, a document can be totally or partially modified.

3.0.3. Key-Value

This data model stores all data using a structure based on key-value (Figure 1 (c)). Each
key is unique and data access is performed relating keys to hash values in order to access
the desired value. The value can be a primitive type or complex data structure, such as a
tree.

In this work, we adopt Redis [Kuznetsov and Poskonin 2014], which is a open-
source DBMS that supports key-value model. Besides, Redis supports atomicity and
isolation, and data is kept on main memory. To allow persistent storage, Redis provi-
des different mechanisms, in which the default mechanism periodically stores snapshots
obtained from the main memory.

Figura 1. NoSQL Data Models

4. Methodology

The methodology is based on design of experiments [Douglas C. Montgomery 2013],
in which a lk factorial design with r replications is adopted. We have considered 2
factors (k = 2) with 3 levels (l = 3): (i) DBMS - Cassandra, MongoDB, Redis;
and (ii) command - insert, read, update. Besides, 3 different workloads are considered
(1,000 operations, 10,000 operations, 100,000 operations) generated by YCSB bench-
mark [Cooper et al. 2010], and the metrics of interest are energy consumption and execu-
tion time for each workload (e.g., 1,000 operations). The workload could be an explict
factor for the proposed evaluation, but it would be the major source of variation in result
analysis, and the overall measurement noise (i.e., random errors) would hinder a finer
comparison.



XXXVI Congresso da Sociedade Brasileira de Computação

2832

YCSB is an open-source benchmark suite for evaluating computer applications,
being often adopted to compare the performance of NoSQL DBMSs. Indeed, YCSB
benchmark has been the standard for evaluating the performance of general DBMS. Ad-
ditionally, 75 replications (r = 75) are taken into account to obtain mean values (with
an approximate normal distribution) and to reduce the impact of measurement noises. A
replication is a workload execution (e.g., a single execution of 1,000 operations). In this
work, results are analyzed using ANOVA [Douglas C. Montgomery 2013].

The adopted DBMS server is a Core 2 Duo CPU T5450 1.66GHz with of 2GB
RAM memory, running Debian 7.8 (Linux) with EXT4 as system file. All operating
system (O.S.) services were kept to a minimum to not impact data collection, and no
application process (except DBMS software) is executing. Regarding DBMS softwares,
Cassandra 2.0.15, MongoDB 2.0.6 and Redis 2.4.14 were adopted with the default confi-
guration.

As follows, the conceived measurement framework is described.

Figura 2. Measurement Framework

4.1. Measurement framework

We conceived a measurement framework (Figure 2), namely, Emeter, to allow the collec-
tion of data related to energy consumption and execution time in the DBMS server. The
framework contemplates hardware components and a software tool to store and visualize
the collected metrics.

The framework adopts a experiment server, in which Emeter software executes,
and it communicates with a EVM430-F6736 hardware [Texas-Instruments 2015]. The
latter is a specialized device that collects instantenous current and voltage for estimating
instantaneous eletric power. Energy consumption is calculated by using a numerical in-
tegration using the instantenous powers and the time interval for executing a workload.
EVM430-F6736’s firmware was modified, such that Emeter’s software can communicate
and collect the required data via a serial interface. For managing and controlling, Eme-
ter has a GUI (Graphical Unit Interface), in which real-time consumption and execution



2833

Wperformance - 15º Workshop em Desempenho de Sistemas Computacionais e de Comunicação

YCSB is an open-source benchmark suite for evaluating computer applications,
being often adopted to compare the performance of NoSQL DBMSs. Indeed, YCSB
benchmark has been the standard for evaluating the performance of general DBMS. Ad-
ditionally, 75 replications (r = 75) are taken into account to obtain mean values (with
an approximate normal distribution) and to reduce the impact of measurement noises. A
replication is a workload execution (e.g., a single execution of 1,000 operations). In this
work, results are analyzed using ANOVA [Douglas C. Montgomery 2013].

The adopted DBMS server is a Core 2 Duo CPU T5450 1.66GHz with of 2GB
RAM memory, running Debian 7.8 (Linux) with EXT4 as system file. All operating
system (O.S.) services were kept to a minimum to not impact data collection, and no
application process (except DBMS software) is executing. Regarding DBMS softwares,
Cassandra 2.0.15, MongoDB 2.0.6 and Redis 2.4.14 were adopted with the default confi-
guration.

As follows, the conceived measurement framework is described.

Figura 2. Measurement Framework

4.1. Measurement framework

We conceived a measurement framework (Figure 2), namely, Emeter, to allow the collec-
tion of data related to energy consumption and execution time in the DBMS server. The
framework contemplates hardware components and a software tool to store and visualize
the collected metrics.

The framework adopts a experiment server, in which Emeter software executes,
and it communicates with a EVM430-F6736 hardware [Texas-Instruments 2015]. The
latter is a specialized device that collects instantenous current and voltage for estimating
instantaneous eletric power. Energy consumption is calculated by using a numerical in-
tegration using the instantenous powers and the time interval for executing a workload.
EVM430-F6736’s firmware was modified, such that Emeter’s software can communicate
and collect the required data via a serial interface. For managing and controlling, Eme-
ter has a GUI (Graphical Unit Interface), in which real-time consumption and execution

information can be visualized. The collected data is stored on a database or a csv file. Ad-
ditionally, EMeter supports remote control by TCP/IP communication, in the sense that
all experiments can be externally controlled.

The experiment server also executes YCSB benchmark, which triggers the wor-
kload on the DBMS server. The time interval for a workload is adopted for estimating
execution time and energy consumption, and each execution is kept independent in order
to avoid interfence between replications (e.g., cache).

5. Experimental results
We have adopted a design of experiment, which is explained in Section 4. YCSB bench-
mark is taken into account considering workloads with 1,000, 10,000 and 100,000 ope-
rations. For each DBMS, the default configuration is adopted, and the metrics of interest
are execution time and energy consumption. Besides, each inserted record in the database
has 1KB (standard value defined by YCSB), and 10 threads is adopted for mimicking a
real environment with concurrent accesses. As follows, the results are presented for each
workload using ANOVA analysis [Douglas C. Montgomery 2013]. Next, correlation is
discussed for both metrics followed by general remarks.

5.1. Workload results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Insert Read Update

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Cassandra MongoDB Redis

(a)

0

5000

10000

15000

20000

25000

30000

35000

40000

Insert Read Update

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Cassandra MongoDB Redis

(b)

0

50000

100000

150000

200000

250000

300000

350000

400000

Insert Read Update

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Cassandra MongoDB Redis

(c)

Figura 3. Mean Execution Time Values

0

50

100

150

200

250

Insert Read Update

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Cassandra MongoDB Redis

(a)

0

200

400

600

800

1000

1200

Insert Read Update

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Cassandra MongoDB Redis

(b)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Insert Read Update

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Cassandra MongoDB Redis

(c)

Figura 4. Mean Energy Consumption Values

Table 1 and Table 2 provides the results for ANOVA analysis (significance level
α = 0.05) for execution time and energy consumption. Figure 3 and Figure 4 depict the
results considering the mean values.

Table 1 depicts all factors and their interactions (source) significantly impact the
execution time (F statistic -Fstat.- and p-value). Depending on the workload (work.),



XXXVI Congresso da Sociedade Brasileira de Computação

2834

y = 0.0278x - 75.527
R² = 0.9799

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 100000 200000 300000 400000 500000 600000 700000 800000

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Execution Time (ms)

Cassandra

(a)

y = 0.0169x - 4.0773
R² = 0.9981

0

500

1000

1500

2000

2500

3000

3500

0 50000 100000 150000 200000 250000

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Execution Time (ms)

MongoDB

(b)

y = 0.0174x - 17,.78
R² = 0.9972

0

1000

2000

3000

4000

5000

6000

7000

0 50000 100000 150000 200000 250000 300000 350000 400000

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Execution time (ms)

Redis

(c)

Figura 5. Correlation Energy Consumption X Execution Time

the factor may have a different impact on the metric (var.%), as some DBMSs vary their
behaviour for the amount of operations executed. In general, the interaction between
DBMS and command (DBMS ∗Comm) is the major source of variation, but, in 100,000
workload, the interaction influence changes due to the behaviour of Redis and Cassan-
dra. Similar results are obtained for energy consumption. However, for 100,000 wor-
kload, a minor difference occurs due to a sudden increase of energy consumption by
Cassandra (explained in the following paragraphs). Other sources of variation are due
to experimental errors (i.e., noise in the measurements), and they are reduced with the
increase of workload. Such a situation is related to the time interval required for a
workload execution, which decreases, for instance, the influence of other O.S. servi-
ces. The following explanations are based on the results obtained with Tukey’s proce-
dure [Douglas C. Montgomery 2013] (a post-ANOVA test).

Tabela 1. ANOVA: Execution Time
work. 1,000 work. 10,000 work. 100,000

source var.% F stat. p-value source var.% F stat. p-value source var.% F stat. p-value

DBMS 23.15 230.41 <0.001 DBMS 7.97 84.31 <0.001 DBMS 30.80 453.88 <0.001

Comm 9 89.55 <0.001 Comm 16.95 179.28 <0.001 Comm 20.32 299.42 <0.001

DBMS*Comm 30.78 153.16 <0.001 DBMS*Comm 42.74 226.04 <0.001 DBMS*Comm 26.28 193.62 <0.001

Error 37.07 Error 32.33 Error 22.60

Tabela 2. ANOVA: Energy Consumption
work. 1,000 work. 10,000 work. 100,000

source var.% F stat. p-value source var.% F stat. p-value source var.% F stat. p-value

DBMS 23.24 243.66 <0.001 DBMS 7.54 99.73 <0.001 DBMS 13.28 147.94 <0.001

Comm 9.78 102.55 <0.001 Comm 15.71 207.92 <0.001 Comm 16.62 185.14 <0.001

DBMS*Comm 31.36 164.45 <0.001 DBMS*Comm 51.59 341.34 <0.001 DBMS*Comm 40.19 223.83 <0.001

Error 35.62 Error 25.16 Error 29.90

Figure 3 (a) depict the mean execution times for running 1,000 operations. Con-
cerning insert command, the difference between values are not statistically signifcant,
and, thus, we do not have enough statistical evidence to reject the equality between the
execution times. For read commands, the difference is significant, and Cassandra consi-
derably takes more time than other DBMSs. For instance, it is, respectively, 60.33% and
78.04% slower than MongoDB and Redis (which provided the lowest execution time).



2835

Wperformance - 15º Workshop em Desempenho de Sistemas Computacionais e de Comunicação

y = 0.0278x - 75.527
R² = 0.9799

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 100000 200000 300000 400000 500000 600000 700000 800000

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Execution Time (ms)

Cassandra

(a)

y = 0.0169x - 4.0773
R² = 0.9981

0

500

1000

1500

2000

2500

3000

3500

0 50000 100000 150000 200000 250000

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Execution Time (ms)

MongoDB

(b)

y = 0.0174x - 17,.78
R² = 0.9972

0

1000

2000

3000

4000

5000

6000

7000

0 50000 100000 150000 200000 250000 300000 350000 400000

En
er

gy
 C

on
su

m
pt

io
n 

(J)

Execution time (ms)

Redis

(c)

Figura 5. Correlation Energy Consumption X Execution Time

the factor may have a different impact on the metric (var.%), as some DBMSs vary their
behaviour for the amount of operations executed. In general, the interaction between
DBMS and command (DBMS ∗Comm) is the major source of variation, but, in 100,000
workload, the interaction influence changes due to the behaviour of Redis and Cassan-
dra. Similar results are obtained for energy consumption. However, for 100,000 wor-
kload, a minor difference occurs due to a sudden increase of energy consumption by
Cassandra (explained in the following paragraphs). Other sources of variation are due
to experimental errors (i.e., noise in the measurements), and they are reduced with the
increase of workload. Such a situation is related to the time interval required for a
workload execution, which decreases, for instance, the influence of other O.S. servi-
ces. The following explanations are based on the results obtained with Tukey’s proce-
dure [Douglas C. Montgomery 2013] (a post-ANOVA test).

Tabela 1. ANOVA: Execution Time
work. 1,000 work. 10,000 work. 100,000

source var.% F stat. p-value source var.% F stat. p-value source var.% F stat. p-value

DBMS 23.15 230.41 <0.001 DBMS 7.97 84.31 <0.001 DBMS 30.80 453.88 <0.001

Comm 9 89.55 <0.001 Comm 16.95 179.28 <0.001 Comm 20.32 299.42 <0.001

DBMS*Comm 30.78 153.16 <0.001 DBMS*Comm 42.74 226.04 <0.001 DBMS*Comm 26.28 193.62 <0.001

Error 37.07 Error 32.33 Error 22.60

Tabela 2. ANOVA: Energy Consumption
work. 1,000 work. 10,000 work. 100,000

source var.% F stat. p-value source var.% F stat. p-value source var.% F stat. p-value

DBMS 23.24 243.66 <0.001 DBMS 7.54 99.73 <0.001 DBMS 13.28 147.94 <0.001

Comm 9.78 102.55 <0.001 Comm 15.71 207.92 <0.001 Comm 16.62 185.14 <0.001

DBMS*Comm 31.36 164.45 <0.001 DBMS*Comm 51.59 341.34 <0.001 DBMS*Comm 40.19 223.83 <0.001

Error 35.62 Error 25.16 Error 29.90

Figure 3 (a) depict the mean execution times for running 1,000 operations. Con-
cerning insert command, the difference between values are not statistically signifcant,
and, thus, we do not have enough statistical evidence to reject the equality between the
execution times. For read commands, the difference is significant, and Cassandra consi-
derably takes more time than other DBMSs. For instance, it is, respectively, 60.33% and
78.04% slower than MongoDB and Redis (which provided the lowest execution time).

Regarding update, Redis also provides the best value for this workload followed by Cas-
sandra. In the context of energy consumption (Figure 4 (a)), the values indicate a correla-
tion with execution time, since similar arguments can be provided. The values for insert
command are also close, and Tukey’s test indicates the differences between DBMSs are
not expressive. Concerning read command, Cassandra provides the highest energy con-
sumption, which is 71.17% larger than MongoDB and 84.57% than Redis for this com-
mand. Redis has the least energy consumption for updates, but MongoDB and Cassandra
do not have mean values that significantly differ.

Considering 10,000 operations (Figure 3(b)), Redis appears to be less scalable
than other DBMSs for insert command. Redis was 58.51% slower than MongoDB and
41.18% than Cassandra. this situation explains the increase of command (comm.) as a
source of variation in Table 1. Comparing to 1,000 workload, Redis’ execution time in-
creased 88.38%, whereas for Cassandra and MongoDB the executime increased 71.22%
and 77.13% , respectively. Cassandra provides the best execution time for insert com-
mand, but its behaviour repeats for reading requests, which execution time is much larger
than Redis and MongoDB. In this context, MongoDB provides the best performance. For
update, Cassandra provides good execution time, in which it is almost 2 times faster than
MongoDB and Redis. Figure 4 (b) depicts energy consumption values for this workload,
which also points to the correlation between execution time and energy consumption. The
values indicate workload variation impacts execution time and energy consumption in dif-
ferent proportions. As an example, the execution time of Redis DBMS increased 88.38%
for insert command, but energy consumption increased only 90.41%. For Cassandra and
MongoDB, the increment were 75.10% and 77.82%, respectively. In relation to read ope-
ration, Cassandra, Redis, MongoDB consumed more 79.42%, 88.25% and 73.19%, res-
pectively. Energy consumption for update correspondingly increased 65.04%, 73.91%,
88.41% for Cassandra, MongoDB and Redis.

Figure 3 (c) shows the mean values for execution times concerning 100,000 opera-
tions workload. The behaviour resembles 10,000 workload, in which Redis provides the
slowest performance, except for update command. The mean time for executing 100,000
insert commands is the poorest performance in all experiments (surpassing the execution
time of read commands for Cassandra). The values is 67.96% higher than Cassandra, and
50.06% larger than MongoDB. Also, Cassandras did not scale well for read commands.
The values is 63.87% higher than MongoDB and 40.87% than Redis. Concerning update,
Cassandra provides the best performance, followed by MongoDB and Redis. Figure 4
(c) provides an interesting behaviour. Although it also provides evidence for correlation
between execution time and energy consumption, energy consumption in Cassandra se-
ems higher than other DBMSs. Although Redis’ execution time for insert commands are
greater than Cassandra’s update commands, Cassandra consumed more energy consump-
tion. Such a behaviour indicates the change of variation (var.%) of each factor for both
metrics . Particularly, the contribution of command factor raises as well as the noise in
the measurement for energy consumption.

5.2. Correlation

Figure 5 depicts the correlation between energy consumption and execution time for each
DBMS contemplating all workloads and commands (insert, read and update).



XXXVI Congresso da Sociedade Brasileira de Computação

2836

For all DBMS, a strong (linear) correlation is obtained, which is corroborated by
the square of correlation coefficient (R2). The values are 0.9799, 0.9981, and 0.9972
for Cassandra, MongoDB and Redis respectively. Figure 5 (a) depicts the values for
Cassandra, in which equation y = 0.0278x - 75.527 represents the correlation. Equation
y = 0.0169x - 4.0773 represents the correlation for MongoDB (Figure 5 (b)), and y =
0.0174x - 17.378 for Redis (Figure 5 (c)).

The slope (i.e., the first derivative) provides an interesting information regarding
the impact of executing commands on mean energy consumption. For the adopted DBMS,
MongoDB is more energy efficient (0.0169 energy consumption/execution time), and Re-
dis is very close (0.0174), despite the issue on 100,000 workload. Cassandra consumes
more energy in average, which is represented by the slope 0.0278, which is strongly af-
fected by read commands.

5.3. Remarks

It is important to emphasize that all experiments have been carried adopting the default
configuration for each DBMS, and configuration tuning is out of scope for this work.
Nevertheless, tuning may provide different results from the values presented in this work.
Besides, we have adopted only a single computer to reduce possible interference of other
issues associated with a cluster environment on the results. Nevertheless, in a cluster
environment, the results may also differ.

Redis had a remarkable performance for 1,000 workload, in the sense that it pro-
vided the best performance for this workload concerning read and update commands.
Execution time and energy consumption is equivalent to other DBMSs concerning insert
command. We believe this workload was not sufficient to activate Redis’ snapshot task for
persistently saving the new records during a workload execution. However, the snapshot
was activated for 10,000 and 100,000 workloads [Abubakar et al. 2014], which affected
the performance of insert command and generated the worst execution time in 100,000
workload.

Cassandra performed very well for insert and update commands, and those com-
mands were improved with the increasing of workload. Indeed, for 10,000 and 100,000
workloads, Cassandra provided best results. However, such a DBMS provided worst re-
sults for read command in all workloads, and this is the command that consumed more
energy. Cassandra adopts several tasks to access persistent data [Cassandra 2015], which
include decompress data from a storage device (e.g., hard disk). All samples are inde-
pendent, and, thus, no data are present in Cassandra’s cache during the workload for read
command. In [Abramova and Bernardino 2013], the authors observed a similar behaviour
for Cassandra.

For all workloads, MongoDB kept a stable performance regarding no abrupt in-
creasing in execution time or energy consumption for the adopted commands. However,
it did not provide a dominant performance comparing to other DBMSs. A minor increase
in the time for executing insert commands may be related to the journaling mechanism
adopted for providing fault-tolerance.

It is important to emphasize that no DBMS provided a dominant behaviour (exe-
cution time and energy consumption) in all workloads.



2837

Wperformance - 15º Workshop em Desempenho de Sistemas Computacionais e de Comunicação

For all DBMS, a strong (linear) correlation is obtained, which is corroborated by
the square of correlation coefficient (R2). The values are 0.9799, 0.9981, and 0.9972
for Cassandra, MongoDB and Redis respectively. Figure 5 (a) depicts the values for
Cassandra, in which equation y = 0.0278x - 75.527 represents the correlation. Equation
y = 0.0169x - 4.0773 represents the correlation for MongoDB (Figure 5 (b)), and y =
0.0174x - 17.378 for Redis (Figure 5 (c)).

The slope (i.e., the first derivative) provides an interesting information regarding
the impact of executing commands on mean energy consumption. For the adopted DBMS,
MongoDB is more energy efficient (0.0169 energy consumption/execution time), and Re-
dis is very close (0.0174), despite the issue on 100,000 workload. Cassandra consumes
more energy in average, which is represented by the slope 0.0278, which is strongly af-
fected by read commands.

5.3. Remarks

It is important to emphasize that all experiments have been carried adopting the default
configuration for each DBMS, and configuration tuning is out of scope for this work.
Nevertheless, tuning may provide different results from the values presented in this work.
Besides, we have adopted only a single computer to reduce possible interference of other
issues associated with a cluster environment on the results. Nevertheless, in a cluster
environment, the results may also differ.

Redis had a remarkable performance for 1,000 workload, in the sense that it pro-
vided the best performance for this workload concerning read and update commands.
Execution time and energy consumption is equivalent to other DBMSs concerning insert
command. We believe this workload was not sufficient to activate Redis’ snapshot task for
persistently saving the new records during a workload execution. However, the snapshot
was activated for 10,000 and 100,000 workloads [Abubakar et al. 2014], which affected
the performance of insert command and generated the worst execution time in 100,000
workload.

Cassandra performed very well for insert and update commands, and those com-
mands were improved with the increasing of workload. Indeed, for 10,000 and 100,000
workloads, Cassandra provided best results. However, such a DBMS provided worst re-
sults for read command in all workloads, and this is the command that consumed more
energy. Cassandra adopts several tasks to access persistent data [Cassandra 2015], which
include decompress data from a storage device (e.g., hard disk). All samples are inde-
pendent, and, thus, no data are present in Cassandra’s cache during the workload for read
command. In [Abramova and Bernardino 2013], the authors observed a similar behaviour
for Cassandra.

For all workloads, MongoDB kept a stable performance regarding no abrupt in-
creasing in execution time or energy consumption for the adopted commands. However,
it did not provide a dominant performance comparing to other DBMSs. A minor increase
in the time for executing insert commands may be related to the journaling mechanism
adopted for providing fault-tolerance.

It is important to emphasize that no DBMS provided a dominant behaviour (exe-
cution time and energy consumption) in all workloads.

6. Conclusion

Energy consumption is a very important concern, which has gained considerable attention
by researchers and practitioners to develop energy efficient platforms and systems. Due
to advent of big data, storage systems have also their considerable contribution on energy
usage, but such a concern has not been explored on NoSQL DBMSs (although works have
evaluated NoSQL DBMSs in the context of throughput and latency).

This paper presented performance and energy consumption evaluation of repre-
sentative NoSQL DBMSs. Experiments adopted distinct workloads for read, create and
update commands using Yahoo! Cloud Serving Benchmark. Although no single DBMS
dominates all workloads, MongoDB provided a stable behaviour for the adopted system
and default configuration. Cassandra and Redis provided prominent execution time and
energy consumption for some scenarios, but they did not performe well for read and insert
commands, respectively. As future works, we are planning to evaluate NoSQL DBMSs
on a cluster environment.

Referências

Abramova, V. and Bernardino, J. (2013). Nosql databases: Mongodb vs cassandra. In
Proceedings of the International C* Conference on Computer Science and Software
Engineering, pages 14–22.

Abubakar, Y., Adeyi, T. S., and Auta, I. G. (2014). Article: Performance evaluation of
nosql systems using ycsb in a resource austere environment. International Journal of
Applied Information Systems, 7(8):23–27.

Cai, L., Huang, S., Chen, L., and Zheng, Y. (2013). Performance testing of hbase based
on the potential cycle. In Computer and Information Science (ICIS), 2013 IEEE/ACIS
12th International Conference on, pages 359–363.

Cassandra, W. (2015). Architecture internals.
https://wiki.apache.org/cassandra/ArchitectureInternals. Accessed: 2016-03-24.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Bench-
marking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 143–154.

Demchenko, Y., De Laat, C., and Membrey, P. (2014). Defining architecture components
of the big data ecosystem. In Collaboration Technologies and Systems (CTS), 2014
International Conference on, pages 104–112.

Douglas C. Montgomery, G. C. R. (2013). Applied Statistics and Probability for Engine-
ers. Wiley, 6th edition.

Floratou, A., Teletia, N., DeWitt, D. J., Patel, J. M., and Zhang, D. (2012). Can
the elephants handle the nosql onslaught? Proceedings of the VLDB Endowment,
5(12):1712–1723.

Ji, C., Li, Y., Qiu, W., Jin, Y., Xu, Y., Awada, U., Li, K., and Qu, W. (2012). Big data
processing: Big challenges and opportunities. Journal of Interconnection Networks,
13.



XXXVI Congresso da Sociedade Brasileira de Computação

2838

Kuznetsov, S. D. and Poskonin, A. V. (2014). Nosql data management systems. Program-
ming and Computer Software, pages 323–332.

Li, T., Yu, G., Liu, X., and Song, J. (2014). Analyzing the waiting energy consumption
of nosql databases. In Dependable, Autonomic and Secure Computing (DASC), 2014
IEEE 12th International Conference on, pages 277–282. IEEE.

Minas, L. and Ellison, B. (2009). Energy efficiency for information technology: How to
reduce power consumption in servers and data centers. Intel Press.

Mongo, M. (2015). Bring your giant ideas to life with mongodb.
https://www.mongodb.com/what-is-mongodb. Accessed: 2016-03-22.

Neves, R. and Bernardino, J. (2015). Performance and scalability of voldemort nosql.
In Information Systems and Technologies (CISTI), 2015 10th Iberian Conference on,
pages 1–6.

NRDC (2015). America’s data centers consuming and wasting growing amounts of
energy. http://www.nrdc.org/energy/data-center-efficiency-assessment.asp. Accessed:
2016-03-01.

Planet, C. (2015). What is apache cassandra? http://www.planetcassandra.org/what-is-
apache-cassandra/. Accessed: 2015-12-10.

Seriatos, G., Kousiouris, G., Menychtas, A., Kyriazis, D., and Varvarigou, T. (2016).
Comparison of database and workload types performance in Cloud environments, pa-
ges 138–150.

Texas-Instruments (2015). Evm430-f6736 - msp430f6736 evm for metering.
http://www.ti.com/tool/EVM430-F6736. Acessed: 2016-03-22.

Zhang, H., Shao, S., Xu, H., Zou, H., and Tian, C. (2014). Free cooling of data centers:
A review. Renewable and Sustainable Energy Reviews, pages 171–182.


