
Using the RFC 7575 and Models at Runtime for Enabling
Autonomic Networking in SDN

Felipe A. Lopes

Instituto Federal de Alagoas – Campus Arapiraca
Arapiraca, Brazil

felipe.alencar@ifal.edu.br

Abstract. The programmable network architectures that emerged in the last
decade have opened new ways to enable Autonomic Networks. However, there
are several open issues to address before making such a possibility into a feasi-
ble reality. For instance, defining network goals, translating them into network
rules, and granting the correct functioning of the network control loop in a self-
adaptive manner are examples of complex tasks required to enable an auto-
nomic networking environment. Fortunately, architectures based on the concept
of Models at Runtime (MART) provide ways to overcome such complexity. This
paper proposes a MART-based framework – using the RFC 7575 as reference
(i.e., definitions and design goals for autonomic networking) – to implement au-
tonomic management into a programmable network. The evaluation shows the
proposed framework is suitable for satisfying the functional and performance
requirements of a simulated network.

1. Introduction
About ten years ago, the emergence of the Software-Defined Networking (SDN) paradigm
rekindled the debate over programmable networks. With the advances made by the net-
work community since then, it was possible to conceive that programmable networks are
a fundamental piece of achieving autonomous networks, in which network management
and adaptations take place autonomously – a concept commonly known as Autonomic
Network Management (ANM) [Samaan and Karmouch 2009].

When separating the control plane from the forwarding devices (i.e., one of the
pillars of SDN) [Kreutz et al. 2014], self-adaptive actions can be implemented into the
software (centralized or distributed) that manages the network [Wickboldt et al. 2015].
However, few proposals demonstrate how a programmable network architecture (e.g.,
SDN) can be integrated with the definitions and design objectives of autonomic networks
– even in simulated scenarios. According to [Jiang et al. 2015], translating high-level ob-
jectives into code to be executed on routing devices, reacting autonomously to changes
in the network based on knowledge, and defining where autonomic loops should be im-
plemented and controlled are some of the open challenges in adopting ANM in SDN sce-
narios. In addition to these difficulties, the network community has no standard widely
accepted to implement ANM systems.

Fortunately, some of the challenges related to the ANM systems development
already have solutions applied in the area of autonomic computing. One of these solutions
is known as Models at Runtime (MART), which uses a high-level abstraction associated
with code generation technologies to monitor, control and execute autonomic systems

[Blair et al. 2009]. Besides, in the context of standards, IETF’s joint efforts created the
RFC 7575 [Behringer et al. 2015] to define a common language and design objectives
for autonomic functions in a network. Thus, based on the guidelines defined in RFC
7575, this work aims to propose and analyze a MART framework for implementing an
ANM. The main contribution of this paper is in demonstrating the applicability of MART
to implement the RFC 7575’s reference model, using the proposed framework as the
basis for such implementation. Besides, this paper evaluated the proposed framework’s
performance and found that its execution could enable autonomic network functions, such
as network discovery and flow forwarding functions.

This paper is organized as follows: Section 2 presents the basic concepts related to
the target problem and the proposal; Section 3 discusses related work; Section 4 presents
the proposed MART framework using the RFC 7575 guidelines; in Section 5, there is
the performance evaluation of the framework in a simulated environment; Finally, Sec-
tion 6 brings conclusions perceived from the integration between MART and ANM for
programmable networks.

2. Basic Concepts
This section presents the basic concepts that are fundamental to the understanding of the
work. It also defines the scope for which the present MART-based proposal was designed
to enable ANM.

2.1. ANM, SDN, and the RFC 7575

According to [Samaan and Karmouch 2009], Autonomic Networking Management
should anticipate, diagnose, and prevent any fault that may be caused to the under-
lying network. Besides, such capabilities should be achieved using an independent
and autonomic manner, guided by a set of high-level objectives. Recent research pa-
pers might refer to ANM concepts using the terms Cognitive Network Management
[Ayoubi et al. 2018], Self-Driving Networks [Kalmbach et al. 2018], or Knowledge-
Defined Networks [Mestres et al. 2017]. Despite the conceptual definition, there is still
no consensus on how these diagnosis and prevention actions should occur. In this con-
text, an RFC 7575 provides guidelines and a reference model that aims to pave the way
for autonomic behavior to be implemented in networks.

According to [Behringer et al. 2015], the original design goals of autonomic
systems also apply to Autonomic Networks. The main objective is to achieve self-
management, which involves several self-* properties (e.g., self-configuration, self-
healing, self-optimizing). In this context, joint efforts at the IETF’s Network Management
Research Group (NMRG) proposed the RFC 7575 – a draft describing NMRG’s view on
autonomic networking. It defines that self-* properties must be autonomous functions at
the node level, i.e., autonomic nodes – with minimal dependence on management systems
or controllers. On the other hand, [Behringer et al. 2015] also emphasizes that the com-
munication between these autonomic nodes must be through an Autonomic Control Plane
(ACP), which also already have standardization efforts [Eckert et al. 2020].

In addition to the definition of a general self-management objective, RFC 7575
outlines 11 (eleven) design goals for autonomic networking solutions, among them: co-
existence with traditional management, decentralization and distribution, simplification

Southbound API

Control Plane

Knowledge
Base

Data Plane

Northbound API

Autonomic
Monitor

Autonomic
Analyzer Autonomic

Planner and
Executor

Information Flow

ANM
Components

SDN
Architecture

Figure 1. ANM-Based SDN Architecture.

of autonomous node northbound interfaces, abstraction, and monitoring autonomic. The
work of [Eckert et al. 2020] extends the RFC 7575, proposing a reference model for au-
tonomic IP networks based on the GRASP protocol. Although [Eckert et al. 2020] could
be used as a reference model, the specificity of protocols and the focus on IP networks
of this IETF’s Internet Draft (ID) hampers the implementation of a more generic solution
for alternative network architectures (e.g., SDN). However, the conceptual view on SDN
composition with ANM presented here in this paper – depicted in Figure 1 – is similar to
such IETF’s ID and other authors [Stamou et al. 2019]. Figure 1 shows an ANM system
and its components interacting with an SDN network using the Northbound API. Besides,
the ANM system executes adaption actions into the SDN network using its knowledge.

2.2. MART

The concept of Models at Runtime discussed here appeared first at the work of
[Blair et al. 2009]. The authors defined the term MART as a causally connected self-
representation of an associated system that emphasizes the structure, behavior, or goals
of the system from a problem space perspective. It is noteworthy that the word “Mod-
els” present in MART comes from the Model-Driven Engineering (MDE) discipline and
refers to an abstraction or reduced representation of a system that is built for specific pur-
poses. Besides, advanced modeling techniques coupled with MDE capabilities, such as
model-to-model transformation and code generation, offer a viable means to capture run-
time monitoring information, provide decision-making support through runtime model
analysis, and enable runtime adaptation of the system using a model-based approach.

The primary purpose of MART is to enable unanticipated adaptations while en-
suring guarantees. It achieves such adaption characteristic by providing abstractions for
certain aspects of software code, maintaining runtime models of themselves. Besides,
a MART-based system also tries to predict its future behavior when internal or external
events occur. According to [Aßmann et al. 2014], the critical characteristic of a system
based on MART is then its ability to use some aspects of the reality (e.g., context, be-
havior, goals) to the modeling space in order to enable tractable decisions and produce
decidable plans. As a technology, MART enables various further technologies, espe-
cially the possibility to realize self-adaptive software (e.g., ANM software for SDN). It
is possible due to the reasoner component present in most of the MART architectures
[Aßmann et al. 2014, Bencomo and Blair 2009]. The reasoner is responsible for predict-
ing actions in order to provide goal-oriented adaptation.

3. Related Work
Two groups categorize the efforts to enable autonomic networking by means of SDN:
(i) architectures and (ii) approaches that investigate part of such management (e.g., re-
source usage, QoS). For instance, regarding architectures, in [Li et al. 2013] the authors
propose the Autonomic Management Architecture (AMA), aiming to offer multiple au-
tonomic networking services specifically in SDN networks. In [Koutsouris et al. 2013],
the authors implement the Unified Management Framework (UMF) dealing with an SDN
scenario to achieve autonomic properties in SDN management. Both proposals virtu-
alize the SDN infrastructure and implement autonomic blocks to manage the network.
Such an idea is also present in [Qi et al. 2014] and [Gelenbe 2013]; however, the sec-
ond introduces intelligent packets into the SDN network in order to make it autonomous.
More recently, [Yahia et al. 2017] proposed a cognitive architecture (named CogNitive)
to provide autonomic management in software-defined 5G networks, using the MAPE-
K cycle and machine learning techniques. Focusing on QoE, [Volpato et al. 2017] de-
fined an ANM architecture (i.e., the Autonomic QoE Management Architecture) to offer
QoE-aware services. The work of [Benayas et al. 2019] describes a semantic data lake
architecture for fault management based on Bayesian Reasoning for SDN Environments.
In [Bega et al. 2019], the authors propose an architecture based on deep learning for en-
abling autonomic behavior.

Other authors decided to realize parts of the autonomic management in SDN from
implementing algorithms [Tuncer et al. 2015], protocols [Tsagkaris et al. 2015], SDN
controllers [Poulios et al. 2014], and frameworks [Barron et al. 2016, Ahmad et al. 2015,
Tsagkaris et al. 2015]. The adaptive algorithm discussed in [Tuncer et al. 2015] places
SDN controllers integrating the SDN management. In [Zhou et al. 2013], the PindSwitch
protocol resembles the OpenFlow protocol but with autonomic actions. The same idea
is present in [Tsagkaris et al. 2015, Ochoa-Aday et al. 2019] proposing, respectively, the
AUTOFLOW and SHP protocols, which combine SDN with ANM. From the SDN con-
troller perspective, the work of [Poulios et al. 2014] presents the AutoSDN, an SDN con-
troller to enable self-* characteristics in SDN networks.

The present work differs from the previous efforts by considering the entire
MAPE-K cycle when defining an ANM system for SDN networks. For instance, none
of the previous proposals present a high-level integrated manner to define, check, and
execute network goals autonomously. Besides, it appears to be the first ANM implemen-
tation based on the RFC 7575 and the first to integrate high-level goals for generating
low-level parameters for a machine learning technique – used to enable autonomic net-
work functions.

4. Proposal
In this work, MART and SDN are key enablers to implement ANM systems. Therefore,
its proposal is a MART-based framework following the RFC 7575 guidelines to enable
ANM in an SDN scenario. This section presents the proposal’s architecture, identifying
the related RFC 7575’s guidelines considered in its design.

4.1. Architecture
The proposed framework’s architecture (cf. Figure 2) reflects the three layers proposed
by [Aßmann et al. 2014] for MART solutions and can be categorized as a hierarchical

architecture based in [Movahedi et al. 2012], composed of: network model, adaptability,
and infrastructure. Each layer has its functional blocks, interacting and exchanging in-
formation with components or blocks of other layers. The definition of each block and
the inter-block communication follows the RFC 7575’s design goals. For instance, as
discussed in Section 2, RFC 7575’s main design goal is self-management, in which self-*
properties need to be satisfied. The following subsections define each layer, relating their
components to the corresponding design goal.

Configuration
Model

Capability
Model

Planned
Model

Application
Model

Objectives
Model

Management

Development

Knlowledge

Base

Learner
Agent

Monitor

Reasoner

Analyzer

Controller

Southbound API

Southbound API

Forwarding Plane

Legend
Data flow between layers
Data flow between blocks
Passive/Managed Entity

Active/Management Entity

Network Model Layer

Adaptability Layer

Infrastructure Layer

Figure 2. The architecture of the proposed MART-based framework.

4.1.1. Network Model Layer (NML)

NML performs the separation between development models (i.e., application models,
objectives) and management models (i.e., configuration model, capacity, and planned
model). In such a way, development models could be directly defined by a developer
or network operator, while management models might be autonomously defined.

It is worth mentioning that components of this layer are based on meta-models
defined for the MART structure (cf. Figure 3). This work defined such meta-models (and
their entities) considering the concepts of ANM, SDN, and the RFC 7575’s guidelines.
These meta-models enable high-level modeling, consequently: (i) representation of net-
work state; and (ii) specification of objectives (i.e., intents) or the application modeling.
Besides, following the MDE discipline – that is, the base of the MART paradigm – high-
level models are also part of the code generation feature. The role of each functional
block of this layer is described as follows:

• Application Model: enables network operators and developers to model network
applications (e.g., firewall, load balancing, network monitor), resulting in code
that SDN controllers execute.

• Objectives Model: enables the modeling of objectives1 (e.g., minimize delay,
improve throughput) for a network.

• Configuration Model: represents the actual network configuration (e.g., topol-
ogy, running services).

• Capabilities Model: reflects the network potential (or capabilities) to meet re-
quirements (e.g., QoS, bandwidth, delay). It provides information to the Objec-
tives Model.

• Planned Model: it describes actions that the network should perform. A planned
model represents a sequence of commands or actions describing how agents of
lower layers may perform changes in the network environment. Such actions
could be autonomously or manually defined. In practice, the planned and ob-
jectives model are linked to each other, even though they are architecturally sepa-
rated.

Each block has its code generation action, which may occur autonomously – even
though the definition of network intents involves a manual procedure. However, the elim-
ination of human operators is not in the RFC 7575’s scope.

Figure 3a depicts the meta-model used for describing network goals (based on the
ECore language [Gronback 2009]). It is the Objectives Model block base and consists
of five main classes for representing a set of objectives, requirements, and actions. The
class Flow and the abstract class NetworkNode are reusable classes from previous work
[Lopes et al. 2015] (cf. Figure 3a). From the Objectives meta-model (cf. Figure 3b), a
network developer can model objectives, their requirements, and corresponding actions.
Obviously, in some cases, not all modeled objectives will be achieved by the underlying
network. Thus, the Objective class has the active attribute for controlling, which are the
possible network objectives.The ones possible to be achieved from the modeled objectives
will be transformed into the application code to interact with the SDN controller and the
underlying network infrastructure.

4.1.2. Adaptability Layer (AL)

AL accommodates components to perform the interaction with NML’s models and con-
tain implementations representing the MAPE-K concepts. At this level, there are trans-
formations (e.g., model-to-code, model-to-command) from both high-level models into
low-level instructions and from network data into high-level models. The following items
detail the AL layer components:

• Analyzer: plays two distinct roles in the proposed framework’s architecture. First,
it categorizes the information received from the network through configuration
and capability models. Second, it verifies if the actual network state needs to be
changed, considering the knowledge base and the planned objectives.

• Reasoner: verifies if future network configurations should be defined, considering
the knowledge base and the objectives model.

• Learner: continuously feeds the knowledge base, verifying if the reasoner’s de-
cision was beneficial for the network.

1Hereinafter, the words goal and objective will be used interchangeably, without loss of generality.

Sdn

NetworkNode

name : EString
mac : EString
ip : EString

Controller

Host

Switch

AppObject

Rule

App

name : EString = App

Traffic

PacketHeader

Flow

PacketHeaders

Actions ConditionsRelationalOperators

AppTypes ControllerTypes

Instructions

0..*

0..*
0..*

0..*
0..*

0..*

0..*

0..*

0..*

0..1

0..1
0..1

0..*

(a) Short version of meta-model used by the
NML Management part.

Objective

name : EString
achieved : EFloat = 0.0
priority : EInt
preferredActions : Actions
metric : PROPERTY
target : RelationalOperators
value : EString
setAchieved()

Requirement

name : EString
isFulfilled : EBoolean = false
setFulfilled()

ACTIONS

INCREASE
DECREASE
FORWARD
DROP
START_APP
DELEGATE

Action

name : ACTIONS
property : PROPERTY
value : String
active : String
execute()
addAction()
activate()
deactivate()

PROPERTY

BANDWIDTH
DELAY
COMPATIBILITY
TCAM_SPACE
THROUGHPUT

NetworkNode

name : EString
mac : EString
ip : EString

Flow

matchFields : PacketHeaders
matchValues : String
 flowSourceHost : Host
 flowDestinationHost : Host

[0..*] actions

[0..*] actionToNetworkNode [0..*] actionToFlow

[0..*] requirements

[0..*] objectiveToFlow

(b) Objectives and Planned meta-model.

Figure 3. Examples of meta-models used in the MART-based framework.

• Agent: performs changes in the network based on the instructions prepared by
the previous components. The agent performs changes by sending generated code
through the Northbound Interface (NBI) of SDN controllers.

• Monitor: queries the network using parameters that are relevant to achieve the
modeled objectives.

• Knowledge Base (K-Base): is the component responsible for storing data about
the network control knowledge instead of the domain knowledge (since it is re-
flected in the models). K-Base enables the proposed framework to register appli-
cation descriptions, beneficial decisions, and actions that caused errors.

In addition to the conceptual definition of each block, it is worth detailing the
analyzer, reasoner, and learner blocks from the code generation perspective. The algo-
rithm used in the code generation of these components receives the parameters of NML
layer models and must be based on Deep Reinforcement Learning (DRL), i.e., a type of
machine learning algorithm – this choice is beyond the guidelines of RFC 7575 and is a
design choice advocated in this paper. The reinforcement deep learning algorithm used to
allow this behavior has the following definition:

The action selection process – consisting of actions modeled at the Objectives
Model – is the set p in a Markov Decision Process (MDP), p is in some state s at time
step t, and the decision-maker may choose any action a that is available in state s. After
taking action a, p is at the time step t′ randomly moving to the state s′, and giving the
decision-maker a corresponding reward Ra(s, s

′). Thus, according to [Puterman 2014],
MDP is a 5-tuple (S,A, T,R, γ) – where γ is a discount factor that varies between 0 and 1
for rewards at each time t, representing the weight of future rewards (e.g., γ with a value
of 0 benefits recent rewards, while a γ closer to 1 benefits older rewards). However, in
the current scope, S is a large bounded set, and both S and A are continuous spaces. The
probabilities or rewards of R are unknown (which emphasizes the use of DRL to address
the action selection issue).

The proposal presented here train a DRL algorithm proposed by
[Tessler et al. 2019] to estimate the actions based on learned states. In this man-
ner, the DRL algorithm uses an agent for choosing and executing actions in network
states (continuously monitored by the proposed framework’s monitor, cf. Section 4.1.2).
It obtains feedback for that action and uses the feedback to update the K-Base. The DRL
has a so-called Q-factor for every state-action pair. When the feedback for selecting
an action in a state is positive, the associated Q-factor’s value is increased, while if the
feedback is negative, the value is decreased. Such feedback is the input for the reward
function Ra. Algorithm 1 shows a pseudo-code of the DRL used in this proposal.

Algorithm 1: Deep Reinforcement Learning
Input: Retrieve data from the K-Base; if exists
Input: Initialize weights for action-value pairs, state st, objective g;
Data: reached = false;
Data: episode = 0;
begin

while !reached do
for step<learning rate; step++ do

Select action at in st;
Query network parameters in st;
Select a parameter paramt;
ε = ε− (step/learning rate) ∗ ε;
Execute action at for paramt;
Observe new state st+1;
Calculate reward rt and Store experience in K-Base;
Update paramt in the Planned Model;
Collect samples of n randomized transitions of K-Base;
Calculate discount factor d of the reward rt;
Update the transition tt with d;
Train the Q-Network with the new d values of transition tt, st + 1, and at;
reached = compare(g, bettert, worstt)

end
episode++;

end
end

It is worth emphasizing that AL layer’s modules interact with Algorithm 1 and
vice-versa. These modules can modify parameters of each step and be modified by the
DRL algorithm itself. For instance, when DRL algorithm queries network parameters and
takes an action (e.g., install a new flow forwarding rule), such action may change network
behavior or performance, which also changes the network models and its parameters at
the NML layer.

The investigation of efficient algorithms to provide autonomic behavior of network
functions to achieve network objectives is an open issue.

4.1.3. Infrastructure Layer (ILA)

ILA is the managed system (according to the MART concept). It follows the Open Net-
working Foundation (ONF) architecture for SDN [Schaller and Hood 2017]. This layer is

the target for objectives defined at the NML. Moreover, ILA provides information to the
AL (cf. Section 4.1.2) to satisfy such goals.

5. Evaluation and Discussion
The evaluation of this work consists of two main analyses: (i) a qualitative investigation
for checking which RFC 7575’s design goals could be achieved so far by the proposed
framework; and (ii) a quantitative assessment for observing performance factors of the
proposed solution in a simulated scenario. Both analyses consider the use case depicted in
Figure 4, the high-level modeling enabled by the MART-based framework. In this Figure,
there are two models, i.e., a) the Capability Model, consisting of network elements; and
b) the Objectives Model, consisting of network objectives and actions. Moreover, the
modeled objectives are: i) autonomously enable network forwarding, and ii) minimize
the delay. Both objectives should consider <<Flow1>> parameters.

Figure 4. Use case implemented in NML models.

5.1. Qualitative Evaluation
For analyzing this work qualitatively, RFC 7575’s design goals were collected and used
for verifying which of them could be achieved by the MART-based framework proposal.
Although the framework’s design considered RFC 7575 as the reference model, design
goals could not be achieved due to limiting factors of a MART-based solution or a limited
expressiveness of the meta-models and code generation features implemented at the
framework. Thus, the qualitative analysis answers the following question:

Which RFC 7575’s design goals the proposed MART-based solution could not achieve?

• Self-protection: The self-protection property defines that autonomic functions auto-
matically secure themselves against attacks. Currently, the meta-models have no enti-
ties for representing such behavior.

• Coexistence with Traditional Management: The final ANM system currently sup-
ports only intents. The RFC defines that alternative management methods (e.g., com-
mand line, SNMP) could coexist with intents. The proposed framework’s meta-models
need extensions to support this compatibility.

• Secure by Default: Although the proposed framework uses TLS in the communication
between NML models and IL components, it still cannot assert the membership of all
components as required by the RFC.

• Common Autonomic Networking Infrastructure: The current framework’s architec-
ture is currently designed to integrate autonomic functions (generated from high-level
goals) and IL’s network components. Achieving this goal using a unique MART solu-
tion that generates an ANM system might not be trivial. This work claims that more
such infrastructure and its autonomic functions should be in a MART set separated from
the ones used to generate the ANM system.

Table 1. Checking the RFC 7575’s design goals achieved.

Achieved?

RFC 7575 Design Goals Yes No Partially

Self-configuration X

Self-healing X

Self-optimizing X

Self-protection X

Coexistence with Traditional Management X

Secure by Default x

Decentralization and Distribution X

Simplification of Autonomic Node Northbound Interfaces X

Abstraction X

Autonomic Reporting X

Common Autonomic Networking Infrastructure X

Independence of Function and Layer X

Full Life-Cycle Support X

 As Table 1 shows, two Design Goals were partially achieved: i) Decentralization
and Distribution: although the NML models centralize some autonomic logic, the dis-
tributes flow tables at the switches receives such logic but they can’t adapt themselves in
an independent manner; and ii) Simplification of Autonomic Node Northbound Interfaces:
instead of using low-level and application-centric interfaces, NML enables a high-level
interface to define network goals which interact with autonomic nodes. However, repre-
senting the autonomic nodes as autonomic software nodes is still an open issue.

5.2. Quantitative Evaluation

The testbed used for the following experiment was a commodity hardware with an In-
tel Core i7-8550U 1.80GHz processor and 16 GB of memory. To verify the proposed
MART-based framework’s suitability for modeling an ANM system for SDN, consider
the previous use case depicted in Figure 4, a simple network topology in which the objec-
tives are: (i) enable simple packet forwarding; and (ii) achieve maximum delay rates of
10ms in the communication between two hosts. The topology consists of three hosts (i.e.,
h1, h2, and h3) connected by four switches (i.e., s1, s2, s3, and s4) that form two dif-
ferent paths. The communication among the hosts may occur through one of these paths.
For the sake of simplicity, all the links have 10Mb of bandwidth.

For implementing the NML layer and enabling creating its models, this exper-
imental evaluation used the Graphical Modeling Framework (GMF) – a well-known
framework for modeling and creating model transformations [Kalnins et al. 2007]. GMF
supports the generation of a graphical editor – used at runtime in this work – for updating
the models and managing the underlying network. This step enables network operators to

E
pi

so
de

 R
ew

ar
d

Episode reward of the proposed framework and its DRL agent considering
the evaluated use case

Episode Number x 10²

EpisodeReward

AverageReward
EpisodeQ

1400

1200

1000

800

600

400

200

0

-200

0 10 20 30 40 50 60 70 80 90 100

(a) Learning rate for the use case.

0

5

10

15

20

25

0 25 50 75 100 125 150 175 200 225

D
e
la

y
(m

s
)

Episode Number x 10²

Delay rate during the DRL algorithm execution

0 10 20 30 40 50 60 70 80 90

Flow 2

starts

Flow

delegation

actions

(b) Delay rate.

Figure 5. Performance results from the DRL algorithm’s execution.

use a graphical editor and the NML concrete syntax to model the Objectives, Capability,
and Configuration models. These models instances generate a OpenFlow-based Mininet
simulation, controlled by a Ryu Controller, with the modeled network topology and its pa-
rameters. As discussed in Section 4.1.2, the NML models also instantiate the AL layer’s
components (i.e., analyzer, reasoner, learner, agent, monitor, and K-Base) as Ryu’s ap-
plications. For enabling the principles of MART in this implementation, it is necessary
verifying the format of GMF models to update the NML models after executing actions
on the network. In this use case, when the Reasoner block decides for executing an action,
there is a need to update XML files that represent the NML models. The update might
consist of adding new entities and actions to these models.

5.2.1. Autonomic action selection impact

For verifying the model transformations and reasoning in the action selection process, this
evaluation step introduced congestion traffic from host h3 to host h1. The action selec-
tion mechanism tries to find the best action for achieving a state (i.e., Planned Model).
Such tries follow the algorithm discussed in Section 4.1.2. In this way, to achieve the
<<Objective1>>, for example, the algorithm arbitrarily chooses modeled actions and
switches to enable flow forwarding between hosts h1 and h2. Figure 5a depicts the learn-
ing process for the present use case, its peaks reveal the overhead of each new flow rules
set tried and learned by the algorithm. The framework’s DRL algorithm was instantiated
with an initial learning rate of 0.0001 and ReLu as the activation function for all neurons.
The discount factor is set to γ = 0.99, and the target network is updated every 20 steps.
The reward function measured how much the delay rate increased or decreased after each
action selection decision. Besides, we clarify that the action space involved in the training
phase encompasses all the actions available at our meta-model. Figure 5a also shows the
DRL algorithm’s behavior when selecting actions for achieving the modeled objectives.
In Figure 5b, note the increasing delay when Flow 2 starts and the corresponding episode
number in the DRL average reward. When the algorithm receives peaks of rewards, i.e.,

it is learning which action should be executed, the delay also decreases.

6. Conclusions and Final Remarks
This paper presented a distinguished framework considering the RFC 7575’s guidelines
for enabling complete autonomic management in SDN networks. The proposed frame-
work enables a network operator to define high-level objectives that will be achieved using
autonomic actions based on MART concepts. High-level models and network measure-
ments perform the creation and selection of such actions. The framework also provides
prediction blocks to define which actions will positively impact the network behavior to
satisfy high-level objectives defined by an operator.

The experiments revealed that a MART-based framework achieved success in au-
tonomously choosing actions, reducing the network delay for the simulated scenario by
17%. Thus, the results obtained so far demonstrated the suitability of MART models and
RFC 7575’s guidelines for providing a framework to perform autonomic management
of SDN networks. Besides, both the proposed framework and the experiments put this
paper’s proposal as one of the first autonomic frameworks for SDN following a standard
reference. The present work demonstrated benefits in using the concept of MART in SDN
and outlined challenges (e.g., prediction accuracy, monitoring trade-offs, conflicting de-
sign goals) that could be barriers (or opportunities) to the generalization of a self-adaptive
solution for softwarized networks.

References
Ahmad, I., Namal, S., Ylianttila, M., and Gurtov, A. (2015). Towards software defined

cognitive networking. In 2015 7th International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5.

Aßmann, U., Götz, S., Jézéquel, J.-M., Morin, B., and Trapp, M. (2014). A reference
architecture and roadmap for models@ run. time systems. In Models@ run. time,
pages 1–18. Springer.

Ayoubi, S., Limam, N., Salahuddin, M. A., Shahriar, N., Boutaba, R., Estrada-Solano,
F., and Caicedo, O. M. (2018). Machine learning for cognitive network management.
IEEE Communications Magazine, 56(1):158–165.

Barron, J., Crotty, M., Elahi, E., Riggio, R., Lopez, D. R., and de Leon, M. P. (2016).
Towards self-adaptive network management for a recursive network architecture. In
Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP, pages
1143–1148. IEEE.

Bega, D., Gramaglia, M., Fiore, M., Banchs, A., and Costa-Perez, X. (2019). Deepcog:
Cognitive network management in sliced 5g networks with deep learning. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, pages 280–288.

Behringer, M. H., Pritikin, M., Bjarnason, S., Clemm, A., Carpenter, B. E., Jiang, S., and
Ciavaglia, L. (2015). Autonomic Networking: Definitions and Design Goals. RFC
7575.

Benayas, F., Carrera, Á., Garcı́a-Amado, M., and Iglesias, C. A. (2019). A semantic data
lake framework for autonomous fault management in sdn environments. Transactions
on Emerging Telecommunications Technologies, 30(9):e3629.

Bencomo, N. and Blair, G. (2009). Using architecture models to support the generation
and operation of component-based adaptive systems. In Software engineering for self-
adaptive systems, pages 183–200. Springer.

Blair, G., Bencomo, N., and France, R. B. (2009). Models@ run.time. Computer,
42(10):22–27.

Eckert, T., Behringer, M. H., and Bjarnason, S. (2020). An Autonomic Control Plane
(ACP). Internet-Draft draft-ietf-anima-autonomic-control-plane-30, Internet Engineer-
ing Task Force. Work in Progress.

Gelenbe, E. (2013). A software defined self-aware network: The cognitive packet net-
work. In 2013 Ninth International Conference on Semantics, Knowledge and Grids,
pages 1–5.

Gronback, R. C. (2009). Eclipse modeling project: a domain-specific language (DSL)
toolkit. Pearson Education.

Jiang, S., Carpenter, B. E., and Behringer, M. H. (2015). General Gap Analysis for
Autonomic Networking. RFC 7576.

Kalmbach, P., Zerwas, J., Babarczi, P., Blenk, A., Kellerer, W., and Schmid, S. (2018).
Empowering self-driving networks. In Proceedings of the Afternoon Workshop on Self-
Driving Networks, pages 8–14. ACM.

Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., and Barzdins, J. (2007).
Building tools by model transformations in eclipse. In Proceedings of DSM, volume 7,
pages 194–207.

Koutsouris, N., Tsagkaris, K., Demestichas, P., Mamatas, L., Clayman, S., and Galis, A.
(2013). Managing software-driven networks with a unified management framework.
In 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM
2013), pages 1084–1085.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and
Uhlig, S. (2014). Software-defined networking: A comprehensive survey. Proceedings
of the IEEE, 103(1):14–76.

Li, H., Que, X., Hu, Y., Xiangyang, G., and Wendong, W. (2013). An autonomic man-
agement architecture for sdn-based multi-service network. In 2013 IEEE Globecom
Workshops (GC Wkshps), pages 830–835.

Lopes, F. A., Santos, M., Fidalgo, R., and Fernandes, S. (2015). Model-driven network-
ing: A novel approach for sdn applications development. In 2015 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pages 770–773.

Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet-Ros, P., Alarcón, E., Solé, M.,
Muntés-Mulero, V., Meyer, D., Barkai, S., Hibbett, M. J., et al. (2017). Knowledge-
defined networking. ACM SIGCOMM Computer Communication Review, 47(3):2–10.

Movahedi, Z., Ayari, M., Langar, R., and Pujolle, G. (2012). A survey of autonomic net-
work architectures and evaluation criteria. IEEE Communications Surveys & Tutorials,
14(2):464–490.

Ochoa-Aday, L., Cervelló-Pastor, C., and Fernández-Fernández, A. (2019). Self-healing
and sdn: bridging the gap. Digital Communications and Networks.

Poulios, G., Tsagkaris, K., Demestichas, P., Tall, A., Altman, Z., and Destré, C. (2014).
Autonomics and sdn for self-organizing networks. In 2014 11th International Sympo-
sium on Wireless Communications Systems (ISWCS), pages 830–835.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons.

Qi, Q., Wang, W., Gong, X., and Que, X. (2014). A sdn-based network virtualization
architecture with autonomie management. In 2014 IEEE Globecom Workshops (GC
Wkshps), pages 178–182.

Samaan, N. and Karmouch, A. (2009). Towards autonomic network management: an
analysis of current and future research directions. IEEE Communications Surveys &
Tutorials, 11(3):22–36.

Schaller, S. and Hood, D. (2017). Software defined networking architecture standardiza-
tion. Computer Standards & Interfaces, 54:197–202.

Stamou, A., Dimitriou, N., Kontovasilis, K., and Papavassiliou, S. (2019). Autonomic
handover management for heterogeneous networks in a future internet context: A sur-
vey. IEEE Communications Surveys & Tutorials.

Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust reinforcement learning and
applications in continuous control. In International Conference on Machine Learning,
pages 6215–6224. PMLR.

Tsagkaris, K., Logothetis, M., Foteinos, V., Poulios, G., Michaloliakos, M., and Demes-
tichas, P. (2015). Customizable autonomic network management: Integrating auto-
nomic network management and software-defined networking. IEEE Vehicular Tech-
nology Magazine, 10(1):61–68.

Tuncer, D., Charalambides, M., Clayman, S., and Pavlou, G. (2015). Adaptive resource
management and control in software defined networks. IEEE Transactions on Network
and Service Management, 12(1):18–33.

Volpato, F., Silva, M. P. D., Gonçalves, A. L., and Dantas, M. A. R. (2017). An autonomic
qoe-aware management architecture for software-defined networking. In 2017 IEEE
26th International Conference on Enabling Technologies: Infrastructure for Collabo-
rative Enterprises (WETICE), pages 220–225.

Wickboldt, J. A., De Jesus, W. P., Isolani, P. H., Both, C. B., Rochol, J., and Granville,
L. Z. (2015). Software-defined networking: management requirements and challenges.
IEEE Communications Magazine, 53(1):278–285.

Yahia, I. G. B., Bendriss, J., Samba, A., and Dooze, P. (2017). Cognitive 5g networks:
Comprehensive operator use cases with machine learning for management operations.
In 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN),
pages 252–259.

Zhou, T., Xiangyang, G., Hu, Y., Que, X., and Wendong, W. (2013). Pindswitch: A
sdn-based protocol-independent autonomic flow processing platform. In 2013 IEEE
Globecom Workshops (GC Wkshps), pages 842–847.

