
A Semantic Model to Assist Policy Refinement Mechanisms
for NFV-MANO Systems

Michel Bonfim1, Fred Freitas1, Stênio Fernandes1

1Centro de Informática (CIn) – Universidade Federal de Pernambuco (UFPE)
Recife – PE – Brazil

{msb6,fred,sflf}@cin.ufpe.br

Abstract. Management in NFV scenarios is a complex task. In this scenario,
automated policy refinement can be used to enforce NFV-MANO functions to
deal with the increased complexity. However, existing solutions do not perform
policy analysis. Therefore, in this work, we propose a semantic model in OWL
2, named Onto-Planner, to assist the policy refinement process for NFV-MANO
systems. Preliminary results show that Onto-Planner provides policy analysis
when a DL reasoner is applied.

1. Introduction
Management in Network Function Virtualization (NFV) scenarios is a complex task since
delivering such Virtual Network Functions (VNFs) and Network Services (NSs) over the
physical infrastructure requires flexible and adaptable NFV Management and Orchestra-
tion (NFV-MANO) systems [ETSI 2014]. The increasing complexity of the NFV-MANO
has widened the gap between human intention and the managed system behavior. There-
fore, new solutions are necessary to reduce this gap and improve these complex systems’
management.

In this context, Policy-based Management (PBM) systems can be used to enforce
NFV-MANO functions as a way to deal with the increased complexity. PBM systems
are the key enablers to provide flexibility and adaptability in NFV-MANO systems. As-
sisted by policies, NFV-MANO functions can be provided in an automated fashion, aim-
ing to meet the dynamic requirements of Network Service Orchestration (NSO) and Re-
source Orchestration (RO). An NFV-PBM system refers to the management of rules
governing the behavior of NFV-MANO. However, PBM is not a straightforward task
[Riekstin et al. 2016]. This situation is exacerbated when considering its application in
the management of NFV systems since NFV-MANO must provide several functionalities
in a flexible and adaptable way. In this scenario, a key issue regarding PBM systems
arises, namely, policy refinement.

Policy Refinement is the process of transforming high-level policies (Goals or
Intents), which are not directly executable in a management system, into directly enforce-
able, low-level policies (Event-Condition-Action (ECA) rules). In most systems, policy
refinement is done manually. Automated policy refinement is a nontrivial process, and it
remains a much-neglected research area. It has been severely dismissed due to its inherent
complexity [Machado et al. 2017].

According to [Riekstin et al. 2016], one of the key issues for automated policy
refinement is Policy Analysis. A refinement solution must ensure that the refined specifi-
cation achieves the requirements and is consistent with system properties and limitations,

as well as with existing policies [Craven et al. 2010]. Since disputes occur among a set
of policies, pairwise detection will not suffice [Bouten et al. 2016]. To perform policy
analysis, a semantic model (ontology) to describe the goals and low-level rules may be
created. Such ontology would be expressed in Web Ontology Language (OWL) Descrip-
tion Logic (DL) [Krötzsch et al. 2012], which - besides the well-defined, non-ambiguous
semantics above mentioned for the vocabulary being defined - provides decidable, sound
and complete inference for some reasoning tasks, such as inconsistency checking.

Aiming at moving forward on the Network Management Research Group
(NMRG) standardization threads, this work proposes the use of a semantic model in OWL
2 [Krötzsch et al. 2012] to assist the policy refinement process for NFV-MANO systems,
called Onto-Planner. In summary, our main contributions are as follows:

1. A language for describing goals in NFV environments;
2. The Onto-Planner ontology, which offers a vocabulary with its complex relations

and constraints of the domain, expressive enough to describe different types of
alarms, goals, and ECA rules that will be used in the refinement process;

3. The Onto-Planner axioms and Semantic Web Rule Language (SWRL)1 rules that
provides policy analysis, when a DL reasoner is applied.

2. Network Function Virtualization (NFV)
NFV is transforming the computer and communication networks industry. Rather than
dealing with proprietary hardware equipment, which includes a limited set of specific
network applications, NFV allows users to transfer network functions from specific to
Common Off-The-Shelf (COTS) hardware using virtualization technologies [ETSI 2014].
These network functions are then called VNFs and perform different network operations:
Firewall, Network Address Translation (NAT), Deep Packet Inspection (DPI), Load Bal-
ancing, among others.

NFV aims at creating NSs that interconnect one or more VNFs to support the
creation and deployment of end-to-end network services [ETSI 2014]. Some benefits of
deploying network services as virtual functions are: (i) flexibility in the allocation of
network functions in general-purpose hardware; rapid implementation and deployment
of new network services; support of multiple versions of service and multi-tenancy sce-
narios; reduction in Capital Expenditure (CAPEX) costs by managing energy usage ef-
ficiently; and automation of the operational processes, thus improving efficiency and re-
ducing Operational Expenditure (OPEX) costs.

The NFV architecture comprises three main functional blocks: VNF, NFV In-
frastructure (NFVI), and NFV-MANO. VNF is the virtualization of a specific network
function, which should operate independently of the others. A particular VNF can also be
divided into several sub-functions called VNF Components (VNFCs), where there is one
Virtual Machine (VM) implementing each VNFC. On the other hand, NFVI comprises all
hardware and software required to deploy, operate, and monitor VNFs. To this end, NFVI
has a virtualization layer necessary for abstracting the hardware resources (processing,
storage, and network connectivity). Finally, NFV-MANO performs both NSO and RO.
Such functionalities include the following non-exhaustive list of operations [ETSI 2014]:

1https://www.w3.org/Submission/SWRL/

VNF and NS lifecycle management, VNF and NS scaling, resource orchestration, and
management in multi-domain scenarios, access control, and performance and fault man-
agement.

For these purposes, NFV-MANO comprises three components.

• The Virtualized Infrastructure Manager (VIM), which manages and controls the
interaction of VNFs with physical resources under its control (e.g., allocation,
deallocation, and inventory);

• The VNF Manager (VNFM), which is responsible for managing the VNF life-
cycle (e.g., initialization, suspension, and termination); and

• The NFV Orchestrator (NFVO), which is responsible for realizing NS on NFVI.
It also performs NFVI monitoring as a way to collect information for operations
and performance management.

3. Related Work
In NFV systems, we can identify two types of policies: application-specific and
management-specific. The former consists of domain-specific policies that can be set for
both a single NS and globally for all services such as network function precedence, loca-
tion constraints, and resource usage. The latter consists of the rules that will be generated
by the refinement process and stored in NFV-PBM to govern system behavior. We only
found works that perform policy analysis to detect conflicts between application-specific
policies [Bouten et al. 2016, Bonfim et al. 2019], and one of them is our previous work
[Bonfim et al. 2019]. Therefore, we argue that Onto-Planner is the first semantic model
that perform policy analysis to detect conflicts between management-specific policies.

We found only two works that provide a solution for NFV policy refinement.
[Scheid et al. 2017] proposed an Intent-Based Networking (IBN) solution, named IN-
SpIRE. This solution rely on a Non-Functional Requirement (NFR) framework to perform
the refinement procedure. [Jacobs et al. 2019] proposed an intent definition language,
called Nile, to fill the gap between human intention and the network configurations. Nile-
based code is compiled to generate the lower-level configuration commands.

It is worth mentioning that none of the above works perform policy analysis.
They did not take into account the effects of actions/policies have over the managed ob-
jects (system state) during the refinement process. In this context, Onto-Planner can be
adapted to support such solutions to avoid conflicts between different intents and low-
level policies.

4. Onto-Planner
To compose Onto-Planner classes, we reused two information models: NOVI Policy from
the NOVI (Network Innovation over Virtualized Infrastructures) Information Model2, and
Policy Core Information Model (PCIM)3. It is worth noting that we reused them to define
policy rules and their different parts in a vendor-independent manner.

Onto-Planner enables the description of various objects that make up the state
of a policy refinement domain for NFV. With Onto-Planner at hand, an operator or

2https://www.sciencedirect.com/science/article/abs/pii/S0167739X13002811
3https://tools.ietf.org/html/rfc3060

NFV-MANO may record different types of alarms and goals that will be used in the
refinement process. Besides, at the end of this process, Onto-Planner may be used to
describe the generated enforceable policies (ECA rules). Finally, conflicts between these
elements (alarms, goals, ECA rules) are carried out through DL inconsistency verification
when a DL semantic reasoner is relied upon.

We organized the Onto-Planner classes into two categories: classes used before
and after the refinement process. The first category encompasses all classes used for the
following descriptions:

• NFV-MANO operators: deals with the described NFV-MANO elements that are
manageable (e.g., NFVO) and the operators that allow them to be managed, de-
fined according to European Telecommunications Standards Institute (ETSI) spec-
ifications. The following classes are used for this description: ManagedEntity and
ManagedEntityMethod;

• Alarms: deals with the description of different types of alarms. To describe an
alarm, the operator (via Threshold API) should specify one of the predefined met-
rics (instances of the Metric class) for the alarm to watch, define the threshold
(Threshold class) for that metric, and the type of action (from a predefined list
- Action class) to perform when the alarm is triggered. Onto-Planner currently
allows alarm creation for auto-healing and auto-scaling. Further details will be
presented in Section 4.1;

• Goals: deals with the description of different types of high-level goals. An indi-
vidual of the Goal class indicates a goal’s existence. Besides, a single goal must
be associated with a single NS (NS class), one or more VNFs (VNF class) be-
longing to that NS, a single level (Level class), and at least one service attribute
(Attribute class). Further details are presented in Section 4.2;

• Events and Parameters: deal with the description of possible events (Event class)
and parameters (Parameter class) that can be used to compose the events and
conditions, respectively, of the generated enforceable policies. Further details are
in Section 4.3.

It is worth noting that all of the above descriptions are used in the refinement
process.

The second category comprises all classes used after the refinement process for
the description of enforceable policies, and subsequent conflict detection and diagnosis.
There are classes that help the description of ECA rules such as PolicyRule, PolicyEvent,
PolicyCondition, and PolicyAction. Furthermore, there are classes that assist an ECA rule
to support alarm creation into the NFV-PBM. Since Onto-Planner only supports healing
and scaling alarms, we create only the following classes: HealingGroup, HealingPolicy,
HealingCriteria, ScalingGroup, ScalingPolicy, and ScalingCriteria. They offer a way of
describing enforceable alarms that is supported by different MANO frameworks such as
Open Source MANO4. Such classes only describe the alarms selected during refinement.
Further details about enforceable policies description are in Section 4.3.

Additionally, Onto-Planner has all sibling classes disjoint because they describe
different elements of the domain.

4https://osm.etsi.org/

4.1. Describing Alarms

Multiple NFV-MANO frameworks such as Open Baton5 and Open Source MANO6 sup-
port fault management. Such feature enables the creation and execution of alarms in the
form of ECA Rules to deal with possible problems that may occur in NFVI. Alarms
help attend to the requirement of dynamicity regarding current or future system state and
topology changes. Therefore, in addition to enforceable policies that govern NFV-PBM
behavior, we must also generate rules that include alarms in our refinement process.

Onto-Planner enables the operator to record different alarm types for the refine-
ment process. In this context, one operator can specify the metric for the alarm to watch,
the threshold for that metric, and the kind of action (from a predefined list) to be executed
when the alarm fires. To this end, one prerequisite must be met: all available metrics must
be previously recorded as Metric individuals. Such metrics should be accessible by the
target NFV-MANO. The ontology maintainer should carry out this task, i.e., someone
responsible for editing Onto-Planner (via, e.g., Protégé tool7).

ScalingAction
Subclass of

Action

HealingAction

Subclass of

migrate

redeploy

restart

turnoff

horizontal_scale

(a) Action subclasses.

ScalingThreshold
Subclass of

Threshold

HealingThreshold

Subclass of

(b) Threshold subclasses.

Figure 1. Healing and Scaling subclasses.

Onto-Planner currently allows alarm creation for auto-healing and auto-scaling.
Figure 1 shows the classes and subclasses available for these purposes. The Action
class enables the description of all actions (class individuals) necessary to alarm cre-
ation (see Figure 1a). To group these operations, we created two defined classes
[Krötzsch et al. 2012], subclasses of Action. The HealingAction class encompasses
only healing-oriented actions. It is currently limited to the following individuals: mi-
grate, redeploy, restart, turnoff . These individuals represent common healing actions
[ETSI 2016]. The ScalingAction class includes only scaling-oriented actions. It is
currently limited to only one individual: horizontal scale. Horizontal scaling means
adding or removing virtualized computer resources into/from your pool of resources
[ETSI 2015]. Finally, it is possible to define non-functional parameters for Action in-
dividuals such as its subject and target.

The Threshold class allows description of custom thresholds for both healing and
scaling actions. For this, it has two subclasses: HealingThreshold and ScalingThreshold
(see Figure 1b). Figure 2a shows how a healing alarm can be described. An individual
of type HealingAction must have a relationship of type hasThreshold with an individual
of type HealingThreshold. In its turn, the HealingThreshold individual must have three

5Open Baton website: https://openbaton.github.io/
6Open Source MANO website: https://osm.etsi.org/
7Protégé website: https://protege.stanford.edu/

HealingThreshold

HealingAction

Metric

hasThreshold

hasMetric
xsd:integer

xsd:integer

xsd:integer

hasHighThresholdValue

hasMediumThresholdValue

hasLowThresholdValue

(a) Healing alarms.

ScalingThreshold

ScalingAction

Metric

hasThreshold

hasMetric

xsd:integer

xsd:integer

xsd:integer

hasHighScaleThresholdValue

hasMediumScaleInThresholdValue

hasLowScaleInThresholdValue

xsd:integer

xsd:integer

xsd:integer

hasHighScaleOutThresholdValue

hasMediumScaleOutThresholdValue

hasLowScaleOutThresholdValue

(b) Scaling alarms.

Figure 2. Describing alarms.

data properties set with integer values. These data properties define thresholds for the
three possible levels of a goal: low, medium, and high. Besides, the HealingThreshold
individual must have a relationship of type hasMetric with an individual of type Metric.

Similarly, one can describe a scaling action, as shown in Figure 2b. A ScalingTh-
reshold individual type must have six data properties set instead of three. The new data
property is because horizontal scaling has two possible operations: scale in (i.e., remov-
ing resources) and out (i.e., adding resources). Therefore, we must define thresholds for
both operations.

Finally, some restrictions (axioms) have been defined in the above classes to limit
the scope in creating alarms. In fact, a Threshold element must be associated with at least
one Metric. Furthermore, a Threshold element must have exactly one data property set
for each level and each operation in case of ScalingThreshold.

4.2. Describing Goals

According to [Han and Lei 2012], the use of goals (or intents) allows the specification
of the desired states instead of a sequence of actions. In this context, we can declare
the high-level goals, such as Service Level Agreements (SLAs), and hence generate en-
forceable policies to govern NFV-MANO behavioral choices while satisfying the goals.
Besides, goal-oriented refinement assists in reducing both Capital Expenditures (CAPEX)
and Operational Expenditures (OPEX).

In this context, Onto-Planner enables NFVO to record goal policies extracted from
Network Service Descriptor (NSD). It deals with the description of different types of
high-level goals. To this end, we proposed the following language to define high-level
goals in a NS Request (NS-Req) (Listing 1):

Listing 1. Goal Language Grammar
Language -> <Elements> must receive <Level> <Attributes>
Elements -> <Element> | <Element> <Connective> <Elements>
Element -> vnf-member-index
Level -> high | medium | low
Attributes -> <Attribute> | <Attribute> <Connective> <Attributes>
Attribute -> resiliency | manageability | security | performance
Connective -> and

A tenant can define one or more goals in the same NS-Req. Each goal has three
(3) parts:

• Elements: specifies which NS-specific VNFs the goal should be applied to. To
identify a VNF, we set the parameter vnf-member-index, which indicates the po-
sition of the VNF in the service chain;

• Level: determines the goal’s degree of importance, i.e., how critical this goal is
for the NS (high, medium or low);

• Attributes: defines one or more service attributes for the goal. According to ETSI
[ETSI 2014], the overall NS attributes are reliability, availability, manageability,
security and performance. For the grammar, we replaced reliability and availabil-
ity by resilience since ETSI considers that resiliency is an aspect of QoS that can
be characterized by the combination of reliability and availability [ETSI 2015].

For a better understanding, let us consider the following goal policy example (List-
ing 2):

Listing 2. Goal Example
1 and 2 must receive high performance and resilience

This goal establishes that NFV-MANO must provide high performance and re-
silience for the VNFs in positions 1 and 2 within the NS.

Level

Goal

Attribute

hasLevel

hasAttribute

xsd:string

NS

VNF

hasNS

hasVNFhasMemberVNFIndex

low

medium

high

manageability

performance

resilience

security

id

Figure 3. Describing high-level goals.

According to Figure 3, a Goal individual must be associated with a single NS (NS
class), one or more VNFs (VNF class) belonging to that NS, a single level (Level class),
and at least one service attribute (Attribute class). Table 1 lists the axioms that delimit
these restrictions.

Both Level and Attribute classes are defined classes [Krötzsch et al. 2012]. The
Level class is limited to the following individuals: low, medium, high. They determine
the degree of importance of the goal, i.e., how critical this goal is for the NS. In its turn,
the Attribute class is restricted to the following individuals: resiliency, manageability,
security, and performance, as defined by ETSI [ETSI 2014].

4.3. Describing Policy Rules

Once a Policy Refinement Mechanism executes, it generates a set of enforceable policies
(ECA rules) and alarms for a previously registered goal policy. Those elements can be de-
scribed in the Onto-Planner for inconsistency checking (policy analysis). In this section,
we show how to describe ECA rules and enforceable alarms.

Table 1. Class Axioms for Goal description (Manchester Syntax).

Goal SubClassOf hasNS max 1 NS
Goal SubClassOf hasVNF some VNF
Goal SubClassOf hasLevel max 1 Level
Goal SubClassOf hasAttribute some Attribute

PolicyRule

PolicyEvent

PolicyCondition

PolicyAction

hasPolicyEvent

hasPolicyCondition

hasPolicyAction

EventhasEvent

Parameter

xsd:string

hasParameterKey

hasParameterValue

ManagedEntityMethod

Action

UNION OF

hasAction

Figure 4. Describing low-level policy rules.

As shown in Figure 4, we define the following classes to describe ECA rules:
PolicyRule, PolicyEvent, PolicyCondition, and PolicyAction. A PolicyRule individual
must have relationship with exacly one PolicyEvent, via the hasPolicyEvent object prop-
erty, and exacly one PolicyAction, via hasPolicyAction object property. Besides, a Pol-
icyRule must have one or more PolicyCondtion elements; this relationship is defined by
the hasPolicyCondition object property.

Furthermore, an individual of the PolicyEvent class must be associated (hasEvent
property) with one or more Event individuals. The Event class deals with the description
of all existing events in an NFV-MANO such as “network service instantiated” or “VNF
instance scaled”. It is noteworthy that possessing multiple hasEvent relationships in the
same PolicyEvent indicates that all events must occur to trigger the rule.

Table 2. Class Axioms for ECA Rule description (Manchester Syntax).

PolicyRule SubClassOf hasPolicyAction exactly 1 PolicyAction
PolicyRule SubClassOf hasPolicyEvent exactly 1 PolicyEvent
PolicyEvent SubClassOf hasEvent some Event
PolicyAction SubClassOf hasAction some (Action or ManagedEntityMethod)
PolicyCondition SubClassOf hasParamenterKey exactly 1 Parameter

In addition, one PolicyAction may be related (hasAction property) with one or
more actions, which may be of type Action or ManagedEntityMethod. Finally, each Pol-
icyCondition must be associated (hasParameterKey property) with only one parameter
type (Parameter class), which can include multiple string values (hasParameterValue
data property). The Parameter class deals with the description of all existing parameters
in an NFV-MANO such as “network service id” or “alarm type”. Table 2 lists the created
axioms that reflect the above restrictions.

4.4. Managing Policy Conflicts

Onto-Planner enables the following conflict checks: Alarm Conflicts, Goal Conflicts, and
ECA Rule Conflicts.

Concerning Alarm Conflicts, we want to detect if there are at least two alarms
with the same metric and the same action, an obvious policy conflict. For this, we create
the object property usedBySameActionAs, relating two Metric individuals, that are used
by alarms that apply the same action.

Nevertheless, we still have a critical challenge: the definition of which statements
or propositions reflect the behavior of this function. For the property to reflect its expected
behavior, it has to Irreflexive. For instance, let x and y be individuals of the Metric class.
If x is used by the same action as y, then x cannot be y.

Besides, we specify an SWRL rule in (1) to generate implicit facts with the used-
BySameActionAs object property: if we have an action x that has two different thresholds
y and z, where y has the metric m1 and z has the metric m2, then there is a relationship
of type usedBySameActionAs between these two metrics.

differentFrom(y, z) ∧Action(x)

∧hasThreshold(x, z) ∧ hasThreshold(x, y)

∧hasMetric(y,m1) ∧ hasMetric(z,m2)

→ usedBySameActionAs(m1,m2)

(1)

Concerning Goal Conflicts, we want to detect an intersection between one or
more goals. Remarkably, intersections between goals can lead to duplicate policies at the
end of the refinement process. Therefore, we should check this whenever a new goal is
created. In this work, we consider two goals intersect when they share the same NS, one
or more VNFs, and one or more attributes. Hence, again we create the intersectsWith
object property to reflect this behavior. It relates two individuals of Goal class. Besides,
we specify the SWRL rule in (2) to generate implicit facts with this object property.

Goal(g1) ∧Goal(g2) ∧ differentFrom(g1, g2)

∧hasNS(g1, ns1) ∧ hasNS(g2, ns2) ∧ id(ns1, idt) ∧ id(ns2, idt)

∧hasV NF (g1, vnf1) ∧ hasV NF (g2, vnf2)

∧hasMemberV NFIndex(vnf1, index)

∧hasMemberV NFIndex(vnf2, index)

∧Attribute(a) ∧ hasAttribute(g1, a) ∧ hasAttribute(g2, a)

→ intersectsWith(g1, g2)

(2)

Suppose we have two goals x and y. Once we execute the DL reasoner, the fol-
lowing facts will be inferred: intersectsWith(x, y) and intersectsWith(y, x).

However, these facts alone are insufficient to generate inconsistency in ontology,
which is the approach used to detect conflicts. The object property intersectsWith has to be
Asymmetric to meet this constraint. For example, let x and y be individuals of the Goal
class. If x intersects with y, then y cannot intersects with x. By applying this restriction,
Onto-Planner is inconsistent whenever the rule in (2) infers facts with the intersectsWith
object property.

Concerning ECA Rule Conflicts, both alarm and goal conflict detection are per-
formed whenever one of these elements is created in the ontology. This cautionary ap-

proach seeks to prevent enforceable policies from being generated with conflicts after the
refinement process. Nonetheless, there is still a kind of conflict to avoid: the duties’ con-
flict. According to [Bandara et al. 2003], this conflict arises if the same subject performs
a task that encompasses operations that, in the context of the application, are defined to
be conflicting, for example, instantiating and terminating the same VNF in the same task.

To solve this issue, we need to detect if at least two PolicyRule individuals share
the same events and conditions but include conflicting actions. To make this case, we
created the conflictsWith object property to indicate that two actions are conflicting. This
property links two individuals belonging to the set formed by the union of ManagedEn-
tityMethod and Action classes. Before the refinement process, the ontology maintainer
must define all conflicting actions, i.e., define facts with this object property. The on-
tology maintainer is then responsible for editing Onto-Planner without using the Protégé
tool8, for example.

Besides, we specify the SWRL rule in (3) to generate implicit facts with the con-
flictsWith object property.

PolicyRule(r1) ∧ PolicyRule(r2)

∧hasPolicyEvent(r1, pe1) ∧ hasPolicyEvent(r2, pe2)

∧hasEvent(pe1, e) ∧ hasEvent(pe2, e)

∧hasPolicyCondition(r1, pc1) ∧ hasPolicyCondition(r2, pc2)

∧hasParameterKey(pc1, key) ∧ hasParameterKey(pc2, key)

∧hasParameterV alue(pc1, value)

∧hasParameterV alue(pc2, value)

∧hasPolicyAction(r1, pa1) ∧ hasPolicyAction(r2, pa2)

∧hasAction(pa1, a1) ∧ hasAction(pa2, a2)

∧conflictsWith(a1, a2)

→ conflictsWith(a2, a1)

(3)

Suppose the following fact was previously created into Onto-Planner:
conflictsWith(intantiate vnf, terminate vnf).

Now, suppose that, after the refining process, two PolicyRule individuals were
generated: x and y. These rules share the same events and conditions, but x includes on
instantiate vnf action and y, a terminate vnf action. Thus, the DL reasoner infers the
following fact: conflictsWith(terminate vnf, intantiate vnf).

Analogously to other definitions above, conflitsWith is Asymmetric, so as to pro-
voke an inconsistency. For example, let x and y be Action individuals. If x intersects with
y, then y cannot intersects with x. Using this restriction, Onto-Planner will be inconsistent
whenever the rule in (3) summon facts with the conflitsWith object property.

We emphasize that, unfortunately, we have not been able to define axioms using
role chains. According to OWL 2.0 GRs9, once we set an object property as irreflexive or
asymmetric, we can only define simple object property expressions for it, and thus, prop-
erty chains are prohibitive. This is the rationale behind the above SWRL rules employing
property chains.

8Protégé website: https://protege.stanford.edu/
9OWL 2.0 GR website: http://www.w3.org/TR/owl2-syntax/

1 { "name":"Conflict Thresholds",
2 "healPols": [{
3 "name":"Migrate CPU",
4 "action":"migrate",
5 "metric":"osm_pc_vim_cpu_load",
6 "highThresholdValue":70,
7 "mediumThresholdValue":80,
8 "lowThresholdValue":100},
9 {

10 "name":"Migrate MEM",
11 "action":"migrate",
12 "metric":"osm_pc_vim_cpu_load",
13 "highThresholdValue":60,
14 "mediumThresholdValue":70,
15 "lowThresholdValue":90
16 }]
17 }

(a) JSON request Use Case 1.

1) ObjectPropertyDomain: hasThreshold Action
2) migrate hasThreshold conflict-thresholds-migrate-cpu
3) migrate hasThreshold conflict-thresholds-migrate-mem
4) conflict-thresholds-migrate-cpu hasMetric
osm pc vim cpu load
5) conflict-thresholds-migrate-mem hasMetric
osm pc vim cpu load
6) SWRL Rule in (1)
7) IrreflexiveObjectProperty: usedBySameActionAs

(b) Explanation for the inconsistency de-
tected in Use Case 1.

Figure 5. Detecting and Diagnosing conflicts between alarms.

5. Onto-Planner Validation
In this section, we present the process and results of Onto-NFV validation. The process
was carried out in two phases.

In the first phase, we implement Onto-Planner using the Protégé tool10. The source
code is available in the following link: https://github.com/michelsb/atom/
blob/master/database/onto-planner.owl. Besides, we implement a Java-
based RESTful API to manage Alarm, Goal and ECA rule individuals, relying on Spring
Boot11 and OWL API12. To create or remove those individuals, we use JSON as a data
model. For conflict detection and diagnostic, we use the HermiT13, a fully compliant
OWL 2 Reasoner for inconsistency verification.

In the second phase, we simulate three use cases (UC) to evaluate the capacity of
Onto-Planner to detect and diagnose conflicts between alarms, goals, and ECA rules. We
describe them below.

5.1. Use Case 1 - Testing Conflicts between Alarms
As mentioned in Subsection 4.4, Onto-Planner allows the operator to verify if there are
alarms in which the same metric applies twice for the same action. In this use case, we
simulate conflict between two alarms by inserting the two alarms (see Figure 5a) into
Onto-Planner.

We create two alarms that point to the same action (i.e., migrate) and the same
metric (i.e., osm pc vim cpu load). In this case, when the reasoner is performed, it de-
tects inconsistencies in the Onto-Planner and presents the explanations shown in Figure
5b.

Such explanations state that, since there is the SRWL
rule (1), the reasoner infers the following relationships (line 6):
usedBySameActionAs(osm pc vim cpu load, osm pc vim cpu load).

10Protégé website: https://protege.stanford.edu/
11Spring Boot website: https://spring.io/projects/spring-boot
12OWL API website: http://owlapi.sourceforge.net/
13HermiT website: http://www.hermit-reasoner.com/

1 { "name":"Conflict Goals",
2 "goals": [{
3 "name":"Goal 1",
4 "nsrId": "2599ab88-aaab",
5 "vnfMemberIndexes": ["1","2"],
6 "level":"low",
7 "attributes": ["resilience"]},
8 {
9 "name":"Goal 2",

10 "nsrId": "2599ab88-aaab",
11 "vnfMemberIndexes": ["2"],
12 "level":"medium",
13 "attributes": ["resilience"]
14 }]
15 }

(a) JSON request Use Case 2.

1) goal-1 hasNS goal-1-ns-2599ab88-aaab
2) goal-2 hasNS goal-2-ns-2599ab88-aaab
3) goal-1-ns-2599ab88-aaab id “2599ab88-aaab”
4) goal-2-ns-2599ab88-aaab id “2599ab88-aaab”
5) goal-1 hasVNF goal-1-vnf-2
6) goal-2 hasVNF goal-2-vnf-2
7) goal-1-vnf-2 hasMemberVNFIndex “2”
8) goal-2-vnf-2 hasMemberVNFIndex “2”
9) goal-1 hasAttribute resilience
10) goal-2 hasAttribute resilience
11) DifferentIndividuals: goal-1, goal-2
12) SWRL Rule in (2)
13) AsymmetricObjectProperty: intersectsWith

(b) Explanation for the inconsistency
detected in Use Case 2.

Figure 6. Detecting and Diagnosing conflicts between Goals.

However, this assertion cannot be valid since usedBySameActionAs is irreflexive
(line 7), as mentioned in Subsection 4.4, thus generating inconsistencies.

5.2. Use Case 2 - Testing Conflicts between Goals

As mentioned in Subsection 4.4, Onto-Planner allows the NFVO to detect conflicts be-
tween goals that apply to the same NS and share the same attributes and VNFs. In this
use case, we simulate such a conflict by inserting the two goals (see Figure 6a) into Onto-
Planner.

In this scenario, we create two goals that point to the same NS with id “2599ab88-
aaab” and share the same VNFs (i.e., member index 2) and attributes (i.e., resilience). In
this case, when the reasoner is performed, it detects inconsistencies in the Onto-Planner
and presents the explanations shown in Figure 6b.

Such explanations state that, since there is the SRWL rule (2), the rea-
soner infers the following relationships (line 12): intersectsWith(goal-1, goal-2) and
intersectsWith(goal-2, goal-1).

However, this assertion cannot be valid since intersectsWith is asymmetric (line
13), as mentioned in Subsection 4.4, and the individuals goal-1 and goal-2 are different
(line 11), thus generating inconsistencies.

5.3. Use Case 3 - Testing Conflicts between Rules

As mentioned in Subsection 4.4, Onto-Planner allows the NFVO to detect conflict of
duties. Such conflict will arise if the same subject should perform a task that encompasses
operations that are explicitly defined to be conflicting in the context of the application. For
example, instantiate and terminate the same VNF in the same task. Therefore, we simulate
the detection and diagnosis of conflicts of duties in this use case.

To this end, first, we define a relationship conflictsWith between two previously
created operations: create phy nic bonding and create load sharing between links.

Besides, we created two ECA rules. Both rules were described to be triggered by
the same events and conditions. In addition, one has create phy nic bonding as action,

while the other has create load sharing between links as action. Finally, once executed,
the reasoner detects inconsistencies in the Onto-Planner and presents the explanations
shown in Figure 7.

1) create phy nic bonding conflictsWith
create load sharing between links
2) pol create load sharing between links Type PolicyRule
3) pol create phy nic bonding Type PolicyRule
4) pol create load sharing between links hasPolicyEvent object26
5) pol create load sharing between links hasPolicyAction object25
6) object25 hasAction create load sharing between links
7) pol create phy nic bonding hasPolicyAction object21
...
11) object21 hasAction create phy nic bonding
...
18) SWRL Rule in (3)
19) AsymmetricObjectProperty: conflictsWith

Figure 7. Explanation for the inconsistency detected in Use Case 3.

Such explanations state that, since there is a relationship conflictsWith between
the operations create phy nic bonding and create load sharing between links (line 1),
and since there are two ECA rules, named pol create load sharing between links (line
2) and pol create phy nic bonding (line 3), that include those two operations (lines 6
and 11), the reasoner infers the following relationship from the SRWL rule (2) (line 18):
conflictsWith(create load sharing between links, create phy nic bonding)

However, this assertion cannot be valid since conflictsWith is asymmetric (line
19), as mentioned in Subsection 4.4, thus generating inconsistencies.

6. Conclusion
This paper proposed the Onto-Planner, a semantic model in OWL 2 that enables the de-
scription of different types of alarms and goals used in the refinement process. Besides,
at the end of this process, Onto-Planner may be used to describe the generated ECA
rules. Finally, when a DL semantic reasoner is relied upon, it performs policy analysis to
detect conflicts between those elements. Preliminary experiments demonstrate that Onto-
Planner can be used to assist the policy refinement process for NFV-MANO systems.
However, it is worth mentioning that these experiments are only in their initial phase. In
this case, for future work, it would be good to provide a performance evaluation.

It is noteworthy that the implementation of a Policy Refinement Mechanism and
an NFV-PBM is not part of the scope of this work. Onto-Planner aims to assist and
improve the operation of these solutions. An example of an NFV-PBM architecture can
be found in [ETSI 2017].

Finally, taking into account the latest efforts made by IETF/IRTF, future activities
include pursuing contributions to standardization along the way Onto-Planner can be used
to support intelligent network management mechanisms (Intent-Based Networking) for
NFV systems in an efficient and scalable way.

References
Bandara, A. K., Lupu, E. C., and Russo, A. (2003). Using event calculus to formalise pol-

icy specification and analysis. In Proceedings of the 4th IEEE International Workshop

on Policies for Distributed Systems and Networks, POLICY ’03, pages 26–, Washing-
ton, DC, USA. IEEE Computer Society.

Bonfim, M., Freitas, F., and Fernandes, S. (2019). A semantic-based policy analysis so-
lution for the deployment of nfv services. IEEE Transactions on Network and Service
Management, 16(3):1005–1018.

Bouten, N., Claeys, M., Mijumbi, R., Famaey, J., Latré, S., and Serrat, J. (2016). Semantic
validation of affinity constrained service function chain requests. In 2016 IEEE NetSoft
Conference and Workshops (NetSoft), pages 202–210.

Craven, R., Lobo, J., Lupu, E. C., Russo, A., and Sloman, M. (2010). Decomposition
techniques for policy refinement. In Proceedings of the 6th International Conference
on Network and Service Management, CNSM 2010, Niagara Falls, Canada, October
25-29, 2010, pages 72–79.

ETSI (2014). Network Functions Virtualisation (NFV) - Architectural Framework. ETSI
GS NFV 002 V1.2.1.

ETSI (2015). Network Functions Virtualisation (NFV) - Resiliency Requirements. ETSI
GS NFV-REL 001 V1.1.1.

ETSI (2016). Network Functions Virtualisation (NFV) - Reliability - Report on Models
and Features for End-to-End Reliability. ETSI GS NFV-REL 003 V1.1.2 (2016-07).

ETSI (2017). Network functions virtualisation - management and orchestration - report
on policy management in mano (release 3). ETSI GR NFV-IFA 023 V3.1.1.

Han, W. and Lei, C. (2012). A survey on policy languages in network and security man-
agement. Computer Networks, 56(1):477–489.

Jacobs, A. S., Pfitscher, R. J., Ferreira, R. A., and Granville, L. Z. (2019). Refining net-
work intents for self-driving networks. SIGCOMM Comput. Commun. Rev., 48(5):55–
63.

Krötzsch, M., Patel-Schneider, P., Rudolph, S., Hitzler, P., and Parsia, B. (2012).
OWL 2 web ontology language primer (second edition). Technical report, W3C.
http://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

Machado, C. C., Wickboldt, J. A., Granville, L. Z., and Filho, A. E. S. (2017). ARKHAM:
an advanced refinement toolkit for handling service level agreements in software-
defined networking. J. Network and Computer Applications, 90:1–16.

Riekstin, A. C., Januario, G. C., Rodrigues, B. B., Nascimento, V. T., de Brito Carvalho, T.
C. M., and Meirosu, C. (2016). A survey of policy refinement methods as a support for
sustainable networks. IEEE Communications Surveys and Tutorials, 18(1):222–235.

Scheid, E. J., Machado, C. C., Franco, M. F., dos Santos, R. L., Pfitscher, R. P., Schaeffer-
Filho, A. E., and Granville, L. Z. (2017). Inspire: Integrated nfv-based intent refine-
ment environment. In 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pages 186–194.

