VNF-Cache: Um Servico NFV-COIN de Cache na Rede

Bruno E. Farias, José Flauzino, Elias P. Duarte Jr.

Universidade Federal do Parana (UFPR), Depto. Informaética
Curitiba, PR, Brasil

{befl18, jwvflauzino,elias}@inf.ufpr.br

Resumo. Com o crescimento exponencial da quantidade de dados disponiveis
na Internet, torna-se essencial otimizar o tempo de resposta e o uso dos recursos
para acesso aos dados. As caches sdo uma solucdo eficaz que aproxima os da-
dos de clientes, dispensando requisicoes repetitivas nos servidores. Este artigo
apresenta a VNF-Cache, um servico de cache para bancos de dados geografi-
camente remotos do tipo chave-valor. A VNF-Cache é um servico NFV-COIN
(Network Function Virtualization-Computing In The Network), fecnologia em
processo de padronizacdo no IETF que possibilita a implementacdo de servigos
arbitrdrios diretamente na rede. A VNF-Cache intercepta pacotes de rede, trata,
armazena e envia valores diretamente para os clientes quando possivel. Através
de uma implementagdo para prova de conceito e de experimentos realizados
com servidores geograficamente espalhados no Brasil, Estados Unidos e Japdo,
foram observados tanto reducdo significativa no tempo de resposta, como au-
mento na quantidade de requisicoes processadas por segundo.

1. Introducao

As caches ainda sdo uma das principais tecnologias utilizadas para melhorar a eficiéncia
do acesso a dados através da Internet. Este trabalho propde a VNF-Cache, um servigo
de cache para bancos de dados chave-valor baseado na tecnologia de Virtualizacio de
Funcgdes de Rede (Network Function Virtualization - NFV). A tecnologia NFV possibilita
a implementagdo de funcdes de rede em software que pode ser executado em infraestru-
turas virtualizadas [ETSI 2012]. Como a gama de fung¢des de rede que podem ser imple-
mentadas utilizando NFV € muito variada, a arquitetura de referéncia NFV-MANO (NFV
- MANagement and Orchestration) surgiu para padronizar as implementagdes e possibili-
tar a interoperabilidade entre os sistemas NFV [ETSI 2021]. Para isto, a arquitetura define
o gerenciamento do ciclo de vida das Virtualized Network Functions (VNFs), que podem
inclusive ser disponbilizadas através de marketplaces na Internet [Bondan et al. 2019].

Recentemente, a arquitetura NFV-COIN (NFV - COmputing In the Network)
foi proposta para possibilitar a implementacdo de servigos arbitrarios e inovadores di-
retamente na rede, através do paradigma chamado COmputing In the Network (COIN)
[Venancio et al. 2022]. A NFV-COIN estd no processo de padronizacao pelo IETF, que
Jé& publicou dois Drafts com foco nas interfaces para as funcdes na rede: o primeiro es-

pecifica o problem statement [Jeong et al. 2025b] e o segundo especifica o framework
[Jeong et al. 2025a].

A VNF-Cache apresentada neste trabalho € um servico NFV-COIN. Ela tem como
proposito agilizar o acesso de clientes a bancos de dados chave-valor geograficamente
distantes. Ao aproximar dados de clientes, a VNF-Cache tem por objetivos reduzir o

tempo para a execucdo de requisi¢cdes e aumentar a taxa de requisi¢des executadas por
unidade de tempo. Além disso, ao evitar que pacotes de requisi¢ao e resposta percorram
todo o caminho até o servidor, a VNF-Cache promove um melhor uso da infraestrutura
da rede.

Para desempenhar a funcionalidade de caching dos conjuntos chave-valor, a VNF-
Cache deve estar localizada em algum ponto da rede entre os clientes e os servidores
de banco de dados chave-valor. Seu funcionamento inicia com a filtragem de pacotes
de rede de interesse, seguida de processamento e armazenamento dos valores das chaves
requisitadas pelos clientes. Sempre que possivel, a VNF-Cache retorna dados requisitados
diretamente para o cliente, caso contrario redireciona o pacote para o servidor e, quando
vidvel, armazena o valores retornados pelo servidor para requisicdes futuras.

A arquitetura da VNF-Cache € apresentada, bem como um protétipo implemen-
tado como prova de conceito. Através da avaliacdo empirica, foram efetuados experi-
mentos com trés cenarios diferentes: (A) cliente, VNF-Cache e servidor de banco de
dados chave-valor préoximos entre si, (B) cliente € VNF-Cache proximos entre si, distan-
ciando o servidor e (C) cliente, VNF-Cache e servidor distantes entre si. Os servidores
e VNF-Cache remotos foram instanciados na Amazon Elastic Compute Cloud', servigo
de computa¢do em nuvem da Amazon Web Services (AWS)?. Foram utilizadas mdquinas
virtuais para a VNF-Cache e o servidor de banco de dados tanto em Curitiba e Sdo Paulo,
no Brasil; Ohio, na costa leste dos Estados Unidos, e em Toquio, Japdo. Os resultados
destes experimentos apontam que quando clientes e servidores estdo distantes entre si, a
utilizacao de uma VNF-Cache € capaz de reduzir consideravelmente o tempo de resposta
das requisi¢des e aumentar o nimero de requisicdes processadas por segundo.

O restante deste trabalho esta organizado da seguinte maneira. A secao 2 apresenta
uma visdo geral da tecnologia NFV e NFV-COIN, bem como trabalhos relacionados.
A Secdo 3 descreve a VNF-Cache, apresentando sua funcionalidade e arquitetura. O
protétipo implementado, bem como os resultados experimentais estdo na Secao 4. Por
fim, a Secdo 5 traz as conclusdes e lista trabalhos futuros.

2. NFV, NFV-COIN & Trabalhos Relacionados

A Virtualizacdo de Fun¢des de Redes, ou NFV, é uma alternativa concreta para implemen-
tar servigos de redes utilizando técnicas de virtualiza¢do, como Virtual Machines (VMs) e
containers, que podem ser executadas em hardware de prateleira. Uma grande variedade
de servigos de rede podem ser implementados com NFV, como roteadores, Virtual Private
Network (VPN), andlisadores de trafego, firewalls, Content Delivery Network (CDN), en-
tre outros [ETSI 2012].

Um dos principais resultados destes esforcos para estabelecer padroes e desen-
volver uma arquitetura para gerenciar e padronizar a implanta¢do das funcdes de rede
virtualizadas € o modelo MANagement and Orchestration (MANQO). O MANO surgiu
como arquitetura para permitir interoperabilidade entre os sistemas NFV.

A arquitetura NFV-MANO € composta basicamente por trés blocos fundamentais
e interdependentes: o Virtualized Infrastructure Manager (VIM), o NFV Orchestrator

Thttps://aws.amazon.com/pt/ec2/Inc2=h_gl_prod_cp_ec2
Zhttps://aws.amazon.com/pt/

(NFVO) e o VNF Manager (VNFM) [ETSI 2021]. O ciclo de vida das VNFs € gerenciado
pelo VNFM e sdo executadas em infraestruturas de virtualizacao de fungdes de redes (os
NFVIs). Estas, por sua vez, sdo gerenciadas pelos VIMs, que sdo integrados e gerenciados
pelo NFVO. Entre as principais atribui¢des do NFVO, estdo inclusos a distribui¢do de
todos os recursos computacionais entre os VIMs [Fulber-Garcia et al. 2024] e também
o gerenciamento dos servicos de rede virtualizados. Todos estes elementos geralmente
sdo disponibilizados através das chamadas Plataformas NFV [Tacker 2025, ETSI 2025,
Flauzino et al. 2021].

Além de possibilitar a concepcdo de VNFs bésicas com funcionalidades di-
versas, € possivel ainda realizar a composicdo de VNFs individuais em servicos
complexos, formando assim uma Service Function Chain (SFC) [Halpern et al. 2015,
Fulber-Garcia et al. 2020]. Cada SFC pode ser definida em um escopo centralizado,
ou até mesmo abrangendo multiplos sistemas autonomos, nuvens e orquestradores
[Huff et al. 2020]. A arquitetura NFV-COIN [Venancio et al. 2022] amplia este escopo
para servigos arbitrdrios e inovadores diretamente na rede, através do paradigma COm-
puting In the Network (COIN). Por ser baseada em software e virtualizacao, a tecnologia
NFV-COIN apresenta grande flexibilidade para a implantacao de novos recursos nativos
das redes. A interface para funcdes NFV-COIN ¢ realizada através de APIs padroni-
zadas, que permitem seu uso inclusive por usudrios finais. Além disso, hd um mdédulo
de gerenciamento para implantacdo, configuracdo e monitoramento dos servicos. Di-
versos servicos NFV-COIN ja foram propostos, como detectores de falhas de processos
[Turchetti and Duarte 2015], consenso [Venancio et al. 2021] além da difusdo confiavel e
ordenada de mensagens na rede [Venancio et al. 2019].

Trabalhos Relacionados: NFV & Caches

Nos ultimos anos, varios trabalhos foram desenvolvidos envolvendo a unido de NFV e
de caches. [Zhuang et al. 2019], por exemplo, discutem sobre a possibilidade de se apli-
car caches baseadas em NFV para minimizar o tempo de recuperacido de conteidos em
sistemas de Internet-of-Vehicles (IoV). Para os autores, o uso deste tipo de cache pode
facilitar a implantacdo dos servigcos e a disseminagdo de seus contetidos, possibilitando
uma melhor confiabilidade e eficiéncia dos servigos IoV.

Ja [Clayman et al. 2018] propdem uma arquitetura para streaming de video Server
and Network Assisted Dynamic Adaptative Streaming over HITP (SAND). Nesta arqui-
tetura, instancias de caches virtualizadas sdo criadas conforme a demanda por conteudo.
Além disso, os autores também discorrem sobre os posicionamentos dessas instancias no
grafo da rede, baseando-se em caracteristicas como a largura de banda dos caminhos, os
locais e o nimero de clientes da rede.

Outro trabalho relevante é o de [Liu et al. 2017], que discutem o ganho de de-
sempenho notavel que a aplicacdo de caches NFV em redes 5G pode causar. Além da
flexibilidade, dinamicidade e escalabilidade possibilitadas pelo uso de NFV, os autores
ainda destacam a possibilidade de oferecer servicos de cache para provedores de servicos
e para operadoras de rede utilizando a mesma infraestrutura.

3. Um Servico de Cache na Rede para Bancos de Dados Chave-Valor

Esta secdo apresenta a VNF-Cache, um servigo de cache voltado para bases de dados do
tipo Key-Value Store (KVS), ou banco de dados chave-valor. Este € um tipo de banco de

dados nao-relacional que realiza a persisténcia dos dados através da associacdo de uma
unica chave para cada dado armazenado [Seeger 2009]. O uso deste tipo de banco de
dados permite ao desenvolvedor da aplicagdo o armazenamento dos dados sem o uso de
esquemas, ou seja, sem o tradicional método relacional de linhas e colunas pré-definidas.
Desta forma, a flexibilidade no projeto do banco de dados € maior, assim como a qualidade
do c6digo de programacdo correspondente.

Neste sentido, a VNF-Cache visa aproximar os dados do cliente, armazenando as
informagdes diretamente na rede e em locais mais proximos. A VNF-Cache deve estar
localizada no caminho entre o cliente e o servidor remoto, realizando o processamento dos
pacotes e armazenando os valores das chaves requisitadas pelos clientes. Caso uma chave
requisitada esteja vélida nesta cache, seu valor € retornado diretamente para o cliente,
dispensando a necessidade de reencaminhar os pacotes para o servidor. A Figura 1 ilustra
a sequéncia de passos do funcionamento da VNF-Cache.

Cliente solicita dado para > Trafego é desviado para a SEM VNF-CACHE
o servidor VNF-Cache @ =
, — ==
b4 Trafego real Y-=
CLIENTE SERVIDOR BD
Nao Sim
DEED COM VNF-CACHE
¢ VNF-Cache? v -
A VNF-Cache solicita Dado retorna diretamente El P PP > =—=
dado para o servidor para o cliente Trafego deduzido =
‘ CLIENTE SERVIDOR BD
Servidor processa e retorna ¥ A L’ Q—J
= VNF-Cache armazena o Trifeco real Tréfego real
Gt s o dado para aquela chave o o es

VNF-Cache
A VNF-Cache retorna o]

dado ao dlient i .
acoaoclente Figura 2. Exemplo de arqui-

. : tetura de rede sem e
Figura 1. Funcionamento da VNF-Cache. com VNF-Cache.

A Figura 2 mostra a rede com e sem a integracao de uma VNF-Cache. Na figura,
o trafego deduzido € definido como aquele em que o cliente deduz estar causando na rede,
que pode ser diferente do trafego real presenciado na rede.

A Arquitetura da VNF-Cache

A arquitetura da VNF-Cache é composta por um conjunto de trés mddulos: VNF-Cache
Filter, um VNF-Cache Manager e o VNF-Cache Storage, ilustrados na Figura 3 e descri-
tos a seguir. O VNF-Cache Filter, ou apenas Filter, ¢ o modulo responsével pela filtragem
dos pacotes recebidos pela VNF-Cache, sejam eles enviados pelos clientes (Client Filter)
ou pelo servidor (Server Filter). Estes dois submddulos recebem e filtram os pacotes de
rede em trés possiveis fluxos: o Manipulation Flow (MF), o Response Flow (RF) e o
Coordination Flow (CF), descritos a seguir.

O fluxo de manipulacdo de dados (MF) é composto pelos pacotes enviados pelos
clientes que contenham operagdes de manipulacdo de dados, tais como buscas, inser¢des,
atualizacoes e exclusdes. J4 o fluxo de respostas RF é composto pelos pacotes enviados
pelos servidores e que s@o respostas para estes pacotes enviados pelos clientes no fluxo
MF. Por fim, o fluxo de coordenacdo (CF) é composto pelos demais pacotes trafegados,

ou seja, aqueles enviados pelos clientes ou pelos servidores € que possuem outros obje-
tivos, como manter a conexao entre clientes e servidores ou realizar o0 monitoramento de
disponibilidade do servidor.

Desta forma, o Client Filter é responsavel pela filtragem dos pacotes origina-
dos pelo cliente, separando-os entre o fluxo MF, que sdao os pacotes que comunicam as
manipulagdes de dados solicitadas pelos clientes ao banco, € o fluxo CF, que sdo os paco-
tes que realizam as comunicagdes bésicas entre cliente e servidor, neste caso no sentido do
cliente para o servidor. De forma semelhante, o Server Filter filtra os pacotes vindos do
servidor, separando-os entre o fluxo RF, que sdo os pacotes que respondem as solicitacdes
realizadas pelos clientes no fluxo MF, e o fluxo CF, que neste caso € no sentido do servidor
para o cliente.

Saiqa
Filter Manager Servidor

i —— 0
Entrada - d ‘E;Z:te ’
Cliente Client e ® DELETE)
Filter ! find d ’
=

'y

v

S,
\

Nao READ

Storage

'

i
i
i
i
i
i
i
i
i

v

Client Manager

|| ST

’." — x)
~ e <
{
/

"Server Manager Sa[dal

Cliente

Server

Entrada Filter
Servidor RF

Figura 3. Arquitetura da VNF-Cache.

Por sua vez, o Manager é o principal médulo de gerenciamento da VNF-Cache.
De forma semelhante ao Filter, o Manager também é composto por dois submdédulos: o
Client Manager e o Server Manager. O Client Manager recebe os dois fluxos de pacotes
do Client Filter e faz o tratamento conforme necessario: o fluxo MF é tratado diretamente
com o modulo de armazenamento VNF-Cache Storage (que serd apresentado a seguir),
realizando as leituras, atualizacdes e exclusdes dos dados conforme as operacdes. Ja o
fluxo CF € enviado diretamente para a saida da VNF-Cache com destino ao servidor. De
forma semelhante, o Server Manager recebe os dois fluxos de pacotes do Server Filter.
Porém, no Server Manager, todos os pacotes sdo enviados para a saida com destino ao
cliente, independentemente do fluxo designado pelo Server Filter. A diferenca entre o
processamento dos fluxos no Server Manager é que enquanto o fluxo CF € apenas redi-
recionado para os clientes, os pacotes do fluxo RF passam por um processamento extra,
tendo como objetivo o armazenamento dos dados retornados pelo servidor no VNF-Cache
Storage, conforme as solicitagoes do Client Manager.

Por fim, o médulo Storage é o responsavel pelo armazenamento das chaves e de
seus respectivos valores. Este mdédulo possui duas funcionalidades principais: (i) retornar
o valor de uma chave requisitada pelo Client Manager e (i1) armazenar o valor de uma
chave capturada pelo Server Manager e solicitada pelo Client Manager.

Os dois principais fluxos na arquitetura da VNF-Cache ocorrem apds a requisi¢ao
de consulta de uma chave por algum cliente. Quando um cliente solicita uma chave, o
Client Filter realiza a filtragem deste pacote no fluxo de manipulagdo de dados, o MF.
Em seguida, o Client Manager determina o tipo da operagdo, que no caso € find, e faz
uma requisicdo ao Storage pelo valor daquela chave. Ap6s o retorno do médulo de arma-
zenamento, podemos ter um cache miss ou um cache hit. Caso a requisi¢ao resulte em
um cache hit, o Client Manager retorna o pacote diretamente para o cliente. Por outro
lado, caso a requisi¢do seja um cache miss, o Client Manager redireciona o pacote para
o servidor e envia um sinal ao Server Manager, alertando-o que a chave requisitada nao
estd na cache e que seu valor deve, na medida do possivel, ser armazenado no Storage
apos a resposta do servidor.

4. Implementacao e Resultados Experimentais

A VNF-Cache foi implementada na linguagem Python?, incluindo diversas das suas bibli-
otecas como Scapy e PyShark. Foi utilizado o MongoDB*, um banco de dados orientado
a documentos JavaScript Object Notation (JSON). Embora este ndo seja um banco de da-
dos exclusivamente chave-valor, ele pode ser utilizado como tal ao armazenar os dados em
forma de documentos flexiveis. Cada item dos dados € atrelado a um tnico “indice” ge-
rado automaticamente, que ¢ a chave no contexto chave-valor. E importante destacar que
a VNF-Cache pode ser facilmente adaptada para ser utilizada com outros bancos de dados
chave-valor, como o Redis, por exemplo. Para realizar a comunicagao entre os clientes e
os servidores de bancos de dados MongoDB, a biblioteca utilizada foi a PyMongo’.

Para realizar a comunicag¢do dos clientes com o servidor de banco de dados Mon-
goDB, a biblioteca PyMongo utiliza pacotes de rede com o protocolo de rede IP e trans-
porte TCP. A VNF-Cache filtra apenas pacotes com identificador de operacdo 2013, que
€ o tipo padrdo para requisi¢cdes de busca, insercdo, exclusdo e alteragdo do PyMongo.
Os pacotes do PyMongo possuem um cabecalho padrdao com 25 bytes de tamanho, sendo
separados em 7 campos, descritos a seguir.

O primeiro campo (4 bytes) é o length, que contém o tamanho total do pacote
TCP. O segundo campo (4 bytes) é o request id, que contém um identificador unico da
requisi¢do (o mesmo identificador deve estar presente no pacote de resposta). O terceiro
campo (4 bytes) € o response _to, que contém o identificador ao qual aquele pacote se re-
fere (caso este seja a resposta para algum outro pacote enviado anteriormente). O quarto
campo (4 bytes) € o op_code, que contém o nimero de identificacdo da operacdo (neste
caso focamos apenas na operacdo de cédigo 2013 — fluxo de manipula¢do). O quinto
campo (4 bytes) contém algumas flags para comunicacio entre PyMongo e MongoDB.
O sexto campo (1 byte) é o payload type e contém o tipo do conteido do pacote Py-
Mongo. Por fim, o sétimo campo (4 bytes) € o payload size, que contém o tamanho total
do documento Binary JSON (BSON) contido naquele pacote.

Ao unirmos o contetido em bindrio do payload size e o restante do payload do pa-
cote, podemos obter o JSON completo que foi enviado pelo PyMongo utilizando a classe
RawBSONDocument da biblioteca bson. Desta forma, foram viabilizados os devidos

3https://www.python.org
“https://www.mongodb.com
Shttps://pymongo.readthedocs.io/en/stable/index.html

tratamentos dos pacotes dentro da implementacdo da VNF-Cache, facilitando e tornando
eficiente 0 monitoramento e a filtragem dos pacotes que sdo de fato importantes. Através
dos campos do cabecalho do pacote PyMongo, a VNF-Cache pode tomar as decisdes cor-
retas para cada evento, como reenviar o pacote para o servidor e armazenar a resposta,
retornar o valor armazenado diretamente para o cliente, aplicar as politicas de preenchi-
mento e substituicdo, entre outras.

Na implementacdo da VNF-Cache, a cache propriamente dita € armazenada em
um unico arquivo Python. Seu funcionamento € exatamente como o proposto anterior-
mente, ou seja, o trafego de pacotes de rede com destino ao servidor de banco de dados é
desviado para uma porta especifica da cache. Esta, por sua vez, analisa os pacotes rece-
bidos e faz os devidos tratamentos de acordo com a necessidade de cada requisicao. Este
desvio dos pacotes de rede foi realizado em roteadores de alto desempenho e s6 pdde
ser concretizado devido a uma recente proposta de classificacdo de pacotes através de
roteamento diretamente no plano de controle da rede [Flauzino et al. 2024].

Para realizar o monitoramento dos pacotes recebidos pela cache, um socket da
biblioteca padrdao do Python € aberto na porta especificada e aguarda por requisi¢oes de
estabelecimento de conexdo pelos clientes. Quando este socket recebe um pedido de
conexdo de algum cliente, uma nova thread € criada. Em cada thread aberta, um novo
socket € criado para estabelecer a comunicagdo direta entre a VNF-Cache e o servidor
MongoDB. Apds o estabelecimento das conexdes entre cliente e cache, e cache e servidor,
a VNF-Cache aguarda pelos pacotes que serdo enviados pelo cliente.

Quando recebe um pacote, o médulo Filter 1€ o cabecgalho e separa pacotes com
op_code 2013 e que contenham operacdes de busca, insercdo, atualizacdo e exclusio.
Outros pacotes sao reenviados diretamente para o servidor MongoDB ou para o cliente,
como, por exemplo, os pacotes de estabelecimento de conexao do PyMongo, de estatistica
e de monitoramento de disponibilidade.

ApOs capturar um pacote com o codigo de operacao 2013 (fluxo de manipulacao),
a VNF-Cache realiza sua decodificagdo, identificando a opera¢do de manipulacdo e em
quais dados a manipulacio serd executada. E necessdrio determinar o método que estd
sendo utilizado, qual a chave sendo requisitada e, se for a primeira requisicdo de uma
chave, qual € o valor retornado pelo servidor para aquela chave. Para isso, é realizada
a reconstrucdo do documento JSON que foi enviado pelo PyMongo. Assim, o médulo
Manager realiza o processamento dos pacotes que contém operagdes de buscas, insercoes,
alteragcoes ou exclusdes de dados. As operacdes de busca de dados possuem o termo find
como chave e a cole¢do da busca como valor correspondente. De forma semelhante, as
operagOes de insercdo, atualizagdo e exclusdo possuem os termos insert, update € delete,
respectivamente.

Por fim, a chave do dado que est4d sendo manipulado est4 presente no campo fil-
ter do JSON. De acordo com a documentagdo do MongoDB, através do campo filter
€ possivel realizar diferentes combinagdes, como busca por chaves iguais, maiores ou
menores do que um inteiro (caso a chave seja um inteiro), por igualdade ou existéncia
de uma string dentro de outra, conjungdes, disjuncdes, entre outros. Para simplificar
esta implementacao, o foco foi apenas nas operagdes com chaves Unicas. Portanto, nesta
implementag¢ao da VNF-Cache, a chave da requisi¢@o é o valor que esta no campo “$eq”,

que esta localizado no campo “filter”. Opcionalmente, pode-se omitir o campo “$eq”,
deixando a chave buscada ser diretamente o valor referente a chave daquela cole¢do. Vale
destacar que as operagdes de inser¢ao de dados nao sdo tratadas internamente pela VNF-
Cache, ja que nao influenciam diretamente os dados ja armazenados nela.

Ao encontrar um pacote de busca/leitura de uma chave especifica, a VNF-Cache
verifica primeiramente se este conjunto chave-valor ja estd no armazenamento local da ca-
che. Na implementacdo da VNF-Cache, o modulo Storage de armazenamento dos dados
€ realizado em um diciondrio Python, utilizando o mesmo par chave-valor do MongoDB.
Se a chave requisitada nao estiver no diciondrio, o Client Manager reencaminha o pacote
para o servidor MongoDB e aguarda pelo pacote de resposta, e armazena o valor quando
retornar. Por outro lado, se a chave requisitada estiver no diciondrio, o Client Manager
reconstréi o pacote de dados e o encaminha diretamente ao cliente. Desta forma, o pacote
de requisicdo da chave enviado pelo cliente sofre um drop, ou seja, o pacote € ignorado e
nao é reencaminhado para o servidor.

A VNF-Cache implementada utiliza a politica de caching Write-Invalidate
[Jacob et al. 2008]. Desta forma, as operacOes de alteracdo e exclusdo dos dados fazem
com que os mesmos sejam retirados do Storage, como uma forma de invalidar os dados.
Assim, ao receber um pacote que atualiza o dado de uma chave, o respectivo conjunto
chave-valor € retirado da cache e o pacote é reencaminhado para o servidor, que realiza
as alteragdes necessdrias no banco de dados.

Como existe a possibilidade de multiplas threads estarem em execucao a0 mesmo
tempo e solicitarem leituras e/ou escritas no diciondrio da cache, existe a possibilidade de
duas ou mais threads realizarem modifica¢cdes no mesmo dado ao mesmo tempo, podendo
causar incoeréncias nas respostas. Para resolver este problema, sdo utilizadas as primitivas
acquire(), que trava o acesso ao diciondrio exclusivamente para aquela thread, e release(),
que libera o acesso para as demais threads.

De forma complementar ao funcionamento bdsico da VNF-Cache, a
implementagdo tem opg¢des de linha de comando para definir os niveis de detalhamento
do log produzido, o nimero maximo de itens da VNF-Cache e a geracdo de arquivos
estatisticos, como os de registros de cache hit e miss, por exemplo.

4.1. Avaliacao Empirica

Foram efetuados experimentos com diferentes cendrios de aplicacdes da VNF-Cache, va-
riando sua capacidade de armazenamento e a sua localizacdo em relacdo ao cliente e ao
servidor. As métricas avaliadas incluem o impacto da VNF-Cache no tempo de resposta
de uma requisi¢ao, que compreende o intervalo entre o envio da requisicao pelo cliente
e a chegada da resposta enviada pelo servidor, e a quantidade de requisi¢cdes processadas
por unidade de tempo. Foram definidos trés cendrios diferentes para os experimentos:
(A) cliente, VNF-Cache e servidor de banco de dados préximos entre si; (B) cliente e
VNF-Cache proximos entre si, e o servidor distante; e (C) cliente, VNF-Cache e servidor
distantes entre si. Desta forma, € possivel analisar a eficiéncia das diferentes aplica¢Oes
da VNF-Cache conforme a distancia entre os clientes e os servidores varia.

Para a execugdo dos experimentos, foram utilizadas uma madquina fisica e
multiplas combinacdes de maquinas virtuais, conforme serd descrito adiante. A maquina
fisica possui um processador Intel(R) Core(TM) 15-7400 @3.0 GHz x 4, 16 GB de

memoria RAM, uma interface de rede de 100 Mb/s e sistema operacional Ubuntu 20.04.6.
Esta maquina serviu para a coordenacdo dos testes e execucao de algumas das maquinas
virtuais. Estas, por sua vez, foram instanciadas tanto localmente utilizando Kernel-
based Virtual Machine (KVM), quanto remotamente através da Amazon Elastic Compute
Cloud®, um servico de computacdo em nuvem da Amazon Web Services” (AWS) que pos-
sibilita a instanciacdo de maquinas virtuais em diferentes localizacdes do mundo.

Cada experimento consistiu de um cliente enviando 30 lotes de 1000 requisi¢Oes
para chaves inteiras aleatorias, distribuidas de forma uniforme no intervalo de 1 a 100 da
colecdo phrases do banco de dados randomPhrases do MongoDB, que € constituido por
frases aleatorias. Além disso, estes também realizam a medi¢c@o do tempo de resposta de
cada requisi¢c@o e do numero de requisi¢cdes processadas por segundo.

Por sua vez, a VNF-Cache foi executada em maquinas virtuais com duas opcoes
de especificacdoes. As maquinas virtuais executadas na maquina fisica utilizam o sistema
operacional Ubuntu 20.04, em um processador virtualizado de 3 GHz x 2, memoria prin-
cipal de 2 GB e 15 GB de armazenamento em disco. J4 na AWS, as maquinas virtuais
executam o mesmo sistema operacional, porém sobre um processador virtualizado de 2.5
GHz x 1, memodria principal de 1 GB e 8 GB de armazenamento em disco. Por fim,
o servidor de banco de dados MongoDB foi implementado em méquinas virtuais com
Ubuntu Server 20.04, processador de 1 GHz (no KVM) ou de 2,5 GHz (na AWS), 1 GB
de memoria RAM e 10 GB de armazenamento em disco.

Experimento 1: Cliente, Servidor e VNF-Cache Préximos

O primeiro experimento foi realizado com cliente, VNF-Cache e servidor de banco de
dados proximos entre si. Para isso, trés maquinas virtuais foram instanciadas na mesma
maquina fisica. Além disso, foram implementadas politicas de redirecionamento no rote-
ador da rede criada para intercomunicacgdo das VMs. Desta forma, todo pacote do cliente
com destino ao banco de dados do servidor é desviado para uma porta especifica da VM
que executa a VNF-Cache. A Tabela 1 mostra os tempos de resposta, em milissegundos
(ms), das requisi¢des para a mesma chave nos experimentos sem e com a VNF-Cache.

Tabela 1. Tempos das requisicoes (em ms) para a mesma chave e overhead
causado pela VNF-Cache no cenario A.

Ordem das Requisi¢des para uma Determinada Chave

VNE-Cache 1? 2* 32 42 5% 6*
S/ VNF-Cache 1,12ms | 1,56ms | 2,04 ms | 1,26 ms | 1,17 ms | 1,35 ms
C/ VNF-Cache | 10,54 ms | 5,40 ms | 3,87 ms | 3,32 ms | 4,05 ms | 3,93 ms
Overhead 942ms | 3,84ms | 1,83 ms | 2,06 ms | 2,88 ms | 2,58 ms

A tabela mostra que, sem utilizar a VNF-Cache, o tempo de resposta médio para
cada requisi¢do (considerando as primeiras 6 requisi¢des) variou entre 1,12 e 2,04 milis-
segundos (ms). O tempo médio foi de 1,41 ms, com uma taxa de 535 requisi¢des por
segundo. A VNF-Cache foi entdo habilitada com capacidade maxima de 100 conjuntos

®https://aws.amazon.com/pt/ec2/?nc2=h_ql_prod_cp_ec2
https://aws.amazon.com/pt/

chave-valor (ou seja, todo o espaco de chaves do banco de dados). Desta vez, consi-
derando o preenchimento da cache, o tempo de resposta médio foi de 5,18 ms, ou seja,
aproximadamente 3,5 vezes mais demorado. J4 o nimero médio de requisi¢cOes por se-
gundo foi de 191, ou seja, uma queda de quase 65%.

Estes resultados possibilitam concluir que em um cenério de proximidade entre
cliente e servidor, a VNF-Cache ndo atinge o seu objetivo de redu¢do do tempo de res-
posta. Neste caso, isto acontece pois a VNF-Cache apenas adiciona um processamento
extra no percurso dos pacotes de rede que, ao invés de trafegarem diretamente entre cliente
e servidor, precisam passar pela VNF-Cache antes de chegarem aos seus destinos finais.
Como neste caso o tempo de resposta das requisi¢des diretas entre o cliente e servidor ja é
baixo, o overhead causado pela VNF-Cache, ndo € capaz de justificar sua implementagao
neste cendrio. E possivel perceber pela Tabela 1 que na primeira requisicio pela chave,
quando ocorre um cache miss e a VNF-Cache necessita requisitar o servidor, o overhead
médio causado € de 9,42 ms.

Experimento 2: Cliente e VNF-Cache Proximos, Servidor Distante

Em seguida, os experimentos afastando geograficamente o servidor de banco de dados
do cliente e da VNF-Cache foram realizados. Para isso, foram instanciadas na AWS
duas mdquinas virtuais para o servidor de banco de dados, sendo a primeira delas em
Ohio, na costa leste dos Estados Unidos, e a segunda em Toéquio, Japao. O cliente e
a VNF-Cache foram executados em mdquinas virtuais no KVM da méquina fisica em
Curitiba. A Tabela 2 mostra os tempos de acesso para cada combinagdo de localizagdes e
capacidades da VNF-Cache. Para uma melhor analise do desempenho da implementagao,
nas execucoes deste cendrio variou-se também a capacidade da VNF-Cache entre 10, 30,
70 e 100 conjuntos chave-valor.

Nos experimentos sem utilizacdo da VNF-Cache e com o servidor em Ohio, o
tempo médio das requisi¢cdes diretas entre cliente e servidor foi de cerca de 164 ms, com
cerca de 6 requisi¢Oes processadas por segundo. Ja nos experimentos com o servidor em
Toéquio, o tempo médio das requisi¢des diretas entre cliente e servidor foi de cerca de 292
ms, com cerca de 3,3 requisicdes processadas por segundo.

Tabela 2. Tempos médios das requisicées (em ms) para cada capacidade da VNF-
Cache local e posicionamento do servidor de banco de dados chave-valor.

Sem Capacidade da VNF-Cache (em pares chave-valor)
Localizagdo | VNF-Cache 10 30 70 100
OHIO 164 ms 174,48 ms | 138,51 ms | 64,66 ms 8,08 ms
JAPAO 292 ms 303,34 ms | 239,35 ms | 112,66 ms | 11,02 ms

Neste experimento o impacto da VNF-Cache € muito positivo: com capacidade
de 100 conjuntos chave-valor, cliente e VNF-Cache em Curitiba e o servidor em Ohio o
tempo médio de resposta foi cerca de 8 ms com uma média de 118 requisi¢des processadas
por segundo. J4 com o servidor em Tdquio, os resultados sdo ainda mais expressivos: o
tempo das requisi¢oes caiu de 292 ms (sem VNF-Cache) para uma média de 11,02 ms e
o numero de requisi¢cdes processadas por segundo aumentou de 3,3 para uma média de

87. As melhoras sdo de até aproximadamente 95% com o servidor em Ohio e 96% com o
servidor em Toquio.

A Tabela 2 também mostra o impacto da capacidade da VNF-Cache local em
comparacao ao espaco de chaves possiveis do banco de dados. Por exemplo, nos expe-
rimentos realizados com a cache com capacidade de apenas 10 conjuntos chave-valor, é
observado um pequeno aumento no tempo médio de resposta das requisicoes. Com o
servidor em Toquio e a VNF-Cache de 10 posi¢des na mesma localizacdo do cliente, o
tempo médio chegou a piorar em cerca de 3,5%. Ja com o servidor localizado em Ohio
e a VNF-Cache com a mesma capacidade, o tempo médio de resposta das requisicoes
piorou em cerca de 6%. Ou seja, nestes experimentos da VNF-Cache, caso a capacidade
da cache seja muito pequena, o tempo de resposta médio tende a ser pior se comparado
ao tempo das requisicdes diretas.

Experimento 3: Cliente, VNF-Cache e Servidor Distantes

Experimentos afastando a VNF-Cache do cliente também foram realizados. O cliente foi
executado em Curitiba, a VNF-Cache em uma maquina virtual na AWS em Sao Paulo.
A 1ideia € avaliar o beneficio de uma cache no pais para o acesso de clientes locais a
servidores no hemisfério norte. A Tabela 3 mostra que para a VNF-Cache com capacidade
de 100 conjuntos chave-valor, o tempo médio das requisi¢des diminuiu em cerca de 87%
com o servidor em Ohio e em cerca de 92% com o servidor em Toquio. Ja o numero de
requisi¢des por segundo aumentou para uma média de 45 para Ohio (no acesso direto sao
apenas 6 requisicoes por segundo) e para uma média de 40 em Téquio (no acesso direto,
sdo apenas 3,3 requisi¢oes por segundo).

Outro ponto relevante apresentado na Tabela 3 € o fato de a VNF-Cache j4 apre-
sentar um resultado benéfico mesmo com a baixa capacidade de 10 conjuntos chave-valor.
Neste caso, o tempo de resposta das requisi¢cdes reduziu em cerca de 17% com o servidor
em Ohio e cerca de 12% com o servidor em Toquio. Esse resultado € melhor que o do
Experimento 1, e acreditamos que se deve as limitacdes da maquina fisica que executa as
maquinas virtuais KVM para cliente e VNF-Cache.

Tabela 3. Tempos médios das requisicoes para cada capacidade da VNF-Cache
em SP e posicionamento do servidor de banco de dados chave-valor.

Sem Capacidade da VNF-Cache (em pares chave-valor)
Localizacao | VNF-Cache 10 30 70 100
OHIO 164 ms 134,56 ms | 108,92 ms | 57,88 ms 21,13 ms
JAPAO 292 ms 257,08 ms | 204,31 ms | 100,50 ms | 22,13 ms

A Figura 4 mostra a quantidade de requisi¢des processadas por segundo durante
os primeiros 60 segundos da execucao dos lotes de requisicdes com a VNF-Cache em
Sao Paulo e o servidor em Ohio. Os resultados apontam que, durante o experimento das
requisicoes diretas entre o cliente e o servidor, a média de requisi¢cdes processadas por
segundo se manteve relativamente estavel, variando entre 5 e 6. J4 com a VNF-Cache
em Sdo Paulo e capacidade de 100 conjuntos chave-valor, apds algum tempo de envio
das requisi¢coes dos lotes, a média aumentou consideravelmente, ultrapassando em alguns

momentos a marca de 50 requisi¢cdes processadas por segundo. Este tempo no qual a
média de requisi¢des processadas por segundo ainda € baixa pode ser associado ao tempo
de warm-up da VNF-Cache, ou seja, o tempo que demora para ela armazenar localmente
as copias dos valores das chaves. Desta forma, quando a cache estd cheia, mais valores
poderido ser retornados rapidamente para o cliente, aumentando o nimero de requisi¢des
processadas por segundo. Através da figura nota-se ainda que, conforme a capacidade da
VNF-Cache aumenta, maior € a quantidade de requisi¢des processadas por segundo.

Capacidade
50 - 10

— 100

— 30

— 70 | \
DIRETO | t |

IS
S

Requisi¢des por segundo

o 20 40 60 1 2 3 4 5 6 7 8 9 10

Tempo (segundos) Ordem Requisi¢do
Figura 4. Processamento de Figura 5. Cache hit vs. cache
requisicoes. miss.

Por fim, considerando o servidor instanciado em Ohio, a Figura 5 demonstra a
diferenca do tempo de resposta quando a consulta de uma chave na VNF-Cache resulta
em cache miss e quando resulta em cache hit. As barras de cor laranja mostram o tempo
de resposta para as 10 primeiras requisi¢cdes por uma chave que nao foi armazenada na
cache, enquanto as barras verdes representam o caso em que a chave foi armazenada
apods a primeira requisi¢do. Para as requisicdes sem armazenamento em cache, o tempo
médio foi de 180 ms. J4 no cendrio em que ocorre o armazenamento em cache, a primeira
requisi¢do apresenta um tempo de resposta similar ao anterior (quase 200 ms), mas a
partir da segunda requisicdo (quando o valor da chave ja foi armazenado na cache) o
tempo médio reduz para 6,5 ms. Esta reducdo de cerca de 96% no tempo de resposta
ressalta o beneficio da VNF-Cache. Além disso, a reducdo do niimero de requisi¢des para
o servidor também diminui o trafego de pacotes na rede e a sobrecarga dos servidores.

4.2. Discussao

Os experimentos mostram com clareza que a VNF-Cache reduz o tempo de resposta e
aumenta o nimero de requisi¢des processadas por segundo para bancos de dados chave-
valor remotos. Além disso, vale recordar que ha uma reducao do trafego de rede implicita,
ao evitar que requisi¢des e respostas tenham que percorrer todo o caminho até o servidor.
Por fim, devido a sua constru¢cdo como uma fungdo virtual de rede, € notdvel a flexibili-
dade de implantacdo proporcionada pela VNF-Cache, ja que a mesma pode ser instanci-
ada e configurada em diversos pontos da rede de maneira simples e rapida.

5. Conclusao

Este trabalho propds a VNF-Cache, um servigo de cache para bancos de dados chave-valor
implementado como uma func¢do virtual de rede. Através do processamento dos pacotes

de rede enviados entre clientes e servidores de bancos de dados, a VNF-Cache pode re-
alizar o armazenamento de conjuntos chave-valor diretamente na rede, aproximando os
dados das aplicacOes solicitantes. Ao retornar os dados requisitados diretamente para os
clientes, a VNF-Cache possibilita uma reducdo no tempo de resposta, traifego de dados
e uso de recursos da rede. Através da implementacdo de um protétipo e dos experimen-
tos realizados, foi possivel obter uma reduc¢do consideravel no tempo de resposta das
requisicoes para os servidores de bancos de dados chave-valor geograficamente distantes.
Além disso, os experimentos apontam um aumento expressivo do numero de requisi¢oes
processadas por segundo.

Trabalhos futuros incluem a implementac¢do de diversas politicas de preenchi-
mento e substituicdo de dados em cache. Outra expansdo que ampliaria ainda mais o
escopo de funcionamento € permitir o caching de dados de bancos de dados e colecdes
variaveis, bem como de multiplos bancos de dados chave-valor simultaneamente, como
o Redis e 0 Amazon DynamoDB. Uma limitacio do protétipo € a necessidade de
comunicacdo segura entre os clientes e os servidores — € necessdrio garantir o uso de
VNF-Caches com seguranc¢a. Por fim, outro trabalho futuro relevante é a implementacao
de métodos de armazenamento dos conjuntos chave-valor em estruturas de dados mais ro-
bustas e que possuam um melhor tratamento para manipula¢des de dados concorrentes.

Agradecimentos

Este trabalho foi parcialmente apoiado pela Coordenagdo de Aperfeicoamento de Pessoal
de Nivel Superior (CAPES) - Programa de Exceléncia Académica (PROEX) — Cédigo de
Financiamento 001; e pelo CNPq (Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico) - projeto 305108/2025-5.

Referéncias

Bondan, L., Franco, M. E., Marcuzzo, L., Venancio, G., Santos, R. L., Pfitscher, R. J.,
Scheid, E. J., et al. (2019). Fende: marketplace-based distribution, execution, and life
cycle management of vnfs. IEEE Communications Magazine, 57(1):13-19.

Clayman, S., Kalan, R. S., and Sayit, M. (2018). Virtualized cache placement in an
sdn/nfv assisted sand architecture. In 2018 IEEE International Black Sea Conference
on Communications and Networking (BlackSeaCom), pages 1-5. IEEE.

ETSI (2012). Network functions virtualisation — introductory white paper. Standard,
European Telecommunications Standards Institute, Darmstadt, Germany.

ETSI (2021). Etsi gr nfv-man 001 v1.2.1 - network functions virtualisation (nfv); manage-
ment and orchestration; report on management and orchestration framework. Standard,
European Telecommunications Standards Institute, Valbonne, France.

ETSI (2025). Open Source MANO. https://osm.etsi.org. Accessado em no-
vembro de 2025.

Flauzino, J., Fiilber-Garcia, V., Huff, A., Venancio, G., and Jr., E. D. (2021). Geréncia
e orquestracao de funcdes e servicos de rede virtualizados em nuvem cloudstack. In
XXVI Workshop de Geréncia e Operagdo de Redes e Servigos, pages 82-95. SBC.

Flauzino, J., Lyra, C., and Duarte Jr., E. (2024). Utilizando anycast para filtragem de
pacotes para funcdes de rede virtualizadas em roteadores de alto desempenho. In /50
Workshop de Pesquisa Experimental Internet do Futuro (WPEIF), pages 31-38. SBC.

Fulber-Garcia, V., Duarte Jr, E. P., Huff, A., and dos Santos, C. R. (2020). Network service
topology: Formalization, taxonomy and the custom specification model. Computer
Networks, 178:107337.

Fulber-Garcia, V., Flauzino, J., Venancio, G., Huff, A., and Junior, E. P. D. (2024). Bre-
aking the limits: Bio-inspired sfc deployment across multiple domains, clouds and
orchestrators. In 2024 IEEE Conference on NFV-SDN, pages 1-6. IEEE.

Halpern, J. et al. (2015). Service Function Chaining (SFC) Architecture. RFC 7665,
IETFE.

Huff, A., Venancio, G., Garcia, V. F,, and Duarte, E. P. (2020). Building multi-domain
service function chains based on multiple nfv orchestrators. In 2020 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages
19-24. IEEE.

Jacob, B., Ng, S., and Wang, D. (2008). Memory Systems: Cache, DRAM, Disk. Elsevier.

Jeong, J. P, Shen, Y., Ahn, Y., Kim, Y., Duarte Jr., E. P., and Yao, K. (2025a). A fra-
mework for the interface to in-network functions (i2inf).

Jeong, J. P, Shen, Y., Ahn, Y., Kim, Y., Duarte Jr., E. P., and Yao, K. (2025b). Interface
to in-network functions (i2inf): Problem statement.

Liu, Y., Point, J. C., Katsaros, K. V., Glykantzis, V., Siddiqui, M. S., and Escalona, E.
(2017). Sdn/nfv based caching solution for future mobile network (5g). In 2017 Euro-
pean Conference on Networks and Communications (EuCNC), pages 1-5. IEEE.

Seeger, M. (2009). Key-value stores: a practical overview. Medieninformatik.

Tacker (2025). Tacker - OpenStack NFV Orchestration. https://wiki.
openstack.org/wiki/Tacker. Accessado em novembro de 2025.

Turchetti, R. C. and Duarte, E. P. (2015). Implementation of failure detector based on
network function virtualization. In 2015 IEEE International Conference on Dependa-
ble Systems and Networks Workshops, pages 19-25. IEEE.

Venancio, G., Turchetti, R. C., Camargo, E. T., and Duarte Jr, E. P. (2021). Vnf-consensus:
A virtual network function for maintaining a consistent distributed software-defined
network control plane. International Journal of Network Management, 31(3):e2124.

Venancio, G., Turchetti, R. C., and Duarte, E. P. (2019). Nfv-rbcast: Enabling the network
to offer reliable and ordered broadcast services. In 2019 9th Latin-American Sympo-
sium on Dependable Computing (LADC), pages 1-10. IEEE.

Venancio, G., Turchetti, R. C., and Duarte Jr, E. P. (2022). Nfv-coin: Unleashing the
power of in-network computing with virtualization technologies. Journal of Internet
Services and Applications, 13(1):46-53.

Zhuang, W. et al. (2019). SDN/NFV-empowered future IoV with enhanced communica-
tion, computing, and caching. Proceedings of the IEEE, 108(2):274-291.

