INXU - A Security Extension for RFC 8520 to Give Fast
Response to New Vulnerabilities on Domestic IoT Networks

Savyo V. Morais', Claudio M. Farias!

'Programa de P6s Graduagio em Informdtica (PPGI) — Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro — RJ — Brasil

{savyo.morais,cmiceli}@labnet.nce.ufrj.br

Abstract. As domestic Internet of Things (DIoT) devices become more popular,
the number of devices connected to the Internet increases. It may also represent
a risk to the end-user’s security and privacy. The infected devices can be used
in DIoT botnets affecting the Internet’s stability. Although there are efforts to
enhance IoT security, such as RFC 8520, there still needs for improvements in
the DIoT context. To ensure DIoT security, this paper proposes INXU, an exten-
sion of RFC 8520 that enables blocking traffic related to well-known malicious
activities. INXU introduces the concept of Malicious Traffic Description, a data
model to describe traffic related to malicious activities, and enables Security
Operation Centers to protect domestic networks.

1. Introduction

The Internet of Things (IoT) is a socio-technological phenomena that comes from the hu-
man need to monitor and control the environment in which is inserted, jointed with the
growing development of Information and Communication Technologies during the last
two decades [Kramp et al. 2013]. Thus, the IoT comes assuming its role in transforming
devices that originally are incommunicable — such as fridges, doors, cars, other common
objects of our daily lives, or even environments with sensors and actuators — into devices
communicable from any part of the world via Internet. This enables automation of tasks,
replacing manual activities, and accelerating the growth of the number of devices con-
nected to the Internet that went from 8.4 billion in 2016 to the forecast of 20.4 billion in
2020 [van der Meulen 2017].

Currently, one of the most common uses of [oT is in domestic environments. In
this context, much data about the end-user’s daily life can be extracted from IoT devices,
putting at risk its privacy and security if an attacker get access to the devices. One exam-
ple of this is Shodan!, an online platform that enables users to access vulnerable security
cameras connected to the Internet [Lin and Bergmann 2016]. Besides privacy, the expo-
sure to cyber-physical systems can incur in physical harm, such as if a denial of service
attack disables a smoke alarm during a fire [Habibi Gharakheili et al. 2019], or an attacker
maliciously controlling remotely a thermostat.

The vulnerability of these devices causes troubles not only to its end-users since
that most of the devices are being infected and incorporated into networks of remotely
controlled devices that are being used to drive malicious activities on the Internet, the
so-called botnets [Marzano et al. 2018]. One of the most common uses of botnets is on

Thttp://shodan.io/ — accessed in 08/26/2020

the interruption of online services through Distributed Denial of Service (DDoS) attacks,
what is affecting the Internet’s stability, given that such attacks commonly take advantage
of Domain Name System (DNS) infrastructure to amplify the attacks [Schutijser 2018].
Another common use of botnets is on mining cryptocurrencies, where the funds generated
are credited to the attacker, but the costs are transferred to the infected IoT devices owners
[Pires et al. 2019].

To enhance security on IoT devices, the Internet Engineering Task Force (IETF)
released the RFC 8520 — Manufacturer Usage Description (MUD) Specification —, an In-
ternet Standard that defines a way for the manufacturers to describe the minimal network
configuration that each 10T device needs to properly work [Lear et al. 2019]. Despite
MUD’s focus on operations, the standard reinforces security, reducing the device’s threat
surface when defining that only the described traffic has to be allowed, otherwise dropped.

But from a security point of view, MUD does not completely protect devices due
to the only security authority keep on the manufacturer. This becomes a problem if the
manufacturer does not care about security or is inexperienced, using vulnerable software
components, or hard coding weak access credentials [OWASP 2018]. One example of
this is the Mirai botnet, which uses a dictionary of hardcoded Telnet credentials to exploit
multiple exposed devices on the Internet [Kolias et al. 2017].

Specifically in domestic environments, another problem is that the end-users are
commonly inexperienced with IoT devices operation and configuration. This usually
incurs in misconfigurations and opens security breaches on IoT devices [Goutam 2019,
Schutijser 2018].

Some works focused on the domestic environment are trying to protect the IoT
ecosystem refining MUD rules. In [Schutijser 2018] is proposed an algorithm that traces
network communication profile for each connected IoT device, blocking the traffic that
is out of the device’s common behavior — regardless if the traffic is allowed by MUD.
The main issue of this proposal is that a profile can be built while a malicious activity is
happening. Another point to take into consideration is that this proposal does not provide
the means to share knowledge about malicious activities detected.

In [Al-Shaboti et al. 2018] a security framework for domestic is proposed com-
bining Mandatory Access Control (MAC), a concept similar to MUD, with Discretionary
Access Control (DAC), what enables customization of network access control. The pro-
posal, however, only specifies means to the end-user manage DAC, which affects the
effectiveness of security measures, since they are potentially inexperienced and can not
understand the risks they are exposed to. The authors also suggest outsourcing DAC to
a third party, but there are no details of the proposal, neither mentions privacy protection
mechanisms to this service.

On the other hand, [Hyun et al. 2017] proposes a data model for security incident
signatures focused on IoT networks, which supports the knowledge sharing of IoT ma-
licious activities. The data model concatenates concepts from the NETCONF protocol
[Enns et al. 2011] and Suricata® intrusion detection signature model to create a simple
model focused on mitigating DDoS attacks. For using IP addressing on rules definition,
the conversion of these rules to a distinct network is not direct, needing analysis and com-

Zhttps://suricata-ids.org/ — accessed in 08/26/2020

parison of the rules between the different networks to the conversion be done, making
more difficult the sharing process.

Thereby, there is a lack of solutions that support decision-making on security mea-
sures and preserves end-user’s privacy, at the same time that enables damage mitigation
of recently discovered attacks in multiple distinct networks. Envisioning overcome this
lack we propose INXU (Intra Network eXposure analyzer Utility), a security extension of
MUD that takes advantage of the mapping of network communications performed by each
IoT device made by MUD to detect exposure to well-known vulnerabilities and block its
associated traffic.

The core component of INXU is the Malicious Traffic Description (MTD), a doc-
ument made by a security authority that describes ongoing malicious activities and well-
known vulnerabilities, and supports INXU on finding connections of connected IoT de-
vice that can expose these attacks. Besides MUD’s protection on reducing threat surface,
INXU inserts another security that enables protecting against incidents not addressed by
the manufacturers on the MUD, or even other malicious activities driven by the manufac-
turer itself.

The data model of MTD, as well as in MUD, makes use of addressing abstrac-
tions to allow describing traffic of malicious activities that can happen on domestic IoT
networks without the need of knowing the network’s addressing schema or the connected
devices. This protects end-users privacy by not exposing private information to third par-
ties on the security measure decision-making process, at the same time that simplifies the
knowledge about attacks between distinct networks.

Another important feature is that, due to its architecture, INXU enables a Security
Operation Center (SOC) to protect multiple distinct networks by sharing the MTDs. This
makes INXU a tool to protect not only the end-users but all the Internet’s ecosystem while
hardens the operation of botnets and other attacks that affects the Internet’s stability.

The rest of this paper is organized as follows. In Section 2 we present the basic
concepts. The related works are discussed in Section 3. Section 4 describes the proposal,
and the conclusions are in Section 5.

2. Basic Concepts

In this section, we present the basics concepts that are fundamental to the understanding
of the work. This section also defines the scope for which INXU was designed.

2.1. Domestic IoT

In general terms, domestic IoT devices are characterized have easy operation and instal-
lation. Due to this, the operation of these devices commonly passes through a cloud
server maintained by the manufacturer — even if the device and the user are on the same
network. Besides simplifying the configuration process, this communication model facil-
itates the remote operation of the devices, overcoming end-to-end communication issues
commonly experienced in domestic networks due to the usage of Network Address Trans-
lation (NAT).

Most of the domestic IoT devices implement the TCP/IP stack. On the physical
layer, envisioning to take advantage of the pre-existing infrastructure of domestic net-

| | | |

[MUD |-->get URL-->| MUD |

| Manager | . (https) | File Server |

End system network | |<-MUD file<-<| |
. | (DHCP et al.) | router |
.| Thing |---->MUD URL-->| or |
| | | switch |
I

Figure 1. MUD Architecture — by [Lear et al. 2019]

works, the devices commonly use protocols of the IEEE 802.11 (Wi-Fi) and IEEE 802.3
(Ethernet) families. Less common are implementations of IEEE 802.15.4 (Zigbee), but in
these cases, the network communication is closed to devices from the same vendor and
there are no management options, besides the needing of a gateway to convert the traffic
to the most common protocols.

2.2. MUD

The Manufacturer Usage Description is specified by RFC 8520. It is a component-based
architecture that enables a device to inform the network manager about the minimal net-
work access configurations the device needs to properly work [Lear et al. 2019]. Despite
the focus on support operations, MUD has security benefits when defining that non de-
scribed communications have to be dropped, reducing the device’s threat surface and the
possibility of new infections.

MUD’s architecture contains 4 components: (i) MUD file, which contains the
descriptions of the communications implemented on the device; (i1) MUD file server, that
is the server, managed by the manufacturer, responsible for delivering the MUD files; (iii)
MUD URL, that is the URL delivered by the IoT device that indicates the location of its
respective MUD file; and (iv) MUD manager, that has the function of receiving the MUD
URLSs on the local network and manage the acquisition, interpretation, and processing of
the MUD files.

To describe the communications which the IoT device is enabled to perform,
MUD makes use of the Access Control List (ACL) YANG data model defined in
[Jethanandani et al. 2019]. An ACL is a list of Access Control Entries (ACEs), that are
the atomic entities that describe the traffic performed by a device, specifying the header
information of the TCP/IP stack Network and Transport protocols carried on the device’s
communication.

MUD’s basic workflow is illustrated in Figure 1, which starts when an [oT device
connects to the network. When connected, the device sends its respective MUD URL to
the MUD manager, which requests the MUD file to the MUD file server. Finally, with the
MUD files of all connected devices, the MUD manager process them all and generate the
network graph, indicating the network configurations that have to be made according to
what the IoT devices manufacturers indicated.

3. Related Work

In the context of this paper was considered as related work proposals that in some way im-
prove MUD security for domestic environments or proposals that support the knowledge
sharing of IoT related malicious network activities.

Intending to refine MUD rules by defining devices network profiles,
[Schutijser 2018] proposes a behavior analysis approach to mitigate DDoS attacks. To
do this, the proposal takes into consideration various aspects, such as packet frequency
and common sockets. When a behavior deviation is detected, the outlier traffic is blocked,
even if allowed by MUD. The proposal, however, only provide mains to block malicious
communications with the Internet, not considering other attacks held inside the local net-
work, nor provide means to share knowledge about the discovered malicious activities.
Another attention point to take into consideration is that the profile tracing of a device
can happen while a malicious activity is happening, which makes the proposal treat one
malicious traffic as normal.

[Al-Shaboti et al. 2018] proposes a framework for domestic environments that im-
plements prevention against well-known malicious activities. To do this, the proposal
builds the network access configuration based on two types of rules: Manufacturer Ac-
cess Control (MAC) rules, which role can be assumed by MUD; and Discretionary Access
Control (DAC) rules, that can be defined by the end-user or by a trusted third party. With
this combination, the framework reduces the threat surface of the IoT devices. However,
the proposal does not provide for ways to share knowledge about vulnerabilities with dif-
ferent networks to promote the protection of the entire Internet ecosystem. Also, despite
allowing third parties to interact with the definition of security measures, the model does
not detail how the integration with external entities should be, nor does it detail the level of
information that will be exposed to third parties for due analysis and decision-making, not
taking into consideration privacy implications when exposing information from a private
network to third parties.

On knowledge sharing, [Hyun et al. 2017] proposes a data model for intrusion
detection signatures that supports organizing information about DDoS attacks. The pro-
posed data model concatenate concepts of NETCONF protocol and Suricata intrusion
detection signatures to create a YANG data model focused on protecting 1oT networks
from well-known DDoS attacks. The problem in this proposal is that the conversion of
the rules under this model for other networks requires knowing both networks since it
does not create abstraction tools for a simple conversion.

4. Proposal

In this section, we present the proposal of INXU: a security extension for MUD to give
fast responses to new vulnerabilities in domestic [oT networks. INXU was designed to
have as main features: (i) enable fast responses to new vulnerabilities; (ii) enable mitiga-
tion of the damages of a new vulnerability, simultaneously in multiple distinct networks;
and (iii) enable a decision-making process about security measures on the network edge,
avoiding the disclosure of private information to third parties. The lack of solutions that
provide means to share information about vulnerabilities, associated with the difficulty
of generating generic security countermeasures to multiple distinct networks justifies fea-
tures (1) and (ii), while the principle of preserving privacy justifies (iii).

MTD Server

<<file=>

MTD File

<<HTTPS>>
—~

Servidor HTTPS Home Gateway |oT Device

MUD Agent

<<url>>

MUD URL

MUD File Server

<<file>

/ .
MUD File <<HTTPS>> Caption

mmmmmmmm Servidor HTTPS
o

Figure 2. INXU Architecture

In an overview, while MUD builds a network access allow list for each connected
IoT device, INXU creates a block list over MUD’s allow list to protect the network from
malicious activities. To do this, INXU allows a security authority to describe the traffic
of ongoing malicious activities in MTDs. With this, the security authorities can use the
INXU to prevent multiple distinct networks when releasing new MTDs for every new
malicious activity discovered, in a process similar to the antivirus programs vaccines.
The domestic network receives the MTDs and process it on the edge, comparing them
with the network graph generated by the MUD manager, and then identifies exposures to
vulnerabilities, blocking them when discovered.

4.1. Architecture

The architecture of INXU follows the illustrated on the Deployment Diagram in Figure
2, with the components distributed between the following nodes: MTD Server, MUD file
server, Home Gateway, and loT Device.

The Home Gateway is the main node, placed on the network edge, have the re-
sponsibility of collecting MUD related data, which includes receiving the MUD URLs
and collecting the MUD files. It is also responsible for manage MTD related informa-
tion, such as collecting MTD file and processing it to identify exposure to vulnerabilities.
The Home Gateway contains the following software components: MTD manager, MUD
manager and INXU.

The IoT Device node, situated on the Local Area Network (LAN), represents the
IoT devices connected to the domestic LAN. In the context of INXU, the loT Device is
responsible for informing the MUD URL of its respective MUD file to the MUD manager
using the extensions to DHCP, X.509, or LLDP created in RFC 8520 to support MUD
operation. The loT Device is composed by the software component MUD Agent and by
the data component MUD URL.

The MUD file server is placed on the cloud. It is maintained by the IoT device
manufacturer and is responsible for responding requests made by the MUD manager 1ook-
ing for the IoT Devices MUD files using the workflow described in Section 2.2. These

components interact with the MUD managers, serving the MUD files and assuring the
verifiability of its authenticity. The MUD file server is composed by the data component
MUD file and by the software component HTTPS Server.

Also placed on the cloud, the MTD Server is responsible for storing and deliver-
ing the malicious traffic descriptions made by a security authority. This component was
designed to enable reliable security authorities to share knowledge about domestic IoT
well-known malicious activities, and domestic IoT networks to make use of this knowl-
edge to protect themselves. The MTD Server is composed by the software component
HTTPS Server and by the data component MTD File.

4.1.1. Data Components

The following data components are included in INXU architecture: MUD file, MUD URL
and MTD File.

As indicated by the name, the MUD file is a file that describes the network access
necessary for the associated IoT device work properly. This component is under the
device’s manufacturer responsibility and is represented by a JSON, which describes the
network accesses performed by the device using Access Control Lists (ACLs) under the
MUD YANG data model defined in RFC 8520.

The MUD URL indicates the location of a MUD File by a URL in HTTPS schema.
This component also classifies the device type, enabling the identification of its manufac-
turer, model, and sometimes the firmware version. This component was incorporated
from RFC 8520.

The MTD File is a file where the network traffic associated with malicious ac-
tivities are described to INXU. This component also contains data for version control,
authenticity, and validity time. The content of a MTD file is defined by a SOC in a JSON
file, following the YANG data model defined on the Section 4.2.

4.1.2. Software Components

The system’s architecture has the following software components: HTTPS Server, MUD
manager, MUD agent, MTD Manager, and INXU (Intra-Network eXposure analyzer Util-
ity).

The HTTPS Server is fundamental for the functions of the nodes MUD file server
and MTD Server, where this component is responsible for delivering the description files
— MUD file and MTD File. 1t is also a responsibility of this component to provide means
to verifying authenticity, not only by the HTTPS protocol but also by hosting signature
files to offline verification.

The MUD manager is the software that centralizes the operation of MUD, receiv-
ing the connected IoT devices MUD URLs, and collecting its respective MUD files. This
component also interprets the content of MUD files to generate the network graph, de-
tailing what are the communications held over the Network and Transport layers of the
TCP/IP model. Another function under MUD manager’s responsibility is the authenticity

verification of the received files. This component was incorporated from RFC 8520.

The MUD agent is responsible for sending the IoT device’s MUD URL to the
MUD manager. This component is executed every time that the device connects to the
network. The communication with MUD manager can be over extensions of the protocols
DHCP, X.509, and LLDP. This component was incorporated from RFC 8520.

The MTD Manager has the function of managing the MTD File on the system. It
is responsible for requesting the file to the MTD Server, verify authenticity, and request
a new file when the current file validity expire. The most common way to ensure MTD
file authenticity is by HTTPS protocol, but the MTD Manager can also use the means
described in the Section 3.1 of [Rescorla 2000]. On the end of the process, the MTD
Manager forwards the MTD File to INXU.

The INXU (Intra-Network eXposure analyzer Utility) is the main component of
this proposal. It is responsible for verifying all the network communications trying to
identify possible exposures to malicious traffic. INXU compares the malicious traffic de-
scribed in MTD File with the network graph generated by MUD manager. The description
of the exposure analysis algorithm will be detailed in Section 4.3.

4.2. Data Model

The data model for describing malicious traffic has to enable defining traffic in a way
that distinct networks can interpret and implement security measures, no matter what
are the connected IoT devices or network topology. Another important feature to be
addressed by the data model is to allow the association between the detected exposure
and the malicious activity that exploits it, as well as the grouping of exposures related
to the same malicious activity. Since, as far as we know, there is no other data model to
address these requirements, we designed the data model described below to the MTD.

The MTD data model uses the ACLs [Jethanandani et al. 2019] under YANG lan-
guage [Bjorklund 2016] to describe the malicious traffic, addressing the classification
feature. Furthermore, such as in MUD, we defined two network address abstractions
to enable defining the traffic in a way that different networks can adapt the description to
its context: one abstraction for addresses in the local networks, and the other for using
domain names to hosts on the Internet. The data model also includes control fields that
support the manageability of the MTD File, so the contained data can be categorized in
control data and description data.

The tree view of the proposed YANG data model is shown in Figure 3. The spec-
ification of the control fields are in the Section 4.2.1, and traffic description field are
specified in Section 4.2.2.

4.2.1. Control Fields

There are four control fields: mtd-url, last-update, mtd-signature, and cache-validity.
Their function are specified bellow.

* mtd-url: this is a required field which stores the URL where the security authority
hosts the MTD File;

module: ufrj-mtd

+--rw mtd!
+--rw mtd-url inet:uri
+--rw last-update yang:date-and-time
+--rw mtd-signature? inet:uri
+--rw cache-validity? uint8

+--rw attack-descriptions

| +--rw to-device-attacks

| | +--rw attack-lists

| +--rw attack-list* [name]

| +--rw name -> /acl:acls/acl/name
| +--rw specific-devices* inet:uri
| +--rw from-device-attacks

| +--rw attack-lists

| +--rw attack-list* [name]

|

|

+

+--rw name -> /acl:acls/acl/name
+--rw specific-devices* inet:uri
--rw malware-descriptions
+--rw malwares-list* [name]
+--rw name string
+--rw specific-devices* inet:uri

+--rw to-device-attacks
| +--rw attack-lists
| +--rw attack-list* [name]
| +--rw name -> /acl:acls/acl/name
| +--rw specific-devices* inet:uri
+--rw from-device-attacks
| +--rw attack-lists
| +--rw attack-list* [name]
| +--rw name -> /acl:acls/acl/name
| +--rw specific-devices* inet:uri
+--rw not-attack-traffics
+--rw to-device-non-attack-traffic* [name]

| +--rw name -> /acl:acls/acl/name
+--rw from-device-non-attack-traffic* [name]
+--rw name -> /acl:acls/acl/name

augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:

+--rw mtd
+--rw local-networks? empty

augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:14/acl:tcp/acl:tcp:
+--rw direction-initiated? mud:direction

augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:13/acl:ipv4/acl:ipv4:
+--rw src-dnsname? inet:host
+--rw dst-dnsname? inet:host

augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches/acl:13/acl:ipv6/acl:ipv6:
+--rw src-dnsname? inet:host
+--rw dst-dnsname? inet:host

Figure 3. MTD YANG data model tree view

* mtd-signature: optional field used to store a URL where can be found the MTD
File signature file. This is important for offline authenticity verification of the file;

* last-update: required field that contains the timestamp information of the MTD
File generation;

 cache-validity: optional integer field that contains the amount of hours to the
expiration date of the MTD File, counting from the time defined on last-update.
This field supports integer values between 1 and 160, and if not defined has to be
assumed as 48 hours by the MTD Manager.

4.2.2. Traffic Description Fields

The traffic description fields are divided in attack-descriptions and malware-descriptions
containers. These two categories are needed due to the possibility one malware can deliver
multiple different attacks, and can also use other traffic - here called not attack traffic -
related to the malware operation.

The specification of each traffic description field is detailed bellow:

« attack-descriptions: container that holds all attack traffic incoming to or outgoing

from an IoT device:

to-device-attacks: container that holds all the attack traffic targeting an
IoT device on the LAN;

from-device-attacks: a container that holds all the attack traffic outgoing
from an IoT device on the LAN.

* attacks-list: list type field to hold all the traffic on the same direction (incom-
ing/outgoing) that is associated to one attack:

name: required string field with the name of the ACL that describes one
attack;

specific-devices: optional list to specify the MUD URLs of the [oT devices
that can be affected by the described attack. When this field is filled, INXU
only considers the devices here listed as targets of these ACLs.

The description of malware traffic allows the aggregation of distinct attacks, and
also other not attack traffic that only turn into malicious when related to the malware op-
eration. This aggregation is important for the security measures decision-making process
since that sometimes only a traffic combination makes the malware effective or block-
ing just one type of traffic can almost disable a malware, such as the Mirai’s Command
and Control traffic [Kolias et al. 2017]. The description of malware traffic follows the
above-described nodes:

* malware-descriptions: list that holds the traffic description of all malware cov-

ered by the MTD File:

name: required string field to uniquely name the described malware.
specific-devices: optional list to specify the MUD URLs of the 10T devices
that can be affected by the malware. When this field is filled, INXU only
considers the devices here listed as affected by this malware;
to-device-attacks: a container that holds all the malware associate attack
traffic targeting an IoT device on the LAN;
from-device-attacks: a container that holds all the malware associate at-
tack traffic outgoing from an IoT device on the LAN;
not-attack-traffic: a container that holds not related to attacks, but that
turns into malicious when in a malware context:
* to-device-not-attack-traffic: list with all the ACLs that describes
malware associate not attack traffic targeting an IoT device on the
LAN;
+ from-device-not-attack-traffic: list with all the ACLs that de-
scribes malware associate not attack traffic outgoing from an IoT
device on the LAN.

There are also augments on the ACL model. These augments are responsible for
creating the abstraction for the traffic descriptions, enabling the portability of the knowl-
edge to the different networks. The augments are described as follow:

* mtd:local-networks: optional leaf that, when present, represent that the current
ACE applies to any device on the local IP networks;

* direction-initiated: optional field incorporated from MUD to specify the TCP
connection starter;

* src-dnsname and dst-dnsname: optional field to enable the usage of DNS do-
main names to specify the remote host instead of using IPv4 or IPv6 addresses.

4.3. Exposure Analysis Algorithm

The exposure analysis algorithm of INXU use malicious traffic descriptions from MTD
file to compare with the network communication graph generated by MUD manager, and
tries to detect vulnerabilities on the network. In this context, one vulnerability is detected
when some graph edge matches with any described malicious traffic.

Based on the MUD files, each host expected to communicate with the [oT devices,
or the 10T devices itself, are represented by nodes on the network communication graph
generated by MUD manager. The nodes are represented by the host network address, and
in the case of 10T devices on the LAN, the MUD URL is associated with the node infor-
mation too. The graph edges represent TCP or UDP sockets, or ICMP communications,
where each communication path is represented by a directed edge. Protocols related to the
6lowpan stack are out of the scope of this proposal since these protocols are uncommon
in the domestic [oT environment and MUD only accepts TCP/IP stack protocols in the
ACLs.

Algorithm 1 presents the comparison logic for edges and ACEs. In lines 4 and
5, the algorithm iterates, respectively, over the graph edges and the MTD File ACEs to
compare all the edge-ACE couples.

Line 6 verifies if the ACE is for specific devices. The comparison only continues
if there are no specific devices listed, or if one of the nodes involved on the edge is present
on the list of specific devices. In the negative case for both, the algorithm goes to the next
iteration.

Lines 7 and 8 compare, respectively, the source and destination of the couple using
the function compare-addresses. The function in both lines returns FULL-MATCH if the
addresses are equals or if the ACE is an abstraction for local address and the node address
is local, otherwise it returns NOT-MATCH.

Line 9 compares the protocols over IP using the function compare-transport. The
function returns (i) FULL-MATCH if protocols are equals, or if the ACE is applicable for
any protocol; (ii)) PARTIAL-MATCH case ACE protocol is specific and edge allows any
protocol; or (ii1) NOT-MATCH if protocols are specific and different.

Lines 10 and 11 compare, respectively, the source and destination ports using the
function compare-ports. The function returns (i) FULL-MATCH if ports are equals, or
if the ACE is applicable for any port; (i1) PARTIAL-MATCH if ACE protocol is specific
and edge allows any port; or (ii1) NOT-MATCH if ports are specific and different.

Algorithm 1: Exposure Analysis Algorithm

Input: Network Graph as net-graph
Input: MTD File ACEs as mtds
Output: List of vulnerable edges, respective malicious ACEs and

classifications

1 FULL-MATCH = 0x3;
2 PARTTIAL-MATCH = 0x1;
3 NOT-MATCH = 0x0;

4 foreach edge in net-graph do
5 foreach ace in mtds do
6 if ace.specific-devices is empty OR edge.source.mud-url in

10
11

12

13
14

15
16
17

18
19

ace.specific-devices OR edge.destination.mud-url in
ace.specific-devices then

src = compare-addresses(ace.source, edge.source);

dst = compare-addresses(ace.destination, edge.destination);
transport = compare-transport(ace.transport, edge.transport);

t-src = compare-ports(ace.source-port, edge.source-port);

t-dst = compare-ports(ace.destination-port, edge.destination-port);

classification = src & dst & transport & t-src & t-dst;

if classification is FULL-MATCH then
block-edge(edge.src, edge.dst, edge.transport,
edge.source-port, edge.destination-port);
else
if classification is PARTIAL-MATCH then
block-edge(edge.src, edge.dst, ace.transport,

ace.source-port, ace.destination-port);

end

end

20 end

21 end
22 end

Line 12 performs a logic AND between the results of lines 7 to 11 to verify any
level of exposure to vulnerability.

Possible network blocks are determined between lines 13 and 19, considering the
result of line 12. In the case of FULL-MATCH, the communication of the edge is com-
pletely blocked. If the result was PARTIAL-MATCH, a block is made over the protocol
specified on the ACE. Case NOT-MATCH, the edge is not exposed to any vulnerability
and the algorithm can go to the next iteration.

5. Conclusion

In this paper, we presented INXU, a security extension for MUD to support giving fast
responses to new vulnerabilities on domestic IoT networks. INXU compares the network
flows generated by MUD with the MTD described by a security authority to identify
flows that expose a local IoT device to one malicious activity. In this way, INXU supports
protecting not only the domestic IoT device end-users, but all the Internet ecosystem since
that it enables security authorities to protect a large number of heterogeneous networks
from being targets of attacks, and even preventing the same networks from being the
source of the attacks as members of botnets.

INXU is still a work in progress, and some improvements are on our road map.
One important upcoming next step is implementing an INXU prototype and run some
experiments over domestic networks under attacks or hosting botnet activities, using this
to measure the gain in security protection when compared with MUD.

One important current limitation of INXU is that it still does not consider usability
on the decision process for blocking a flow. The current model blocks any exposure to
vulnerability, even if it does not represent a real risk, so blocking these traffic reduces
the device’s usability and do not provide real protection. To overcome this, we intend to
provide means to the security authority building a MTD File define conditions for blocking
one traffic. Two are the possible approaches to be taken: (i) define a risk threshold for
each attack or malware, and associate a risk level for each ACL; or (ii) defining critical
ACL sets for each attack or malware, blocking the flows only when the found exposures
match with a critical ACL set.

References

Al-Shaboti, M., Welch, 1., Chen, A., and Mahmood, M. A. (2018). Towards secure smart
home iot: Manufacturer and user network access control framework. In 2018 IEEE
32nd International Conference on Advanced Information Networking and Applications
(AINA), pages 892—899.

Bjorklund, M. (2016). The YANG 1.1 Data Modeling Language. RFC 7950.

Enns, R., Bjorklund, M., Bierman, A., and Schonwilder, J. (2011). Network Configura-
tion Protocol (NETCONF). RFC 6241.

Goutam, S. (2019). Hestia: Simple least privilege network policies for smart homes.
Master’s thesis, North Carolina State University.

Habibi Gharakheili, H., Sivanathan, A., Hamza, A., and Sivaraman, V. (2019). Network-
level security for the internet of things: Opportunities and challenges. Computer,
52(8):58-62.

Hyun, D., Kim, J., Hong, D., and Jeong, J. P. (2017). Sdn-based network security func-
tions for effective ddos attack mitigation. In 2017 International Conference on Infor-
mation and Communication Technology Convergence (ICTC), pages 834—-839.

Jethanandani, M., Agarwal, S., Huang, L., and Blair, D. (2019). YANG Data Model for
Network Access Control Lists (ACLs). RFC 8519.

Kolias, C., Kambourakis, G., Stavrou, A., and Voas, J. (2017). DDoS in the IoT: Mirai
and Other Botnets. Computer, 50(7):80—84.

Kramp, T., Van Kranenburg, R., and Lange, S. (2013). Introduction to the internet of
things. In Enabling Things to Talk, pages 1-10. Springer, Berlin, Heidelberg, Berlin,
Heidelberg.

Lear, E., Droms, R., and Romascanu, D. (2019). Manufacturer Usage Description Speci-
fication. RFC 8520.

Lin, H. and Bergmann, N. (2016). IoT Privacy and Security Challenges for Smart Home
Environments. Information, 7(3):44.

Marzano, A., Alexander, D., Fazzion, E., Fonseca, O., Cunha, I., Hoepers, C., Steding-
Jessen, K., Chaves, M. H. P. C., Guedes, D., and Jr., W. M. (2018). Monitoramento e
caracterizacdo de botnets bashlite em dispositivos iot. In Anais do XXXVI Simposio

Brasileiro de Redes de Computadores e Sistemas Distribuidos, Porto Alegre, RS,
Brasil. SBC.

OWASP (2018). Owasp top 10 internet of things 2018. https://www.owasp.
org/index.php/OWASP_Internet_of_Things_Project. Acesso em
10/01/2020.

Pires, V. R., Coutinho, F. R., Menasché, D. S., and de Farias, C. M. (2019). Gatos virtuais:
detectando e avaliando os impactos da mineracdo de criptomoedas em infraestrutura
publica. In Anais do XIX Simpdsio Brasileiro em Seguranga da Informacdo e de Sis-
temas Computacionais. SBC.

Rescorla, E. (2000). HTTP Over TLS. RFC 2818.

Schutijser, C. (2018). Towards automated ddos abuse protection using mud device pro-
files. Master’s thesis, University of Twente.

van der Meulen, R. (2017). Gartner says 8.4 billion connected “things” will be in use
in 2017, up 31 percent from 2016. Disponivel em http://www.gartner.com/
newsroom/1d/3598917 (06/07/2019).

