
Multi-domain Orchestration leveraging the Application-Layer
Traffic Optimization Protocol

Danny Alex Lachos Perez1, Christian Esteve Rothenberg1

1 Universidade Estadual de Campinas (UNICAMP)
Faculdade de Engenharia Elétrica e de Computação (FEEC)

Information & Networking Technologies Research & Innovation Group (INTRIG)
Av Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil

{dlachosp,chesteve}@dca.fee.unicamp.br

Abstract. Evolving 5G network scenarios will have to deal with new multiple
administrative domain (aka multi-domain) orchestration models. Based on a
new broker-plane approach on top of per-domain management and orchestra-
tion functions, we present a Multi-domain orchestration prototype capable to co-
ordinate the delivery of a multi-operator End-to-End Network Service (E2ENS)
that combines per-domain paths and network functions for a given service re-
quest. Our prototype implementation retrieves local information about topol-
ogy and resources from each Multi-domain Orchestrator (MdO) to offer after
inter-domain added value services in the form of abstract Map Services. These
map abstractions are easily consumable through developer-friendly REST APIs
based on the Application-Layer Traffic Optimization (ALTO) standard protocol.

1. Introduction

Future 5G network scenarios call for service orchestration model beyond the standard
ETSI MANO. Complex multi-vendor, heterogeneous technology and resource environ-
ments consider broader collaboration mechanisms between different network operators.
This deeper collaboration between different network operators is critical to enable new
business model approaches, including federation models [5G-PPP 2013].

Presented in the IETF Application-Layer Traffic Optimization Working Group
(ALTO WG), [Perez and Rothenberg 2018] proposes a federation networking paradigm
where a broker-plane working on top of Multi-domain Orchestrators (MdOs) assists the
coordinated creation of an End-to-End Network Service (E2ENS) spanning over multi-
operator multi-domain networks. This proposed design resorts to the Application-Layer
Traffic Optimization (ALTO) protocol [Alimi et al. 2014] to address the lack of abstrac-
tions to discover and adequately represent in confidentiality-preserving fashion the ab-
stract network topology, resource availability (e.g., CPUs, Memory, and Storage) and
capability (e.g., supported network functions) from different administrative domains.

Based on this brokerage level of orchestration, we implemented a Proof-of-
Concept (PoC) framework, which point to the potential benefits of MdOs to be part of
the federation and to be able to determine the underlying network graph and potential
set of paths before bilateral negotiation between MdOs is started. In our prototype, each
MdO involved in the federation advertises to the federation layer (acting as a broker) the
intra-domain resource and topology information. From this local information, the broker

creates an aggregated inter-domain information exposed as a set of abstract and unified
Map Services accessible to the MdOs through ALTO-based REST APIs.

The remainder of this paper is structured as follows. Section 2 provides an
overview of the ALTO-based Broker-assisted MdO approach including the proposed ar-
chitecture. A prototype implementation based on the aforementioned architecture is de-
scribed in section 3. Section 4 validates the proof of concept with an initial functional
analysis and discuss related work in Section 5. Finally, we conclude the paper in Section
6 and point to our future work.

2. ALTO-based Broker-assisted Multi-domain Orchestration
The approach towards our PoC use case implementation follows the de-
sign and development process of our ongoing work presented in IETF ALTO
WG [Perez and Rothenberg 2018]. The primary design goal of this work is to dis-
cover resource and topology information from different administrative domains involved
in a federation, while also safeguarding the privacy and autonomy of every domain.

The proposed brokered design is showed in Figure 1. In this reference architec-
ture, the broker component is conceived to be working as coordinator of a set of MdOs.
In turn, an MdO is assumed to manage a set of Domain Orchestrators (DOs) responsi-
ble for various resource domains (featuring physical and virtual, software and hardware
components).

Transit NSPEdge NSP

MdO1 MdO2 MdO3

Edge NSP

Broker
ALTO Server

Inter-domain
Topology (IdT)

Inter-domain
Resource (IdR)

...Cost
Map

Property
Map

A
LT

O
 P

ro
to

co
l

DODO DO DO DO DO

Figure 1. Broker-assisted Multi-operator Network Architecture

The main architectural components are described next:

2.1. Components

• Inter-domain Resource (IdR): It creates a hierarchical database that contains
inter-domain resource information such as resource availability (i.e., CPU, mem-

ory, and storage), Virtual Network Functions (VNFs) and Physical Network Func-
tions (PNFs) supported and Service Access Points (SAPs) to access those re-
sources and VNFs/PNFs.
UNIFY [UNIFY D3.2a 2015], TOSCA [OASIS 2013], ETSI-NFV [ETSI 2014],
among other data models can be used to create the interface between IdR and
MdOs.

• Inter-domain Topology (IdT): A hierarchical TED (Traffic Engineering
Database) that contains inter-domain network topology information including ad-
ditional key parameters (e.g., throughput and latency of links). From this inter-
domain TED information, can be created an aggregated domain-level topology
map.
The communication between IdT and MdOs components can be done using BGP-
LS or REST interfaces.

• ALTO Server: The ALTO server component is the core of the broker layer. The
information collected from the IdR and IdT modules are processed here to cre-
ate and provide abstract maps with a simplified, yet enough information view
about MdOs involved in the federation. This information includes domain-level
topology, storage resources, computation resources, networking resources and
PNF/VNF capabilities.
As an ALTO client, each MdO sends ALTO service queries to the ALTO server.
This server provides aggregated inter-domain information exposed as set ALTO
base services defined in [Alimi et al. 2014], e.g., Network Map, Cost Map and
ALTO extension services, e.g., Property Map [Roome et al. 2018], Multi-Cost
Map [Randriamasy et al. 2017], Path Vector [Bernstein et al. 2018]. These ALTO
extensions (specifically, the Property Map and Cost Map services) are intro-
duced in the first version of the ALTO-based Multi-domain Orchestration IETF
draft [Perez and Rothenberg 2018] with the goal to support the main functionali-
ties in the proposed architecture.

3. Prototype Implementation
The strawman use case scenario refers to an E2ENS orchestration involving seven dif-
ferent administrative domains (3 Service Providers (SPs) and 4 Transit Providers (TPs)),
as shown in Figure 2. In this section, we provide information about the implementa-
tion choices and prototype details such as the MdO components, the Neo4j1 graph-based
database used as the back-end for the ALTO information, and the OpenDaylight2 (ODL)
controller used as ALTO server.

3.1. MdO Components: 5GEx Project
The MdO functional components and interfaces follow the 5GEx project architectural
proposal3. Each administrative domain has an MdO to manage resource and/or service
orchestration at multi-operator level (via interface I2 APIs). Within the same administra-
tive domain, each MdO uses emulated DOs (e.g., SDN, Mininet, Openstack, etc.) with
emulated I3 interfaces, since no data-plane is present, i.e., DOs use static configuration
files to load local information about topology (I3-RT) and resources (I3-RC).

1http://neo4j.com/
2https://www.opendaylight.org/
3http://www.5gex.eu/wp/?page id=510

Broker

MdO SP 3
SG Request

MdO SP 1

AS1
5GEx Entry Point: https://...:8888/escape AS2

5GEx Entry Point: https://...:8888/escape
AS3

5GEx Entry Point: https://...:8888/escape

Resource
Topology

Inter Provider NFVO

Resource
Orchestrator

MdO SP 2

Resource
Topology

Inter Provider NFVO

Resource
OrchestratorNSO

Resource
Topology

I3-RT

Inter Provider NFVO

Resource
OrchestratorNSO

Domain Orchestrator (DO)

I3-RTI3-RT

NSO

I3-RCI3-RCI3-RC

Capabilities {NF1, NF3}
Port-sap {SAP1}

Capabilities {NF2}

Capabilities {NF1, NF3}
Port-sap {SAP2}

Inter-domain
Topology (IdT)

Inter-domain
Resource (IdR)Capabilities {NF1, NF2, NF3}

Port-sap {SAP1, SAP2}

SAP1

SAP2

NF1

NF2

NF3

Broker-based I2-RT (REST)
Broker-based I2-RC (UNIFY Virtualizer API)

Domain Orchestrator (DO) Domain Orchestrator (DO)

AS1 AS2 AS3

I2 I2

MdO TP 1 MdO TP 2
MdO TP 3

MdO TP 4

AS121 AS122

AS123

AS231

AS121 AS122

AS123

AS231

ALTO-based I2

ALTO Server
 Entry Point Port-Sap Capabilities ...

AS1 http://..:8888/escape SAP1 {NF1, NF3}
AS2 http://..:8888/escape {NF2}
AS3 http://..:8888/escape SAP2 {NF1, NF3}
AS..

Cost
Map

Property
Map

SG Request Path(s) Vector

SAP1->NF1->
NF2->NF3->

SAP2

1: [SAP1->NF1 (AS1), NF1->NF2 (AS1,AS123,AS2), NF2->NF3 (AS2,AS231,AS3), NF3->SAP3 (AS3)]
2: [SAP1->NF1 (AS1), NF1->NF2 (AS1,AS123,AS2), NF2->NF3 (AS2,AS123,AS3), NF3->SAP3 (AS3)]
...
...

I1

Figure 2. Multi-domain Orchestration Scenario

The different MdO components are based on existing open source software tools,
for example, ESCAPE4 and Netphony-topology5 are used as Resource Orchestrator and
Resource Topology, respectively. ESCAPE (Extensible Service ChAin Prototyping En-
vironment) is a framework which supports the development of several parts of the ser-
vice chaining architecture (e.g., VNF implementation, traffic steering, virtual network
embedding, etc.) and it also includes a simple service layer interacting with clients.
Netphony-topology is Java-based Traffic Engineering Database (TED) working as a BGP-
LS Speaker that contains a Topology Module with a collection of TEDs and plugins to
export and import the TEDs. Besides, MdOs expose I1 interfaces to the tenants who re-
quest services and/or slices which should follow a Network Function Forwarding Graph
(NFFG) [UNIFY D3.2a 2015] format.

3.2. Broker Components

In case of the broker layer, the IdR and IdT components use the UNIFY Virtualizer
API [UNIFY D3.2a 2015] (broker-based I2-RC API) and REST API (broker-based I2-RT
API) respectively, to create the hierarchical databases. From the inter-domain information
are created the two different ALTO Map Services: (i) Property Map and (ii) Cost Map.

• The Property Map includes property values grouped by Autonomous System
(AS). Such values are SAPs, NFs, and the 5GEx Entry Point (e.g., the URL of the
ESCAPE orchestrator).

4https://github.com/5GExchange/escape
5https://github.com/telefonicaid/netphony-topology

• The Cost Map defines a path vector as an array of ASes, repre-
senting the AS-level topological distance between entities (i.e., AS→AS,
SAP→SAP, NF→NF or SAP↔NF). Moreover, as described in the Multi-Cost
Map [Randriamasy et al. 2017], path vector constraints can be applied to restricts
the response to costs that satisfy a list of simple predicates (e.g., =, >, <, ≥, ≤).
Moreover, it is possible to use a special “shortest” predicate provide the shortest
path between entities.

When an MdO receives a Service Graph (SG) request, it uses the ALTO server
(through ALTO-based I2 APIs) to determine the underlying network graph and a potential
set of paths before bilateral negotiation between MdOs is started.

3.3. Back-end/Front-end Servers
The resulting data for each broker component (IdR, IdT and ALTO server) is stored in
Neo4j graph-based database (Back-end Server). We opt for this property graph6 since it
provides a natural modeling approach and it uses a key-value store abstraction for JSON
object coding. Neo4j is an open-source non-relational graph database implemented in
Java, and it supports true ACID transactions, high availability, and scales to billions of
nodes and relationships [Neo4j 2015]. Moreover, its native traversal query language such
as Cypher highly facilitates the development of applications.

The ALTO web server (Front-end Server) has been derived from the ALTO Open-
Daylight (ODL) framework. The current release of ALTO7 in ODL includes, among
other modules, ALTO Northbound providing basic ALTO services as RESTful web ser-
vices (Northbound APIs) for ALTO client/server communications. ALTO Northbound
APIs generate ALTO services from data stored in the MD-SAL data store (an ODL core
component). For our implementation, it was necessary to modify the Northbound APIs to
generate ALTO services from the data stored in the Neo4j back-end and converts it into
the ALTO format specification.

4. Experimental Evaluation
The initial evaluation for our testing environment (see Fig. 2) includes the function be-
havior. This means that we evaluate whether our ALTO server delivers ALTO services
in compliance with ALTO base services defined in RFC7285 [Alimi et al. 2014], e.g.,
Network Map, Cost Map and ALTO extension services, e.g., Property Map [DRAFT-
PM], Multi-Cost Map [RFC8189], Path Vector [DRAFT-PV]. For that purpose, we used
a REST client tool8 to retrieve ALTO information in JSON format, communicating with
the ALTO server via HTTP request.

Examples of the Filtered Property Map and Filtered Cost Map queries and the
corresponding responses are featured below.

4.1. Filtered Property Map Service
In this example, the ALTO client wants to retrieve the Property Map for PID entities
with the “unifyslor” (or MdO entry-point), “cpu”, “mem”, “storage”, “port” and “nf”

6A graph where (i) vertices and edges can have any number of key/value properties, (ii) there can be
many types of relationships between vertices and (iii) edges have a directionality.

7https://wiki.opendaylight.org/view/ALTO:Main
8https://www.getpostman.com/

properties. The PIDs entities are MdO SP1 (0.0.0.1), MdO TP3 (0.0.0.123), MdO SP2
(0.0.0.2) and MdO SP3 (0.0.0.3).

• HTTP Request

1 POST /controller/nb/v2/alto/filtered/propertymap/my-default-property-map
2 Host: 172.28.0.10:8181
3 Accept: application/alto-propertymapfilter+json,application/alto-error+json
4

5 {
6 "pids": ["0.0.0.1", "0.0.0.123","0.0.0.2", "0.0.0.3"]
7 }

• HTTP Response

1 {
2 "meta": {
3 "vtag": {
4 "resource-id": "my-default-property-map",
5 "tag": "4VSt4OFTRMBdc5gHIuLGhKUBL4xMXsP8"
6 }
7 },
8 "property-map": {
9 "0.0.0.1": {

10 "unifyslor": "https://172.25.0.10:8888/escape",
11 "cpu": "50.0",
12 "mem": "60.0",
13 "storage": "70.0",
14 "port": ["SAP1", "SAP1211", "SAP1231", "SAP2"],
15 "nf": ["COMPRESSOR", "DECOMPRESSOR"]
16 },
17 "0.0.0.123": {
18 "unifyslor": "https://172.52.0.10:8888/escape",
19 "cpu": "0.0",
20 "mem": "0.0",
21 "storage": "0.0",
22 "port": ["SAP1231", "SAP1232", "SAP1233"],
23 "nf": []
24 },
25 "0.0.0.2": {
26 "unifyslor": "https://172.26.0.10:8888/escape",
27 "cpu": "10.0",
28 "mem": "20.0",
29 "storage": "30.0",
30 "port": ["SAP1221", "SAP1232", "SAP2311", "port-SAP4"],
31 "nf": ["FORWARDER"]
32 },
33 "0.0.0.3": {
34 "unifyslor": "https://172.27.0.10:8888/escape",
35 "cpu": "80.0",
36 "mem": "90.0",
37 "storage": "100.0",
38 "port": ["SAP1233", "SAP2312", "SAP3"],
39 "nf": ["COMPRESSOR", "DECOMPRESSOR"]
40 }
41 }
42 }

Appendix A gives another example of a fully Property Map query and the corre-
sponding response.

4.2. Filtered Cost Map Service

The following example uses the Filtered Cost Map service to request the path vector for
a given E2E requirement. The SG request information is composed of three NFs: (NF1)

“COMPRESSOR”, (NF2) “FORWARDER”, (NF3) “DECOMPRESSOR” and, two SAPs
(SAP1 and SAP3). Links connecting the NFs and SAPs (“sg links” tag) are also included,
followed by an E2E requirement (“reqs” tag) with information about the order in which
NFs are traversed from SAP1 to SAP3.

Note that the request includes a constraint (“constraints” : [“= 9”]) in order to
return just AS-level paths for which the number of AS hops in the E2E requirement is
equal to 9.

• HTTP Request

1 POST /controller/nb/v2/alto/costmap/pv
2 Host: 172.28.0.10:8181
3 Accept: multipart/related, application/alto-costmap+json,
4 application/alto-propmap+json, application/alto-error+json
5 Content-Length: [TBD]
6 Content-Type: application/alto-costmapfilter+json
7

8 {
9 "cost-type" :{

10 "cost-mode": "array",
11 "cost-metric": "ane-path"
12 },
13 "constraints" : ["= 9"],
14 "sg" :{
15 "nfs": ["COMPRESSOR", "FORWARDER", "DECOMPRESSOR"],
16 "saps": ["SAP1", "SAP3"],
17 "sg_links": [{
18 "id": 1,
19 "src_node": "SAP1",
20 "dst_node": "COMPRESSOR"
21 },{
22 "id": 2,
23 "src_node": "COMPRESSOR",
24 "dst_node": "FORWARDER"
25 },{
26 "id": 3,
27 "src_node": "FORWARDER",
28 "dst_node": "DECOMPRESSOR",
29 },{
30 "id": 4,
31 "src_node": "DECOMPRESSOR",
32 "dst_node": "SAP3"
33 }],
34 "reqs": [{
35 "src_node": "SAP1",
36 "dst_node": "SAP3",
37 "sg_path": [1, 2, 3, 4]
38 }
39]
40 }
41 }

• HTTP Response
For each SG link in the E2E requirement (SAP1->COMPRESOR,
COMPRESOR->FORWARDER, FORWARDER->DECOMPRESOR,
DECOMPRESOR->SAP3), the ALTO server returns sub-arrays indicating
potential candidate paths calculated as the AS-level topological distance corre-
sponding to the amount of traversing domains. This AS-level distance is limited
to 9 hops as defined by the HTTP request of the above example.

1 {
2 "meta": {
3 "vtag": {
4 "resource-id": "my-default-property-map",
5 "tag": "4VSt4OFTRMBdc5gHIuLGhKUBL4xMXsP8"
6 }
7 },
8 "cost-map": {
9 "SAP1": {

10 "SAP3": {
11 "SAP1": {
12 "COMPRESSOR": [
13 ["0.0.0.1"]
14]
15 },
16 "COMPRESSOR": {
17 "FORWARDER": [
18 ["0.0.0.1","0.0.0.121","0.0.0.122","0.0.0.2"]
19]
20 },
21 "FORWARDER": {
22 "DECOMPRESSOR": [
23 ["0.0.0.2","0.0.0.123","0.0.0.3"],
24 ["0.0.0.2","0.0.0.231","0.0.0.3"]
25]
26 },
27 "DECOMPRESSOR": {
28 "SAP3": [
29 ["0.0.0.3"]
30]
31 }
32 }
33 }
34 }
35 }

A second example of the Filtered Cost Map service requesting the AS-level topo-
logical distance with constraints [“shortest”] is given in Appendix B.

Based on the initial experimental results, the prototype under evaluation presents
a set of benefits leveraging the proposed brokering layer: (i) avoid the distribution of
topology and resource information in a peer-to-peer fashion (the more MdO-to-MdO in-
terconnections, the larger the “costs” of distribution); (ii) allow domains without physical
infrastructure (e.g., without BGP or BGP-LS instances) to advertise and learn (avoiding
the deployment and configuration of per domain BGP peering points); and (iii) use the
joint inter-domain topology information to pre-select a (sorted) list of candidate domains
(reducing the number of redundant links along the path(s) in E2ENS requests).

5. Related Work
Current proposals for management and orchestration are intrinsically conceived for single
administrative domain scenarios. The standard service orchestration model described in
ETSI NFV MANO framework [ETSI 2014], for example, describes the use of orches-
trator(s) working within a single administrative domain. The analysis of network ser-
vice/resource orchestration across multiple administrative domains has begun to be ad-
dressed by ETSI in [ETSI 2018].

Existing open source projects sprint the multi-provider multi-domain orchestra-
tion challenges under different approaches. [Bernardos et al. 2015] aims to integrate mul-

tiple administrations and technologies through the collaboration between operators in the
context of emerging 5G networking. Other studies, such as [Demchenko et al. 2013],
addresses problems with multi-domain (Multi-operator/multi-technology) heterogeneous
cloud-based applications integration, however, it is not focused on the provisioning of
NFV-based cross-domain network services.

Closest to our efforts, [VITAL 2015][T-NOVA 2014] follow a centralized ap-
proach where each domain advertises its capabilities to a federation layer which will
act as a broker. In order to avoid one network operator per country or regions,
[Banchs et al. 2015] proposes the use of management and control into a single virtual
domain. Also, the 5G-Transformer project [5G-Transformer 2017] is defining flexible
slicing and federation of transport networking and computing resources across multiple
domains. All such proposals introduce new business model approach, including a feder-
ation model among administrative domains where each network operator involved in the
community advertises its abstracted capabilities to a broker (i.e., 3rd party).

6. Conclusion and Future Work
Evolving networking scenarios (e.g., 5G) require the provision of value-added services
in multi-domain (multi-operator/multi-technology) environments. In this work, we de-
signed and implemented a use case prototype inspired in an ALTO-based Broker-assisted
approach through which single domains can describe their resource and network capabil-
ities in an interoperable manner.

Presented initial experiments bring essential guidelines towards potential benefits
to the challenges of multi-domain orchestration (e.g., lack of abstractions, scalability, and
flexibility) by leveraging the map services and generality of the ALTO protocol. Finally,
taking into account latest efforts made by IETF/IRTF, future activities include pursuing
contributions to standardization along (i) the way MdOs describe their resource/network
capabilities; and (ii) extensions and/or new services to the base ALTO protocol as neces-
sary.

7. Acknowledgements
This work is supported by the Innovation Center of Ericsson S.A., Brazil (grant agreement
UNI.62).

References
5G-PPP (2013). Advanced 5G Network Infrastructure for the Future Internet.

https://5g-ppp.eu/wp-content/uploads/2014/02/Advanced-5G-Network-Infrastructure-
PPP-in-H2020 Final November-2013.pdf.

5G-Transformer (2017). 5G-Transformer – 5G Mobile Transport Platform for Vertical.
http://5g-transformer.eu/.

Alimi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S., Roome, W., Shalunov, S., and
Woundy, R. (2014). Application-Layer Traffic Optimization (ALTO) Protocol. RFC
7285.

Banchs, A., Breitbach, M., Costa, X., Doetsch, U., Redana, S., Sartori, C., and Schotten,
H. (2015). A novel radio multiservice adaptive network architecture for 5g networks.
In Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st, pages 1–5. IEEE.

Bernardos, C. J., Dugeon, O., Galis, A., Morris, D., Simon, C., and Szabó, R. (2015).
5g exchange (5gex)-multi-domain orchestration for software defined infrastructures.
focus, 4(5):2.

Bernstein, G., Chen, S., Gao, K., Lee, Y., Roome, W., Scharf, M., Yang, Y., and Zhang,
J. (2018). Alto extension: Path vector cost type. Internet-Draft draft-ietf-alto-path-
vector-03, IETF Secretariat.

Demchenko, Y., Makkes, M. X., Strijkers, R., Ngo, C., and Laat, C. d. (2013). Intercloud
architecture framework for heterogeneous multi-provider cloud based infrastructure
services provisioning. International Journal of Next-Generation Computing, 4(2).

ETSI (2014). Network Functions Virtualisation (NFV) Management
and Orchestration V1.1.1. http://www.etsi.org/deliver/etsi gs/NFV-
MAN/001 099/001/01.01.01 60/gs NFV-MAN001v010101p.pdf.

ETSI (2018). Network Functions Virtualisation (NFV) Release 3; Manage-
ment and Orchestration; Report on architecture options to support mul-
tiple administrative domains V3.1.1. http://www.etsi.org/deliver/etsi gr/NFV-
IFA/001 099/028/03.01.01 60/gr NFV-IFA028v030101p.pdf.

Neo4j (2015). The Neo4j Manual v2.3.0-M03. http://neo4j.com/docs/milestone/.

OASIS (2013). TOSCA specification. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf.

Perez, D. and Rothenberg, C. (2018). Alto-based broker-assisted multi-domain orchestra-
tion. Working Draft.

Randriamasy, S., Roome, W., and Schwan, N. (2017). Multi-cost application-layer traffic
optimization (alto). RFC 8189, RFC Editor.

Roome, W., Chen, S., Randriamasy, S., Yang, Y., and Zhang, J. (2018). Unified properties
for the alto protocol. Working Draft.

T-NOVA (2014). T-NOVA Project, Network Functions as a Service over Virtualised In-
frastructures. http://www.t-nova.eu/.

UNIFY D3.2a (2015). NFFG Specification. http://www.fp7-unify.eu/files/fp7-unify-eu-
docs/Results/Deliverables/UNIGY D3.2a NFFG%20Specification.pdf.

VITAL (2015). VITAL – VIrtualized hybrid satellite-TerrestriAl systems for resilient and
fLexible future networks. http://www.ict-vital.eu/.

Appendix A Property Map Service

This HTTP request example corresponds to the full (unfiltered) Property Map. The ALTO
server defines a GET-mode resource which returns the entire Property Map for all PID
entities with the “unifyslor”, “cpu”, “mem”, “storage”, “port” and “nf” properties.

• HTTP Request

1 GET /controller/nb/v2/alto/propertymap/my-default-property-map HTTP/1.1
2 Host: 172.28.0.10:8181
3 Accept: application/alto-propmap+json,application/alto-error+json

• HTTP Response

1 {
2 "meta": {
3 "vtag": {
4 "resource-id": "my-default-property-map",
5 "tag": "4VSt4OFTRMBdc5gHIuLGhKUBL4xMXsP8"
6 }
7 },
8 "property-map": {
9 "0.0.0.1": {

10 "unifyslor": "https://172.25.0.10:8888/escape",
11 "cpu": "50.0", "mem": "60.0", "storage": "70.0",
12 "port": ["SAP1", "SAP1211", "SAP1231", "SAP2"],
13 "nf": ["COMPRESSOR", "DECOMPRESSOR"]
14 },
15 "0.0.0.121": {
16 "unifyslor": "https://172.50.0.10:8888/escape",
17 "cpu": "0.0", "mem": "0.0", "storage": "0.0",
18 "port": ["SAP1211", "SAP1212"],
19 "nf": []
20 },
21 "0.0.0.122": {
22 "unifyslor": "https://172.51.0.10:8888/escape",
23 "cpu": "0.0", "mem": "0.0", "storage": "0.0",
24 "port": ["SAP1212", "SAP1221"],
25 "nf": []
26 },
27 "0.0.0.123": {
28 "unifyslor": "https://172.52.0.10:8888/escape",
29 "cpu": "0.0", "mem": "0.0", "storage": "0.0",
30 "port": ["SAP1231", "SAP1232", "SAP1233"],
31 "nf": []
32 },
33 "0.0.0.2": {
34 "unifyslor": "https://172.26.0.10:8888/escape",
35 "cpu": "10.0", "mem": "20.0", "storage": "30.0",
36 "port": ["SAP1221", "SAP1232", "SAP2311", "port-SAP4"],
37 "nf": ["FORWARDER"]
38 },
39 "0.0.0.231": {
40 "unifyslor": "https://172.53.0.10:8888/escape",
41 "cpu": "0.0", "mem": "0.0", "storage": "0.0",
42 "port": ["SAP2311", "SAP2312"],
43 "nf": []
44 },
45 "0.0.0.3": {
46 "unifyslor": "https://172.27.0.10:8888/escape",
47 "cpu": "80.0", "mem": "90.0", "storage": "100.0",
48 "port": ["SAP1233", "SAP2312", "SAP3"],
49 "nf": ["COMPRESSOR", "DECOMPRESSOR"]
50 }
51 }
52 }

Appendix B Filtered Cost Map Service

In this Filtered Cost Map service, the ALTO server returns connectivity information for
an SG request provided by the HTTP request example. This request includes a constraint
predicate (“constraints” : [“shortest”]) so that, the ALTO server returns the shortest
AS-level topological distance which meets the E2ENS requirement.

• HTTP Request

1 POST /controller/nb/v2/alto/costmap/pv
2 Host: 172.28.0.10:8181
3 Accept: multipart/related, application/alto-costmap+json,
4 application/alto-propmap+json, application/alto-error+json
5 Content-Length: [TBD]
6 Content-Type: application/alto-costmapfilter+json
7 {
8 "cost-type" :{
9 "cost-mode": "array", "cost-metric": "ane-path"

10 },
11 "constraints" : ["shortest"],
12 "sg" :{
13 "nfs": ["COMPRESSOR", "FORWARDER", "DECOMPRESSOR"],
14 "saps": ["SAP1", "SAP3"],
15 "sg_links": [{"id": 1,
16 "src_node": "SAP1",
17 "dst_node": "COMPRESSOR"
18 },{"id": 2,
19 "src_node": "COMPRESSOR",
20 "dst_node": "FORWARDER"
21 },{"id": 3,
22 "src_node": "FORWARDER",
23 "dst_node": "DECOMPRESSOR",
24 },{"id": 4,
25 "src_node": "DECOMPRESSOR",
26 "dst_node": "SAP3"
27 }],
28 "reqs": [{
29 "src_node": "SAP1",
30 "dst_node": "SAP3",
31 "sg_path": [1, 2, 3, 4]
32 }
33]
34 }
35 }

• HTTP Response

1 {
2 "meta": {
3 "vtag": {
4 "resource-id": "my-default-property-map",
5 "tag": "4VSt4OFTRMBdc5gHIuLGhKUBL4xMXsP8"}
6 },
7 "cost-map": {
8 "SAP1": {
9 "SAP3": {

10 "SAP1": {"COMPRESSOR": [
11 ["0.0.0.1"]]
12 },
13 "COMPRESSOR": {"FORWARDER": [
14 ["0.0.0.1","0.0.0.123","0.0.0.2"]]
15 },
16 "FORWARDER": {"DECOMPRESSOR": [
17 ["0.0.0.2","0.0.0.123","0.0.0.3"]]
18 },
19 "DECOMPRESSOR": {
20 "SAP3": [
21 ["0.0.0.3"]]
22 }
23 }
24 }
25 }
26 }

