
VNF-Cache: Um Serviço NFV-COIN de Cache na Rede

Bruno E. Farias, José Flauzino, Elias P. Duarte Jr.

Universidade Federal do Paraná (UFPR), Depto. Informática
Curitiba, PR, Brasil

{bef18,jwvflauzino,elias}@inf.ufpr.br

Resumo. Com o crescimento exponencial da quantidade de dados disponı́veis
na Internet, torna-se essencial otimizar o tempo de resposta e o uso dos recursos
para acesso aos dados. As caches são uma solução eficaz que aproxima os da-
dos de clientes, dispensando requisições repetitivas nos servidores. Este artigo
apresenta a VNF-Cache, um serviço de cache para bancos de dados geografi-
camente remotos do tipo chave-valor. A VNF-Cache é um serviço NFV-COIN
(Network Function Virtualization-Computing In The Network), tecnologia em
processo de padronização no IETF que possibilita a implementação de serviços
arbitrários diretamente na rede. A VNF-Cache intercepta pacotes de rede, trata,
armazena e envia valores diretamente para os clientes quando possı́vel. Através
de uma implementação para prova de conceito e de experimentos realizados
com servidores geograficamente espalhados no Brasil, Estados Unidos e Japão,
foram observados tanto redução significativa no tempo de resposta, como au-
mento na quantidade de requisições processadas por segundo.

1. Introdução
As caches ainda são uma das principais tecnologias utilizadas para melhorar a eficiência
do acesso a dados através da Internet. Este trabalho propõe a VNF-Cache, um serviço
de cache para bancos de dados chave-valor baseado na tecnologia de Virtualização de
Funções de Rede (Network Function Virtualization - NFV). A tecnologia NFV possibilita
a implementação de funções de rede em software que pode ser executado em infraestru-
turas virtualizadas [ETSI 2012]. Como a gama de funções de rede que podem ser imple-
mentadas utilizando NFV é muito variada, a arquitetura de referência NFV-MANO (NFV
- MANagement and Orchestration) surgiu para padronizar as implementações e possibili-
tar a interoperabilidade entre os sistemas NFV [ETSI 2021]. Para isto, a arquitetura define
o gerenciamento do ciclo de vida das Virtualized Network Functions (VNFs), que podem
inclusive ser disponbilizadas através de marketplaces na Internet [Bondan et al. 2019].

Recentemente, a arquitetura NFV-COIN (NFV - COmputing In the Network)
foi proposta para possibilitar a implementação de serviços arbitrários e inovadores di-
retamente na rede, através do paradigma chamado COmputing In the Network (COIN)
[Venâncio et al. 2022]. A NFV-COIN está no processo de padronização pelo IETF, que
já publicou dois Drafts com foco nas interfaces para as funções na rede: o primeiro es-
pecifica o problem statement [Jeong et al. 2025b] e o segundo especifica o framework
[Jeong et al. 2025a].

A VNF-Cache apresentada neste trabalho é um serviço NFV-COIN. Ela tem como
propósito agilizar o acesso de clientes a bancos de dados chave-valor geograficamente
distantes. Ao aproximar dados de clientes, a VNF-Cache tem por objetivos reduzir o

tempo para a execução de requisições e aumentar a taxa de requisições executadas por
unidade de tempo. Além disso, ao evitar que pacotes de requisição e resposta percorram
todo o caminho até o servidor, a VNF-Cache promove um melhor uso da infraestrutura
da rede.

Para desempenhar a funcionalidade de caching dos conjuntos chave-valor, a VNF-
Cache deve estar localizada em algum ponto da rede entre os clientes e os servidores
de banco de dados chave-valor. Seu funcionamento inicia com a filtragem de pacotes
de rede de interesse, seguida de processamento e armazenamento dos valores das chaves
requisitadas pelos clientes. Sempre que possı́vel, a VNF-Cache retorna dados requisitados
diretamente para o cliente, caso contrário redireciona o pacote para o servidor e, quando
viável, armazena o valores retornados pelo servidor para requisições futuras.

A arquitetura da VNF-Cache é apresentada, bem como um protótipo implemen-
tado como prova de conceito. Através da avaliação empı́rica, foram efetuados experi-
mentos com três cenários diferentes: (A) cliente, VNF-Cache e servidor de banco de
dados chave-valor próximos entre si, (B) cliente e VNF-Cache próximos entre si, distan-
ciando o servidor e (C) cliente, VNF-Cache e servidor distantes entre si. Os servidores
e VNF-Cache remotos foram instanciados na Amazon Elastic Compute Cloud1, serviço
de computação em nuvem da Amazon Web Services (AWS)2. Foram utilizadas máquinas
virtuais para a VNF-Cache e o servidor de banco de dados tanto em Curitiba e São Paulo,
no Brasil; Ohio, na costa leste dos Estados Unidos, e em Tóquio, Japão. Os resultados
destes experimentos apontam que quando clientes e servidores estão distantes entre si, a
utilização de uma VNF-Cache é capaz de reduzir consideravelmente o tempo de resposta
das requisições e aumentar o número de requisições processadas por segundo.

O restante deste trabalho está organizado da seguinte maneira. A seção 2 apresenta
uma visão geral da tecnologia NFV e NFV-COIN, bem como trabalhos relacionados.
A Seção 3 descreve a VNF-Cache, apresentando sua funcionalidade e arquitetura. O
protótipo implementado, bem como os resultados experimentais estão na Seção 4. Por
fim, a Seção 5 traz as conclusões e lista trabalhos futuros.

2. NFV, NFV-COIN & Trabalhos Relacionados
A Virtualização de Funções de Redes, ou NFV, é uma alternativa concreta para implemen-
tar serviços de redes utilizando técnicas de virtualização, como Virtual Machines (VMs) e
containers, que podem ser executadas em hardware de prateleira. Uma grande variedade
de serviços de rede podem ser implementados com NFV, como roteadores, Virtual Private
Network (VPN), análisadores de tráfego, firewalls, Content Delivery Network (CDN), en-
tre outros [ETSI 2012].

Um dos principais resultados destes esforços para estabelecer padrões e desen-
volver uma arquitetura para gerenciar e padronizar a implantação das funções de rede
virtualizadas é o modelo MANagement and Orchestration (MANO). O MANO surgiu
como arquitetura para permitir interoperabilidade entre os sistemas NFV.

A arquitetura NFV-MANO é composta basicamente por três blocos fundamentais
e interdependentes: o Virtualized Infrastructure Manager (VIM), o NFV Orchestrator

1https://aws.amazon.com/pt/ec2/?nc2=h ql prod cp ec2
2https://aws.amazon.com/pt/

(NFVO) e o VNF Manager (VNFM) [ETSI 2021]. O ciclo de vida das VNFs é gerenciado
pelo VNFM e são executadas em infraestruturas de virtualização de funções de redes (os
NFVIs). Estas, por sua vez, são gerenciadas pelos VIMs, que são integrados e gerenciados
pelo NFVO. Entre as principais atribuições do NFVO, estão inclusos a distribuição de
todos os recursos computacionais entre os VIMs [Fulber-Garcia et al. 2024] e também
o gerenciamento dos serviços de rede virtualizados. Todos estes elementos geralmente
são disponibilizados através das chamadas Plataformas NFV [Tacker 2025, ETSI 2025,
Flauzino et al. 2021].

Além de possibilitar a concepção de VNFs básicas com funcionalidades di-
versas, é possı́vel ainda realizar a composição de VNFs individuais em serviços
complexos, formando assim uma Service Function Chain (SFC) [Halpern et al. 2015,
Fulber-Garcia et al. 2020]. Cada SFC pode ser definida em um escopo centralizado,
ou até mesmo abrangendo múltiplos sistemas autônomos, nuvens e orquestradores
[Huff et al. 2020]. A arquitetura NFV-COIN [Venâncio et al. 2022] amplia este escopo
para serviços arbitrários e inovadores diretamente na rede, através do paradigma COm-
puting In the Network (COIN). Por ser baseada em software e virtualização, a tecnologia
NFV-COIN apresenta grande flexibilidade para a implantação de novos recursos nativos
das redes. A interface para funções NFV-COIN é realizada através de APIs padroni-
zadas, que permitem seu uso inclusive por usuários finais. Além disso, há um módulo
de gerenciamento para implantação, configuração e monitoramento dos serviços. Di-
versos serviços NFV-COIN já foram propostos, como detectores de falhas de processos
[Turchetti and Duarte 2015], consenso [Venâncio et al. 2021] além da difusão confiável e
ordenada de mensagens na rede [Venâncio et al. 2019].

Trabalhos Relacionados: NFV & Caches
Nos últimos anos, vários trabalhos foram desenvolvidos envolvendo a união de NFV e
de caches. [Zhuang et al. 2019], por exemplo, discutem sobre a possibilidade de se apli-
car caches baseadas em NFV para minimizar o tempo de recuperação de conteúdos em
sistemas de Internet-of-Vehicles (IoV). Para os autores, o uso deste tipo de cache pode
facilitar a implantação dos serviços e a disseminação de seus conteúdos, possibilitando
uma melhor confiabilidade e eficiência dos serviços IoV.

Já [Clayman et al. 2018] propõem uma arquitetura para streaming de vı́deo Server
and Network Assisted Dynamic Adaptative Streaming over HTTP (SAND). Nesta arqui-
tetura, instâncias de caches virtualizadas são criadas conforme a demanda por conteúdo.
Além disso, os autores também discorrem sobre os posicionamentos dessas instâncias no
grafo da rede, baseando-se em caracterı́sticas como a largura de banda dos caminhos, os
locais e o número de clientes da rede.

Outro trabalho relevante é o de [Liu et al. 2017], que discutem o ganho de de-
sempenho notável que a aplicação de caches NFV em redes 5G pode causar. Além da
flexibilidade, dinamicidade e escalabilidade possibilitadas pelo uso de NFV, os autores
ainda destacam a possibilidade de oferecer serviços de cache para provedores de serviços
e para operadoras de rede utilizando a mesma infraestrutura.

3. Um Serviço de Cache na Rede para Bancos de Dados Chave-Valor
Esta seção apresenta a VNF-Cache, um serviço de cache voltado para bases de dados do
tipo Key-Value Store (KVS), ou banco de dados chave-valor. Este é um tipo de banco de

dados não-relacional que realiza a persistência dos dados através da associação de uma
única chave para cada dado armazenado [Seeger 2009]. O uso deste tipo de banco de
dados permite ao desenvolvedor da aplicação o armazenamento dos dados sem o uso de
esquemas, ou seja, sem o tradicional método relacional de linhas e colunas pré-definidas.
Desta forma, a flexibilidade no projeto do banco de dados é maior, assim como a qualidade
do código de programação correspondente.

Neste sentido, a VNF-Cache visa aproximar os dados do cliente, armazenando as
informações diretamente na rede e em locais mais próximos. A VNF-Cache deve estar
localizada no caminho entre o cliente e o servidor remoto, realizando o processamento dos
pacotes e armazenando os valores das chaves requisitadas pelos clientes. Caso uma chave
requisitada esteja válida nesta cache, seu valor é retornado diretamente para o cliente,
dispensando a necessidade de reencaminhar os pacotes para o servidor. A Figura 1 ilustra
a sequência de passos do funcionamento da VNF-Cache.

Não Sim

Cliente solicita dado para
o servidor

Tráfego é desviado para a
VNF-Cache

Dado na
VNF-Cache?

A VNF-Cache solicita
dado para o servidor

Servidor processa e retorna
o dado à VNF-Cache

A VNF-Cache retorna o
dado ao cliente

A VNF-Cache armazena o
dado para aquela chave

FIM

Dado retorna diretamente
para o cliente

Figura 1. Funcionamento da VNF-Cache.

CLIENTE
SERVIDOR BD

SEM VNF-CACHE

Tráfego real

COM VNF-CACHE

CLIENTE
SERVIDOR BD

Tráfego deduzido

Tráfego real Tráfego real

VNF-Cache

Figura 2. Exemplo de arqui-
tetura de rede sem e
com VNF-Cache.

A Figura 2 mostra a rede com e sem a integração de uma VNF-Cache. Na figura,
o tráfego deduzido é definido como aquele em que o cliente deduz estar causando na rede,
que pode ser diferente do tráfego real presenciado na rede.

A Arquitetura da VNF-Cache

A arquitetura da VNF-Cache é composta por um conjunto de três módulos: VNF-Cache
Filter, um VNF-Cache Manager e o VNF-Cache Storage, ilustrados na Figura 3 e descri-
tos a seguir. O VNF-Cache Filter, ou apenas Filter, é o módulo responsável pela filtragem
dos pacotes recebidos pela VNF-Cache, sejam eles enviados pelos clientes (Client Filter)
ou pelo servidor (Server Filter). Estes dois submódulos recebem e filtram os pacotes de
rede em três possı́veis fluxos: o Manipulation Flow (MF), o Response Flow (RF) e o
Coordination Flow (CF), descritos a seguir.

O fluxo de manipulação de dados (MF) é composto pelos pacotes enviados pelos
clientes que contenham operações de manipulação de dados, tais como buscas, inserções,
atualizações e exclusões. Já o fluxo de respostas RF é composto pelos pacotes enviados
pelos servidores e que são respostas para estes pacotes enviados pelos clientes no fluxo
MF. Por fim, o fluxo de coordenação (CF) é composto pelos demais pacotes trafegados,

ou seja, aqueles enviados pelos clientes ou pelos servidores e que possuem outros obje-
tivos, como manter a conexão entre clientes e servidores ou realizar o monitoramento de
disponibilidade do servidor.

Desta forma, o Client Filter é responsável pela filtragem dos pacotes origina-
dos pelo cliente, separando-os entre o fluxo MF, que são os pacotes que comunicam as
manipulações de dados solicitadas pelos clientes ao banco, e o fluxo CF, que são os paco-
tes que realizam as comunicações básicas entre cliente e servidor, neste caso no sentido do
cliente para o servidor. De forma semelhante, o Server Filter filtra os pacotes vindos do
servidor, separando-os entre o fluxo RF, que são os pacotes que respondem as solicitações
realizadas pelos clientes no fluxo MF, e o fluxo CF, que neste caso é no sentido do servidor
para o cliente.

Client
Filter

Server
Filter

Storage

Filter Manager

CF

MF

DELETE

READ

Server Manager

Client Manager

Sim

Não

find

delete
update
insert

Entrada
Servidor

Saída
Servidor

Entrada
Cliente

Saída
Cliente

OP

ST HIT

CF

RF

STORE
WRITE

Figura 3. Arquitetura da VNF-Cache.

Por sua vez, o Manager é o principal módulo de gerenciamento da VNF-Cache.
De forma semelhante ao Filter, o Manager também é composto por dois submódulos: o
Client Manager e o Server Manager. O Client Manager recebe os dois fluxos de pacotes
do Client Filter e faz o tratamento conforme necessário: o fluxo MF é tratado diretamente
com o módulo de armazenamento VNF-Cache Storage (que será apresentado a seguir),
realizando as leituras, atualizações e exclusões dos dados conforme as operações. Já o
fluxo CF é enviado diretamente para a saı́da da VNF-Cache com destino ao servidor. De
forma semelhante, o Server Manager recebe os dois fluxos de pacotes do Server Filter.
Porém, no Server Manager, todos os pacotes são enviados para a saı́da com destino ao
cliente, independentemente do fluxo designado pelo Server Filter. A diferença entre o
processamento dos fluxos no Server Manager é que enquanto o fluxo CF é apenas redi-
recionado para os clientes, os pacotes do fluxo RF passam por um processamento extra,
tendo como objetivo o armazenamento dos dados retornados pelo servidor no VNF-Cache
Storage, conforme as solicitações do Client Manager.

Por fim, o módulo Storage é o responsável pelo armazenamento das chaves e de
seus respectivos valores. Este módulo possui duas funcionalidades principais: (i) retornar
o valor de uma chave requisitada pelo Client Manager e (ii) armazenar o valor de uma
chave capturada pelo Server Manager e solicitada pelo Client Manager.

Os dois principais fluxos na arquitetura da VNF-Cache ocorrem após a requisição
de consulta de uma chave por algum cliente. Quando um cliente solicita uma chave, o
Client Filter realiza a filtragem deste pacote no fluxo de manipulação de dados, o MF.
Em seguida, o Client Manager determina o tipo da operação, que no caso é find, e faz
uma requisição ao Storage pelo valor daquela chave. Após o retorno do módulo de arma-
zenamento, podemos ter um cache miss ou um cache hit. Caso a requisição resulte em
um cache hit, o Client Manager retorna o pacote diretamente para o cliente. Por outro
lado, caso a requisição seja um cache miss, o Client Manager redireciona o pacote para
o servidor e envia um sinal ao Server Manager, alertando-o que a chave requisitada não
está na cache e que seu valor deve, na medida do possı́vel, ser armazenado no Storage
após a resposta do servidor.

4. Implementação e Resultados Experimentais

A VNF-Cache foi implementada na linguagem Python3, incluindo diversas das suas bibli-
otecas como Scapy e PyShark. Foi utilizado o MongoDB4, um banco de dados orientado
a documentos JavaScript Object Notation (JSON). Embora este não seja um banco de da-
dos exclusivamente chave-valor, ele pode ser utilizado como tal ao armazenar os dados em
forma de documentos flexı́veis. Cada item dos dados é atrelado a um único “ı́ndice” ge-
rado automaticamente, que é a chave no contexto chave-valor. É importante destacar que
a VNF-Cache pode ser facilmente adaptada para ser utilizada com outros bancos de dados
chave-valor, como o Redis, por exemplo. Para realizar a comunicação entre os clientes e
os servidores de bancos de dados MongoDB, a biblioteca utilizada foi a PyMongo5.

Para realizar a comunicação dos clientes com o servidor de banco de dados Mon-
goDB, a biblioteca PyMongo utiliza pacotes de rede com o protocolo de rede IP e trans-
porte TCP. A VNF-Cache filtra apenas pacotes com identificador de operação 2013, que
é o tipo padrão para requisições de busca, inserção, exclusão e alteração do PyMongo.
Os pacotes do PyMongo possuem um cabeçalho padrão com 25 bytes de tamanho, sendo
separados em 7 campos, descritos a seguir.

O primeiro campo (4 bytes) é o length, que contém o tamanho total do pacote
TCP. O segundo campo (4 bytes) é o request id, que contém um identificador único da
requisição (o mesmo identificador deve estar presente no pacote de resposta). O terceiro
campo (4 bytes) é o response to, que contém o identificador ao qual aquele pacote se re-
fere (caso este seja a resposta para algum outro pacote enviado anteriormente). O quarto
campo (4 bytes) é o op code, que contém o número de identificação da operação (neste
caso focamos apenas na operação de código 2013 – fluxo de manipulação). O quinto
campo (4 bytes) contém algumas flags para comunicação entre PyMongo e MongoDB.
O sexto campo (1 byte) é o payload type e contém o tipo do conteúdo do pacote Py-
Mongo. Por fim, o sétimo campo (4 bytes) é o payload size, que contém o tamanho total
do documento Binary JSON (BSON) contido naquele pacote.

Ao unirmos o conteúdo em binário do payload size e o restante do payload do pa-
cote, podemos obter o JSON completo que foi enviado pelo PyMongo utilizando a classe
RawBSONDocument da biblioteca bson. Desta forma, foram viabilizados os devidos

3https://www.python.org
4https://www.mongodb.com
5https://pymongo.readthedocs.io/en/stable/index.html

tratamentos dos pacotes dentro da implementação da VNF-Cache, facilitando e tornando
eficiente o monitoramento e a filtragem dos pacotes que são de fato importantes. Através
dos campos do cabeçalho do pacote PyMongo, a VNF-Cache pode tomar as decisões cor-
retas para cada evento, como reenviar o pacote para o servidor e armazenar a resposta,
retornar o valor armazenado diretamente para o cliente, aplicar as polı́ticas de preenchi-
mento e substituição, entre outras.

Na implementação da VNF-Cache, a cache propriamente dita é armazenada em
um único arquivo Python. Seu funcionamento é exatamente como o proposto anterior-
mente, ou seja, o tráfego de pacotes de rede com destino ao servidor de banco de dados é
desviado para uma porta especı́fica da cache. Esta, por sua vez, analisa os pacotes rece-
bidos e faz os devidos tratamentos de acordo com a necessidade de cada requisição. Este
desvio dos pacotes de rede foi realizado em roteadores de alto desempenho e só pôde
ser concretizado devido a uma recente proposta de classificação de pacotes através de
roteamento diretamente no plano de controle da rede [Flauzino et al. 2024].

Para realizar o monitoramento dos pacotes recebidos pela cache, um socket da
biblioteca padrão do Python é aberto na porta especificada e aguarda por requisições de
estabelecimento de conexão pelos clientes. Quando este socket recebe um pedido de
conexão de algum cliente, uma nova thread é criada. Em cada thread aberta, um novo
socket é criado para estabelecer a comunicação direta entre a VNF-Cache e o servidor
MongoDB. Após o estabelecimento das conexões entre cliente e cache, e cache e servidor,
a VNF-Cache aguarda pelos pacotes que serão enviados pelo cliente.

Quando recebe um pacote, o módulo Filter lê o cabeçalho e separa pacotes com
op code 2013 e que contenham operações de busca, inserção, atualização e exclusão.
Outros pacotes são reenviados diretamente para o servidor MongoDB ou para o cliente,
como, por exemplo, os pacotes de estabelecimento de conexão do PyMongo, de estatı́stica
e de monitoramento de disponibilidade.

Após capturar um pacote com o código de operação 2013 (fluxo de manipulação),
a VNF-Cache realiza sua decodificação, identificando a operação de manipulação e em
quais dados a manipulação será executada. É necessário determinar o método que está
sendo utilizado, qual a chave sendo requisitada e, se for a primeira requisição de uma
chave, qual é o valor retornado pelo servidor para aquela chave. Para isso, é realizada
a reconstrução do documento JSON que foi enviado pelo PyMongo. Assim, o módulo
Manager realiza o processamento dos pacotes que contêm operações de buscas, inserções,
alterações ou exclusões de dados. As operações de busca de dados possuem o termo find
como chave e a coleção da busca como valor correspondente. De forma semelhante, as
operações de inserção, atualização e exclusão possuem os termos insert, update e delete,
respectivamente.

Por fim, a chave do dado que está sendo manipulado está presente no campo fil-
ter do JSON. De acordo com a documentação do MongoDB, através do campo filter
é possı́vel realizar diferentes combinações, como busca por chaves iguais, maiores ou
menores do que um inteiro (caso a chave seja um inteiro), por igualdade ou existência
de uma string dentro de outra, conjunções, disjunções, entre outros. Para simplificar
esta implementação, o foco foi apenas nas operações com chaves únicas. Portanto, nesta
implementação da VNF-Cache, a chave da requisição é o valor que está no campo “$eq”,

que está localizado no campo “filter”. Opcionalmente, pode-se omitir o campo “$eq”,
deixando a chave buscada ser diretamente o valor referente à chave daquela coleção. Vale
destacar que as operações de inserção de dados não são tratadas internamente pela VNF-
Cache, já que não influenciam diretamente os dados já armazenados nela.

Ao encontrar um pacote de busca/leitura de uma chave especı́fica, a VNF-Cache
verifica primeiramente se este conjunto chave-valor já está no armazenamento local da ca-
che. Na implementação da VNF-Cache, o módulo Storage de armazenamento dos dados
é realizado em um dicionário Python, utilizando o mesmo par chave-valor do MongoDB.
Se a chave requisitada não estiver no dicionário, o Client Manager reencaminha o pacote
para o servidor MongoDB e aguarda pelo pacote de resposta, e armazena o valor quando
retornar. Por outro lado, se a chave requisitada estiver no dicionário, o Client Manager
reconstrói o pacote de dados e o encaminha diretamente ao cliente. Desta forma, o pacote
de requisição da chave enviado pelo cliente sofre um drop, ou seja, o pacote é ignorado e
não é reencaminhado para o servidor.

A VNF-Cache implementada utiliza a polı́tica de caching Write-Invalidate
[Jacob et al. 2008]. Desta forma, as operações de alteração e exclusão dos dados fazem
com que os mesmos sejam retirados do Storage, como uma forma de invalidar os dados.
Assim, ao receber um pacote que atualiza o dado de uma chave, o respectivo conjunto
chave-valor é retirado da cache e o pacote é reencaminhado para o servidor, que realiza
as alterações necessárias no banco de dados.

Como existe a possibilidade de múltiplas threads estarem em execução ao mesmo
tempo e solicitarem leituras e/ou escritas no dicionário da cache, existe a possibilidade de
duas ou mais threads realizarem modificações no mesmo dado ao mesmo tempo, podendo
causar incoerências nas respostas. Para resolver este problema, são utilizadas as primitivas
acquire(), que trava o acesso ao dicionário exclusivamente para aquela thread, e release(),
que libera o acesso para as demais threads.

De forma complementar ao funcionamento básico da VNF-Cache, a
implementação tem opções de linha de comando para definir os nı́veis de detalhamento
do log produzido, o número máximo de itens da VNF-Cache e a geração de arquivos
estatı́sticos, como os de registros de cache hit e miss, por exemplo.

4.1. Avaliação Empı́rica
Foram efetuados experimentos com diferentes cenários de aplicações da VNF-Cache, va-
riando sua capacidade de armazenamento e a sua localização em relação ao cliente e ao
servidor. As métricas avaliadas incluem o impacto da VNF-Cache no tempo de resposta
de uma requisição, que compreende o intervalo entre o envio da requisição pelo cliente
e a chegada da resposta enviada pelo servidor, e a quantidade de requisições processadas
por unidade de tempo. Foram definidos três cenários diferentes para os experimentos:
(A) cliente, VNF-Cache e servidor de banco de dados próximos entre si; (B) cliente e
VNF-Cache próximos entre si, e o servidor distante; e (C) cliente, VNF-Cache e servidor
distantes entre si. Desta forma, é possı́vel analisar a eficiência das diferentes aplicações
da VNF-Cache conforme a distância entre os clientes e os servidores varia.

Para a execução dos experimentos, foram utilizadas uma máquina fı́sica e
múltiplas combinações de máquinas virtuais, conforme será descrito adiante. A máquina
fı́sica possui um processador Intel(R) Core(TM) i5-7400 @3.0 GHz x 4, 16 GB de

memória RAM, uma interface de rede de 100 Mb/s e sistema operacional Ubuntu 20.04.6.
Esta máquina serviu para a coordenação dos testes e execução de algumas das máquinas
virtuais. Estas, por sua vez, foram instanciadas tanto localmente utilizando Kernel-
based Virtual Machine (KVM), quanto remotamente através da Amazon Elastic Compute
Cloud6, um serviço de computação em nuvem da Amazon Web Services7 (AWS) que pos-
sibilita a instanciação de máquinas virtuais em diferentes localizações do mundo.

Cada experimento consistiu de um cliente enviando 30 lotes de 1000 requisições
para chaves inteiras aleatórias, distribuı́das de forma uniforme no intervalo de 1 a 100 da
coleção phrases do banco de dados randomPhrases do MongoDB, que é constituı́do por
frases aleatórias. Além disso, estes também realizam a medição do tempo de resposta de
cada requisição e do número de requisições processadas por segundo.

Por sua vez, a VNF-Cache foi executada em máquinas virtuais com duas opções
de especificações. As máquinas virtuais executadas na máquina fı́sica utilizam o sistema
operacional Ubuntu 20.04, em um processador virtualizado de 3 GHz x 2, memória prin-
cipal de 2 GB e 15 GB de armazenamento em disco. Já na AWS, as máquinas virtuais
executam o mesmo sistema operacional, porém sobre um processador virtualizado de 2.5
GHz x 1, memória principal de 1 GB e 8 GB de armazenamento em disco. Por fim,
o servidor de banco de dados MongoDB foi implementado em máquinas virtuais com
Ubuntu Server 20.04, processador de 1 GHz (no KVM) ou de 2,5 GHz (na AWS), 1 GB
de memória RAM e 10 GB de armazenamento em disco.

Experimento 1: Cliente, Servidor e VNF-Cache Próximos

O primeiro experimento foi realizado com cliente, VNF-Cache e servidor de banco de
dados próximos entre si. Para isso, três máquinas virtuais foram instanciadas na mesma
máquina fı́sica. Além disso, foram implementadas polı́ticas de redirecionamento no rote-
ador da rede criada para intercomunicação das VMs. Desta forma, todo pacote do cliente
com destino ao banco de dados do servidor é desviado para uma porta especı́fica da VM
que executa a VNF-Cache. A Tabela 1 mostra os tempos de resposta, em milissegundos
(ms), das requisições para a mesma chave nos experimentos sem e com a VNF-Cache.

Tabela 1. Tempos das requisições (em ms) para a mesma chave e overhead
causado pela VNF-Cache no cenário A.

Ordem das Requisições para uma Determinada Chave
VNF-Cache 1ª 2ª 3ª 4ª 5ª 6ª ...
S/ VNF-Cache 1,12 ms 1,56 ms 2,04 ms 1,26 ms 1,17 ms 1,35 ms ...
C/ VNF-Cache 10,54 ms 5,40 ms 3,87 ms 3,32 ms 4,05 ms 3,93 ms ...
Overhead 9,42 ms 3,84 ms 1,83 ms 2,06 ms 2,88 ms 2,58 ms ...

A tabela mostra que, sem utilizar a VNF-Cache, o tempo de resposta médio para
cada requisição (considerando as primeiras 6 requisições) variou entre 1,12 e 2,04 milis-
segundos (ms). O tempo médio foi de 1,41 ms, com uma taxa de 535 requisições por
segundo. A VNF-Cache foi então habilitada com capacidade máxima de 100 conjuntos

6https://aws.amazon.com/pt/ec2/?nc2=h ql prod cp ec2
7https://aws.amazon.com/pt/

chave-valor (ou seja, todo o espaço de chaves do banco de dados). Desta vez, consi-
derando o preenchimento da cache, o tempo de resposta médio foi de 5,18 ms, ou seja,
aproximadamente 3,5 vezes mais demorado. Já o número médio de requisições por se-
gundo foi de 191, ou seja, uma queda de quase 65%.

Estes resultados possibilitam concluir que em um cenário de proximidade entre
cliente e servidor, a VNF-Cache não atinge o seu objetivo de redução do tempo de res-
posta. Neste caso, isto acontece pois a VNF-Cache apenas adiciona um processamento
extra no percurso dos pacotes de rede que, ao invés de trafegarem diretamente entre cliente
e servidor, precisam passar pela VNF-Cache antes de chegarem aos seus destinos finais.
Como neste caso o tempo de resposta das requisições diretas entre o cliente e servidor já é
baixo, o overhead causado pela VNF-Cache, não é capaz de justificar sua implementação
neste cenário. É possı́vel perceber pela Tabela 1 que na primeira requisição pela chave,
quando ocorre um cache miss e a VNF-Cache necessita requisitar o servidor, o overhead
médio causado é de 9,42 ms.

Experimento 2: Cliente e VNF-Cache Próximos, Servidor Distante

Em seguida, os experimentos afastando geograficamente o servidor de banco de dados
do cliente e da VNF-Cache foram realizados. Para isso, foram instanciadas na AWS
duas máquinas virtuais para o servidor de banco de dados, sendo a primeira delas em
Ohio, na costa leste dos Estados Unidos, e a segunda em Tóquio, Japão. O cliente e
a VNF-Cache foram executados em máquinas virtuais no KVM da máquina fı́sica em
Curitiba. A Tabela 2 mostra os tempos de acesso para cada combinação de localizações e
capacidades da VNF-Cache. Para uma melhor análise do desempenho da implementação,
nas execuções deste cenário variou-se também a capacidade da VNF-Cache entre 10, 30,
70 e 100 conjuntos chave-valor.

Nos experimentos sem utilização da VNF-Cache e com o servidor em Ohio, o
tempo médio das requisições diretas entre cliente e servidor foi de cerca de 164 ms, com
cerca de 6 requisições processadas por segundo. Já nos experimentos com o servidor em
Tóquio, o tempo médio das requisições diretas entre cliente e servidor foi de cerca de 292
ms, com cerca de 3,3 requisições processadas por segundo.

Tabela 2. Tempos médios das requisições (em ms) para cada capacidade da VNF-
Cache local e posicionamento do servidor de banco de dados chave-valor.

Sem Capacidade da VNF-Cache (em pares chave-valor)
Localização VNF-Cache 10 30 70 100

OHIO 164 ms 174,48 ms 138,51 ms 64,66 ms 8,08 ms
JAPÃO 292 ms 303,34 ms 239,35 ms 112,66 ms 11,02 ms

Neste experimento o impacto da VNF-Cache é muito positivo: com capacidade
de 100 conjuntos chave-valor, cliente e VNF-Cache em Curitiba e o servidor em Ohio o
tempo médio de resposta foi cerca de 8 ms com uma média de 118 requisições processadas
por segundo. Já com o servidor em Tóquio, os resultados são ainda mais expressivos: o
tempo das requisições caiu de 292 ms (sem VNF-Cache) para uma média de 11,02 ms e
o número de requisições processadas por segundo aumentou de 3,3 para uma média de

87. As melhoras são de até aproximadamente 95% com o servidor em Ohio e 96% com o
servidor em Tóquio.

A Tabela 2 também mostra o impacto da capacidade da VNF-Cache local em
comparação ao espaço de chaves possı́veis do banco de dados. Por exemplo, nos expe-
rimentos realizados com a cache com capacidade de apenas 10 conjuntos chave-valor, é
observado um pequeno aumento no tempo médio de resposta das requisições. Com o
servidor em Tóquio e a VNF-Cache de 10 posições na mesma localização do cliente, o
tempo médio chegou a piorar em cerca de 3,5%. Já com o servidor localizado em Ohio
e a VNF-Cache com a mesma capacidade, o tempo médio de resposta das requisições
piorou em cerca de 6%. Ou seja, nestes experimentos da VNF-Cache, caso a capacidade
da cache seja muito pequena, o tempo de resposta médio tende a ser pior se comparado
ao tempo das requisições diretas.

Experimento 3: Cliente, VNF-Cache e Servidor Distantes

Experimentos afastando a VNF-Cache do cliente também foram realizados. O cliente foi
executado em Curitiba, a VNF-Cache em uma máquina virtual na AWS em São Paulo.
A ideia é avaliar o benefı́cio de uma cache no paı́s para o acesso de clientes locais a
servidores no hemisfério norte. A Tabela 3 mostra que para a VNF-Cache com capacidade
de 100 conjuntos chave-valor, o tempo médio das requisições diminuiu em cerca de 87%
com o servidor em Ohio e em cerca de 92% com o servidor em Tóquio. Já o número de
requisições por segundo aumentou para uma média de 45 para Ohio (no acesso direto são
apenas 6 requisições por segundo) e para uma média de 40 em Tóquio (no acesso direto,
são apenas 3,3 requisições por segundo).

Outro ponto relevante apresentado na Tabela 3 é o fato de a VNF-Cache já apre-
sentar um resultado benéfico mesmo com a baixa capacidade de 10 conjuntos chave-valor.
Neste caso, o tempo de resposta das requisições reduziu em cerca de 17% com o servidor
em Ohio e cerca de 12% com o servidor em Tóquio. Esse resultado é melhor que o do
Experimento 1, e acreditamos que se deve às limitações da máquina fı́sica que executa as
máquinas virtuais KVM para cliente e VNF-Cache.

Tabela 3. Tempos médios das requisições para cada capacidade da VNF-Cache
em SP e posicionamento do servidor de banco de dados chave-valor.

Sem Capacidade da VNF-Cache (em pares chave-valor)
Localização VNF-Cache 10 30 70 100

OHIO 164 ms 134,56 ms 108,92 ms 57,88 ms 21,13 ms
JAPÃO 292 ms 257,08 ms 204,31 ms 100,50 ms 22,13 ms

A Figura 4 mostra a quantidade de requisições processadas por segundo durante
os primeiros 60 segundos da execução dos lotes de requisições com a VNF-Cache em
São Paulo e o servidor em Ohio. Os resultados apontam que, durante o experimento das
requisições diretas entre o cliente e o servidor, a média de requisições processadas por
segundo se manteve relativamente estável, variando entre 5 e 6. Já com a VNF-Cache
em São Paulo e capacidade de 100 conjuntos chave-valor, após algum tempo de envio
das requisições dos lotes, a média aumentou consideravelmente, ultrapassando em alguns

momentos a marca de 50 requisições processadas por segundo. Este tempo no qual a
média de requisições processadas por segundo ainda é baixa pode ser associado ao tempo
de warm-up da VNF-Cache, ou seja, o tempo que demora para ela armazenar localmente
as cópias dos valores das chaves. Desta forma, quando a cache está cheia, mais valores
poderão ser retornados rapidamente para o cliente, aumentando o número de requisições
processadas por segundo. Através da figura nota-se ainda que, conforme a capacidade da
VNF-Cache aumenta, maior é a quantidade de requisições processadas por segundo.

Tempo (segundos)

Re
qu

is
iç

õe
s

po
r

se
gu

nd
o

0 20 40 60

50

10

20

30

40

Figura 4. Processamento de
requisições.

1 2 3 4 5 6 7 8 9 10
Ordem Requisição

0

25

50

75

100

125

150

175

200

Te
m

po
 (m

s)

Tipo
HIT
MISS

Figura 5. Cache hit vs. cache
miss.

Por fim, considerando o servidor instanciado em Ohio, a Figura 5 demonstra a
diferença do tempo de resposta quando a consulta de uma chave na VNF-Cache resulta
em cache miss e quando resulta em cache hit. As barras de cor laranja mostram o tempo
de resposta para as 10 primeiras requisições por uma chave que não foi armazenada na
cache, enquanto as barras verdes representam o caso em que a chave foi armazenada
após a primeira requisição. Para as requisições sem armazenamento em cache, o tempo
médio foi de 180 ms. Já no cenário em que ocorre o armazenamento em cache, a primeira
requisição apresenta um tempo de resposta similar ao anterior (quase 200 ms), mas a
partir da segunda requisição (quando o valor da chave já foi armazenado na cache) o
tempo médio reduz para 6,5 ms. Esta redução de cerca de 96% no tempo de resposta
ressalta o benefı́cio da VNF-Cache. Além disso, a redução do número de requisições para
o servidor também diminui o tráfego de pacotes na rede e a sobrecarga dos servidores.

4.2. Discussão
Os experimentos mostram com clareza que a VNF-Cache reduz o tempo de resposta e
aumenta o número de requisições processadas por segundo para bancos de dados chave-
valor remotos. Além disso, vale recordar que há uma redução do tráfego de rede implı́cita,
ao evitar que requisições e respostas tenham que percorrer todo o caminho até o servidor.
Por fim, devido à sua construção como uma função virtual de rede, é notável a flexibili-
dade de implantação proporcionada pela VNF-Cache, já que a mesma pode ser instanci-
ada e configurada em diversos pontos da rede de maneira simples e rápida.

5. Conclusão
Este trabalho propôs a VNF-Cache, um serviço de cache para bancos de dados chave-valor
implementado como uma função virtual de rede. Através do processamento dos pacotes

de rede enviados entre clientes e servidores de bancos de dados, a VNF-Cache pode re-
alizar o armazenamento de conjuntos chave-valor diretamente na rede, aproximando os
dados das aplicações solicitantes. Ao retornar os dados requisitados diretamente para os
clientes, a VNF-Cache possibilita uma redução no tempo de resposta, tráfego de dados
e uso de recursos da rede. Através da implementação de um protótipo e dos experimen-
tos realizados, foi possı́vel obter uma redução considerável no tempo de resposta das
requisições para os servidores de bancos de dados chave-valor geograficamente distantes.
Além disso, os experimentos apontam um aumento expressivo do número de requisições
processadas por segundo.

Trabalhos futuros incluem a implementação de diversas polı́ticas de preenchi-
mento e substituição de dados em cache. Outra expansão que ampliaria ainda mais o
escopo de funcionamento é permitir o caching de dados de bancos de dados e coleções
variáveis, bem como de múltiplos bancos de dados chave-valor simultaneamente, como
o Redis e o Amazon DynamoDB. Uma limitação do protótipo é a necessidade de
comunicação segura entre os clientes e os servidores – é necessário garantir o uso de
VNF-Caches com segurança. Por fim, outro trabalho futuro relevante é a implementação
de métodos de armazenamento dos conjuntos chave-valor em estruturas de dados mais ro-
bustas e que possuam um melhor tratamento para manipulações de dados concorrentes.

Agradecimentos

Este trabalho foi parcialmente apoiado pela Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior (CAPES) - Programa de Excelência Acadêmica (PROEX) – Código de
Financiamento 001; e pelo CNPq (Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico) - projeto 305108/2025-5.

Referências

Bondan, L., Franco, M. F., Marcuzzo, L., Venancio, G., Santos, R. L., Pfitscher, R. J.,
Scheid, E. J., et al. (2019). Fende: marketplace-based distribution, execution, and life
cycle management of vnfs. IEEE Communications Magazine, 57(1):13–19.

Clayman, S., Kalan, R. S., and Sayit, M. (2018). Virtualized cache placement in an
sdn/nfv assisted sand architecture. In 2018 IEEE International Black Sea Conference
on Communications and Networking (BlackSeaCom), pages 1–5. IEEE.

ETSI (2012). Network functions virtualisation – introductory white paper. Standard,
European Telecommunications Standards Institute, Darmstadt, Germany.

ETSI (2021). Etsi gr nfv-man 001 v1.2.1 - network functions virtualisation (nfv); manage-
ment and orchestration; report on management and orchestration framework. Standard,
European Telecommunications Standards Institute, Valbonne, France.

ETSI (2025). Open Source MANO. https://osm.etsi.org. Accessado em no-
vembro de 2025.

Flauzino, J., Fülber-Garcia, V., Huff, A., Venâncio, G., and Jr., E. D. (2021). Gerência
e orquestração de funções e serviços de rede virtualizados em nuvem cloudstack. In
XXVI Workshop de Gerência e Operação de Redes e Serviços, pages 82–95. SBC.

Flauzino, J., Lyra, C., and Duarte Jr., E. (2024). Utilizando anycast para filtragem de
pacotes para funções de rede virtualizadas em roteadores de alto desempenho. In 15o
Workshop de Pesquisa Experimental Internet do Futuro (WPEIF), pages 31–38. SBC.

Fulber-Garcia, V., Duarte Jr, E. P., Huff, A., and dos Santos, C. R. (2020). Network service
topology: Formalization, taxonomy and the custom specification model. Computer
Networks, 178:107337.

Fulber-Garcia, V., Flauzino, J., Venâncio, G., Huff, A., and Junior, E. P. D. (2024). Bre-
aking the limits: Bio-inspired sfc deployment across multiple domains, clouds and
orchestrators. In 2024 IEEE Conference on NFV-SDN, pages 1–6. IEEE.

Halpern, J. et al. (2015). Service Function Chaining (SFC) Architecture. RFC 7665,
IETF.

Huff, A., Venâncio, G., Garcia, V. F., and Duarte, E. P. (2020). Building multi-domain
service function chains based on multiple nfv orchestrators. In 2020 IEEE Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN), pages
19–24. IEEE.

Jacob, B., Ng, S., and Wang, D. (2008). Memory Systems: Cache, DRAM, Disk. Elsevier.

Jeong, J. P., Shen, Y., Ahn, Y., Kim, Y., Duarte Jr., E. P., and Yao, K. (2025a). A fra-
mework for the interface to in-network functions (i2inf).

Jeong, J. P., Shen, Y., Ahn, Y., Kim, Y., Duarte Jr., E. P., and Yao, K. (2025b). Interface
to in-network functions (i2inf): Problem statement.

Liu, Y., Point, J. C., Katsaros, K. V., Glykantzis, V., Siddiqui, M. S., and Escalona, E.
(2017). Sdn/nfv based caching solution for future mobile network (5g). In 2017 Euro-
pean Conference on Networks and Communications (EuCNC), pages 1–5. IEEE.

Seeger, M. (2009). Key-value stores: a practical overview. Medieninformatik.

Tacker (2025). Tacker - OpenStack NFV Orchestration. https://wiki.
openstack.org/wiki/Tacker. Accessado em novembro de 2025.

Turchetti, R. C. and Duarte, E. P. (2015). Implementation of failure detector based on
network function virtualization. In 2015 IEEE International Conference on Dependa-
ble Systems and Networks Workshops, pages 19–25. IEEE.

Venâncio, G., Turchetti, R. C., Camargo, E. T., and Duarte Jr, E. P. (2021). Vnf-consensus:
A virtual network function for maintaining a consistent distributed software-defined
network control plane. International Journal of Network Management, 31(3):e2124.

Venâncio, G., Turchetti, R. C., and Duarte, E. P. (2019). Nfv-rbcast: Enabling the network
to offer reliable and ordered broadcast services. In 2019 9th Latin-American Sympo-
sium on Dependable Computing (LADC), pages 1–10. IEEE.

Venâncio, G., Turchetti, R. C., and Duarte Jr, E. P. (2022). Nfv-coin: Unleashing the
power of in-network computing with virtualization technologies. Journal of Internet
Services and Applications, 13(1):46–53.

Zhuang, W. et al. (2019). SDN/NFV-empowered future IoV with enhanced communica-
tion, computing, and caching. Proceedings of the IEEE, 108(2):274–291.

