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define more efficient routes.
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Abstract. Due to the resource constraints of the sensor nodes, energy provi-
sioning in wireless sensor networks remains a challenging task, particularly in
outdoor scenarios. Among the literature proposals to mitigate this problem, we
highlight semantic clustering as a recent energy-efficient technique for prolong-
ing the network lifetime. In semantic clustering, each cluster has a semantic
leader (collector) which is periodically elected according to an energy-related
criterion. However, since collectors’ energy depletion is faster than the others
members of their cluster, suitable election mechanisms are required to avoid the
energy hole problem. Here we propose FLECHA, a mechanism based on the
ARIMA model to predict semantic collectors elections with leader-node alter-
nation. Our hypothesis is that by anticipating the best candidates to semantic
leaders, we can improve the energy-saving at the node-level, and hence allow
the network lifetime to be further extended.

1. Introduction
Technological advances in microelectronics and wireless communications have enabled a
fast development of the so-called Low-Power and Lossy Networks (LLN) [Remy 2015],
including Wireless Sensor Networks (WSN), which are comprised of several sensing
embedded nodes. Nowadays, these small-size nodes play a key role as a sensing and
communication infrastructure for the smart-x applications [Somov and Giaffreda 2015,
Mónton and Picone 2015], such as smart environment, smart metering, smart agriculture,
and green smart cities [Gomes and Forster 2015]. Although there are interesting energy-
harvesting solutions in outdoor and low power applications [Frohlich et al. 2015], most
of the sensor nodes are battery-operated [Hermeto et al. 2013], making energy efficiency
a critical goal.

,To achieve a higher energy efficiency related to data transmission, a commonly
used technique in wireless sensor networks is clustering. In such approach, the whole set
of network nodes is divided into partitions controlled by an elected leader node, namely
Cluster Head (CH) [Deshpande and Bhagat Patil 2013]. To form the clusters, physical
clustering commonly uses physical metrics such as Euclidean distance and residual energy
[Jannu and Jana 2014]. The proximity of the nodes is one of the main parameters of
clustering in a physical clustering. Semantic clustering, instead, uses the similarity of
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data collected by nodes, i.e., when certain nodes detect the same kind of data, the semantic
cluster is created [Hermeto et al. 2013, Rocha et al. 2012]. The semantic clustering also
uses the concept of leader (semantic collector), analogous to the CH in a physical cluster.

Concerning the differences between physical and semantic clustering, we high-
light that a semantic cluster is independent of physical metrics, such as distance, so that
it can be created with separate physical cluster members. It is important to realize that
a physical leader can also become a Semantic Collector (SC). However, in case we have
two semantic clusters, their collectors cannot be the same node. Given that the semantic
clusters are created using data similarity, it is not possible for a same semantic node to
join two or more groups. In both physical and semantic clustering, each leader is respon-
sible for receiving data from adjacent semantic nodes (semantic neighbors), summarizing
and sending them to the sink node via multihop communication [Avril et al. 2014]. Al-
though energy efficiency in the semantic clustering is better than in the physical clustering
[Rocha et al. 2012], the nodes elected as leader also tend to lose a large amount of energy,
which leads them to die prematurely. To avoid the energy hole problem, algorithms based
on leader-node alternation are required [Jannu and Jana 2014].

Here we present FLECHA, a Forecasting eLEction meCHAnism for semantic
collectors in wireless sensor networks. FLECHA uses ARIMA (Auto-regressive Inte-
grated Moving Average) models as the decision mechanism to improve the election of
new semantic leaders. ARIMA is considered a general class of models for forecast-
ing a time series. Besides, it has performed well on short-term prediction windows
[Moreira et al. 2014, Santos et al. 2013], which can be suitable to avoid temporal disrup-
tions in WSN and other short-term communication failures.

2. Related Work
This section is divided in two subsections that surrounds prior works related to FLECHA,
which involve clustering and prediction in WSN.

2.1. Clustering and Prediction in Wireless Sensor Network

Genetic algorithms can be used to select cluster heads in a centralized cluster and can
also prolong the network lifetime compared to other clustering protocols such as LEACH
[Heinzelman et al. 2002] and LEACH-C [Pal et al. 2015]. The work proposed by Pal et
al. (2015) resulted in an improvement of the load balance in relation to a traditional
clustering. However, the centralized network approach generates an overhead, causing
a greater increase in energy expenditure in the nodes of the network. Our approach is
decentralized, resulting in an autonomy of sensor nodes and thus eliminating the network
overhead.

The residual energy and distance among the nodes can be used as parameters to
elect cluster leaders in a heterogeneous WSN, as DTRE-SEP [Hassan et al. 2015]. The
work proposed by Hassan et al. (2015) presented an improvement of the network lifetime
in unstable regions compared to clustering algorithms as LEACH. However, such pro-
tocols do not have a good performance in networks with random distributions of nodes
[Hassan et al. 2015]. FLECHA has autonomic characteristics as self-organization, self-
configuration and self-adaptation, having a good performance in random distribution of
nodes.
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also prolong the network lifetime compared to other clustering protocols such as LEACH
[Heinzelman et al. 2002] and LEACH-C [Pal et al. 2015]. The work proposed by Pal et
al. (2015) resulted in an improvement of the load balance in relation to a traditional
clustering. However, the centralized network approach generates an overhead, causing
a greater increase in energy expenditure in the nodes of the network. Our approach is
decentralized, resulting in an autonomy of sensor nodes and thus eliminating the network
overhead.

The residual energy and distance among the nodes can be used as parameters to
elect cluster leaders in a heterogeneous WSN, as DTRE-SEP [Hassan et al. 2015]. The
work proposed by Hassan et al. (2015) presented an improvement of the network lifetime
in unstable regions compared to clustering algorithms as LEACH. However, such pro-
tocols do not have a good performance in networks with random distributions of nodes
[Hassan et al. 2015]. FLECHA has autonomic characteristics as self-organization, self-
configuration and self-adaptation, having a good performance in random distribution of
nodes.

Algorithms based on static and dynamic hierarchical levels of clusters, together
with filters to predicts targets positions of the nodes, are used to improve WSNs lifetime,
such as proposed by PRATIQUE-a [Souza et al. 2015]. The forecast methods could be
utilized to obtain the set of nodes that will detect the next event, reducing the overhead
of messages in the network [Souza et al. 2015]. However, the PRACTIQUE-a does not
use metrics like residual energy as a parameter to choose cluster leaders, which could
generate an improvement in the WSNs lifetime.

2.2. Wireless Sensor Network and Semantic Clustering

The semantic clustering is used for event monitoring in a WSN and its cluster is formed
by the similarity of the data captured by the nodes, which elect a semantic leader (collec-
tor) [Hermeto et al. 2013, Rocha et al. 2012]. The semantic clustering has better energy
efficiency than other classical clustering methods [Rocha et al. 2012].

It is possible to improve the lifetime of the semantic clustering using fuzzy logic to
elect the semantic collector [Hermeto et al. 2013]. Using metrics such as residual energy
and Euclidean distance it is feasible to have an alternation of leaders to decrease the over-
head in the collector (leader) [Hermeto et al. 2013]. FLECHA uses a predictive method
to anticipate the election of a new semantic collector through this proactive approach,
making it is possible to improve the lifetime of the WSN.

It is possible improve the energy efficiency of a WSN with semantic clustering
by introducing a mechanism of decentralized sensor nodes [Rocha et al. 2016]. Fully-
decentralized mechanisms tend to have better energy performance than protocols partially
decentralized by the reducing the amount of messages and the number of hops in the
network [Rocha et al. 2016].

Table 1. Summary of related work.

Reference Cluster Self-*
Leader election
technique

Leader election
parameters

FLECHA (proposal) Semantic
Organization,
configuration
and adaptation

ARIMA (prediction)
Residual energy,
Euclidean distance

DSENSE
[Rocha et al. 2016]

Semantic
Organization,
configuration
and adaptation

N/A Fuzzification Message

Hermeto et al. (2013) Semantic
Organization,
configuration
and adaptation

Fuzzy Logic Residual energy

SEMANTK
[Rocha et al. 2012]

Semantic
Organization,
configuration
and adaptation

N/A Amount of Neighbors

PRATIQUE-a
[Souza et al. 2015]

Physical N/A N/A N/A

Pal et al. (2015) Physical N/A Genetic Algorithms Residual energy
DTRE-SEP
[Hassan et al. 2015]

Physical N/A N/A
Residual energy,
Euclidean distance
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Table 1 shows that most related works use the residual energy as a key parameter
to (re)elect leaders. SEMANTK and DSENSE use semantic clustering to improve the net-
work lifetime, but the decision to choose the collector is reactive. It is possible to further
decrease the energy cost of the WSN using a predictive selection of semantic collectors.
FLECHA employs ARIMA to generate predictive curves having residual energy and Eu-
clidean distance as input parameters and, through the trends of these curves, to elect the
new semantic leaders of the cluster, avoiding the excessive energy cost.

3. FLECHA: a Forecasting eLEction meCHAnism for semantic collectors
sensor nodes

FLECHA is a mechanism to elect leaders (collectors) in a WSN based on semantic cluster-
ing which metrics are the residual energy and Euclidean distance among nodes. FLECHA
extends SEMANTK [Rocha et al. 2012] by using the same oriented events mechanism.
Figure 1 shows the FLECHA UML diagram where we can see three modules or phases
(separated by colors): (i) data collection and analysis of sensor nodes (yellow); (ii) the
detection of semantic neighbors in the physical cluster (orange) and (iii) the predictive
election of semantic collectors mechanism (blue). All the FLECHA processes occur lo-
cally in each node. In the first phase, each sensor node will collect metrics (e.g., temper-
ature, humidity) based on the application of interest. Moving on the next phase, a new
event is expected (e.g., “frequency values higher than X”). In case of the event does not
occur, FLECHA comes back to the initial data collection phase. However, if a new event
is detected, the detection of semantic neighbor phase on the physical cluster is triggered.
This phase is responsible for establishing the relationship between the semantic neighbors
based on data similarity [Rocha et al. 2016].

Collects data

Analyzes collected data Waits new data

Detection of semantic 
neighbors on the 
physical clusters

Collecting information 
from semantic nodes

Starts election 
algorithm in rotation of 

semantic collectors 

[Event Detected] [Event not Detected]

Network Death 

Begin

End

Elect the first semantic 
collector

Creation of semantic 
clusters

Figure 1. FLECHA UML diagram.
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The election of the first semantic collector takes into account the Euclidean dis-
tance metric. Despite the main metric considered in FLECHA is the residual energy, it
is initially supposed that all nodes of the semantic neighborhood have approximately the
same level of residual energy. Consequently, we need to use other metric different from
residual energy to elect the first semantic collector. In this work, the node with more
semantic neighbors will be the first collector.

The subsequent phase is the predictive election for the next semantic collectors. It
is common the cluster leader tends to die before the other nodes of clusters. The semantic
collector (leader of the semantic cluster) tends to have a greater energy expenditure than
the other sensor nodes of the semantic cluster that only capture the event data.

In our proposal, the election of the next semantic collector occurs after 10% of
power depletion of the current collector, which is a reactive approach. To adopt a proactive
one, we use ARIMA prediction method to generate the trend curve of residual energy
decrease for the collector node. The election of the new semantic collector starts when
the trend of the predictive curve is close to 10% of power drop in a current collector (see
Algorithm 1). It can be seen by the algorithm 1 that the prediction curve y[t + n] is fed
by the residual energy data x[t], where t is the current instant of energy captured and n is
the future moment generated by the predictive method.

Data: collector election
Result: elect a new semantic collector
initialization (predictiveCurve);
collected data (residualEnergy, euclideanDistance);
x[t] ← residualEnergy;
y[t] ← predictiveCurve;
z ← euclideanDistance;
if |y[t+ n]| >= |0.1.x[t]| then

collects all the energy and distance data of the semantic cluster nodes;
elect the node with larger x;
if nodes tied == TRUE then

choose the node with more semantic neighbors using z;
end

else
go back to the beginning;

end
Algorithm 1: Semantic Collector Election (pseudo-code).

During a new collector election, it is possible that two or more nodes have the
same level of residual energy. In this case, the node with more semantic neighbors will be
elected as a collector. Finally, when all the nodes of the semantic cluster reach a residual
energy value below 10% or the first collector die (First Node Death indicator, see Section
4.2), the WSN will be considered dead.

By using ARIMA, our aim is to elect semantics collectors with better conditions
to perform their duties. Thus, we seek to extend the network lifespan by choosing the
best semantic collector for the next status of the network. ARIMA was chosen because it
performs better with small prediction windows [Santos et al. 2013] [Moreira et al. 2014].
This model can be used to predict certain events like time series showing trends, correla-
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tions, and seasonal variations.

4. Material and Methods
The FLECHA mechanism was implemented in C using the Contiki operating system
[Dunkels et al. 2004]. The simulations were performed on Cooja [Osterlind et al. 2006],
which is used on the communication standard of IEEE 802.15.4 and 250 kbps transmis-
sion rate. Cooja also supports various sensor platforms; here we used the MicaZ platform.

4.1. Energy Model
We used the MicaZ energy model as follows [Jurdak et al. 2008]:

Et = Psend ∗ Plength ∗ TB ∗ It ∗ V (1)

Er = Preceive ∗ Plength ∗ TB ∗ Ir ∗ V, (2)

where Et and Er are, respectively, the energy costs of transmission and packet re-
ception (mJ). Psend and Preceive represent the number of packets sent and received. Plength

is the packet size, and TB is the radio response time. It and Ir are the respective values
of the node radio electric current in the modes of transmission and reception. Lastly, V
represents the voltage constant provided by the MicaZ datasheet.

4.2. Evaluation Scenarios
We used the scenarios and values from Hermeto et al. (2013) (Figure 2) but adding more
sensor nodes in different situations. We simulated an application for structural health
monitoring (SHM) domain as a case study. With a scenario of a five floors building, all
physical clusters are deterministic.
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Legend

Figure 2. Simulated scenarios (adapted from [Hermeto et al. 2013]).

In these scenarios, the events are triggered simulating damage in the physical
structure, which will cause a change of state (shown by modal frequencies, Table 2).
When the network starts to operate, all the cluster’s nodes know their respective physical
leaders as well the physical leaders know where adjacent leaders are. The sensor nodes
transmission time ranged from 500 to 1300 ms and each round lasted 15 min.

At the simulation beginning, all physical nodes are healthy. During the first ten
seconds, the physical clusters nodes send messages with the modal frequencies shown in
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In these scenarios, the events are triggered simulating damage in the physical
structure, which will cause a change of state (shown by modal frequencies, Table 2).
When the network starts to operate, all the cluster’s nodes know their respective physical
leaders as well the physical leaders know where adjacent leaders are. The sensor nodes
transmission time ranged from 500 to 1300 ms and each round lasted 15 min.

At the simulation beginning, all physical nodes are healthy. During the first ten
seconds, the physical clusters nodes send messages with the modal frequencies shown in

Table 2. Afterwards, we forced FLECHA to change all nodes frequencies to “Damage
1” for scenario #1 and “Damage 2” to scenario #2, thus causing damage on the 2nd floor
(please see Figure 2).

Table 2. Modal Frequencies.
Structural Condition Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)

Damage 1 2.34 7.52 11.62 14.45 17.48
Damage 2 2.44 6.93 11.91 15.14 16.99
Healthy 2.54 7.52 12.01 15.53 17.77

Based on the Euclidean distance, we first identified the nodes closer to the damage.
Then, they became semantic neighbors by distribution of the nodes weights. In scenario
#1, the IP nodes are 172.16.6.0, 172.16.7.0 and 172.16.8.0. Similarly, in the scenario
#2, we used IPs 172.16.9.0, 172.16.11.0, 172.16.13.0 and 172.16.14.0. The event takes
place when the frequencies of the nodes are changed, thus generating semantic clustering.
When the semantic clustering occurs, the physical leaders know whether there are seman-
tics nodes in their clusters or not. In our simulations, we extended the scenario used in
[Hermeto et al. 2013] by doubling the number of nodes.

Since our aim is to reduce the premature loss of semantic collectors, we used the
First Node Death indicator [Pal et al. 2015, Dietrich and Dressler 2009]. Our predictive
approach was compared to SEMANTK’s election algorithm, which selection criteria for
the new semantic leader is the amount of semantic neighbors that exist on each physical
cluster, and also to the Hermeto et al.(2013), who used fuzzy logic to elect the leader
through the residual energy and distance among nodes.

5. Results and Discussion
Due to their multiple functions, leader nodes have higher energy costs than their neigh-
bors, so that leaders tend to die faster. Thus, we considered the initial energy of all nodes
as 5 J. Figure 3 shows the comparison of the semantic collectors lifetime in the scenario
#1 between the approaches (a) SEMANTK (b) Hermeto et al. (2013), and (c) FLECHA.
Likewise, Figure 4 presents a comparison of lifetime of the semantic collectors in the
scenario #2 between the approaches (a) SEMANTK, (b) Hermeto et al. (2013), and (c)
FLECHA. Both SEMANTK, Hermeto, and FLECHA algorithms were repeated 20 times
for each experiment with 90% confidence intervals. Note that the vertical bars are not
shown in figures where they are not visually significant.

Notes that Hermeto’s algorithm took about 350 min to lose the first semantic col-
lector. This result illustrates the gain in survival of about 45% of Hermeto et al. (2013)
algorithm with regard to SEMANTK.
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(a) (b)

(c)

Figure 3. Comparison between approaches in scenario #1.

(c)

(b)(a)

Figure 4. Comparison between approaches in scenario #2.
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Figure 3. Comparison between approaches in scenario #1.

(c)

(b)(a)

Figure 4. Comparison between approaches in scenario #2.

Since the time when the first semantic node die was around 400 min in the
FLECHA approach, it brought a gain of 14% survival compared to the Hermeto approach
and of 60% compared to SEMANTK algorithm. It can also be seen from Figures 3 and
4 that the first node was chosen by ARIMA, approximately, during the first 15 minutes
of simulation of two scenarios. The last node was elected when it achieves 90% loss of
energy. Using FLECHA, when the residual energy nears 10% of the energy loss in the
initial state, ARIMA predicts time which will reach this loss. Therefore, the election is
made in a predictive way before reaching 10% loss (on average 9%).

Table 3 illustrates the number of nodes chosen in scenarios #1 and #2. We can see
in that the SC 172.16.3.0 was elected more times in Hermeto algorithm and FLECHA. We
can also note that SC 172.16.5.0 has a better performance in SEMANTK and FLECHA
when compared to Hermeto proposal. However, the other nodes elected as collectors
(SC 172.16.4.0 and SC 172.16.3.0) present better results through FLECHA and Hermeto
algorithm because of the proximity to the sink node.

Table 3. Quantity of nodes elected
Scenario IP Address SEMANTK Hermeto et al. (2013) FLECHA

#1 172.16.2.0 16 11 12
#1 172.16.3.0 0 12 14
#2 172.16.3.0 0 10 12
#2 172.16.4.0 1 9 9
#2 172.16.5.0 15 8 14

Afterwards, we doubled the number of nodes in scenario #1, which means it
had two more candidates to be elected as semantic collectors (SC 172.16.4.0 and SC
172.16.5.0).

Figure 5. FLECHA execution in scenario #1 with twice nodes.
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Figure 5 shows the scenario #1 with twice elected nodes as collectors by
FLECHA. When we doubled the nodes number, the network lifetime (400 min) becomes
similar to that in Figure 4(c). This is because FLECHA uses ARIMA as predictor to
avoid energy waste on the collector node, which causes a new election per collector. As a
result, FLECHA allows a gradual network energy depletion and, consequently, increases
the network lifetime.

Figure 6. Approaches comparisons in scenario #1

In Figure 6, we see the comparison between SEMANTK, Hermeto et al. (2013)
and the FLECHA for the scenario #1. There we note FLECHA brought a gain of 60%
in network lifetime when compared to the SEMANTK and 14% compared to Hermeto’s
algorithm.

In this paper, the leader-node alternation is independent of how far the candidates
are from the collectors. This is due to the load balancing of the input variables weights.
It should be noted that when an event of interest is detected by a large amount of neigh-
boring clusters, it will lead to an intense exchange of messages among the candidates for
collectors until there is a consensus for a new leader election.

6. Conclusion
Here we propose FLECHA, an approach to elect WSN semantic collectors using ARIMA
models to forecast the best candidates. FLECHA uses the residual energy of the nodes and
the distance between semantic collectors. According to our results, FLECHA improved
the network lifetime by 60% compared to SEMANTK [Rocha et al. 2012] and by 14% in
relation to Hermeto’s proposal [Hermeto et al. 2013]. These results provide insight into
the suitability of forecasting algorithms for use in WSNs clustering in such a way that the
constrained sensor resources are satisfied.

As future perspectives, we intend to extend and improve FLECHA to make it
flexible for mid- and long-term prediction (e.g. using machine learning algorithms) and
considering other metrics, such as the most central node, processing time, and memory
footprint.
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